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Prestressed concrete components have high resistance to cracks and stiffness, yet prone to damage 

leading to accidents under adverse environments and extreme loads. The study uses machine learning 

algorithms to construct an intelligent concrete damage recognition model aimed at accurately assessing 

its health status. The piezoelectric wave measurement method is used to collect small wave signals from 

concrete. The improved back propagation network is used to identify concrete damage characteristics in 

the signals, and the support vector machine is taken to correct the identification results. The genetic 

algorithm is used to optimize the back propagation neural network, obtaining the optimal threshold and 

weight of the back propagation neural network to improve its robustness and feature extraction ability 

in noisy environments. According to the results, the model constructed by integrating two classification 

algorithms has a mean square error of 7.962×10-4, a coefficient of determination of 0.9756, and an F1 

score of 0.9836 in the damage location recognition results. In the identification results of the degree of 

damage, the mean square error of the research model was 6.548×10-2, the coefficient of determination 

was 0.9531, and the F1 score was 0.9925, respectively. In the environment with introduced noise, the 

recognition accuracy of the research model was 93.7%. The results indicate that the research method 

has higher accuracy and robustness in damage identification compared with other models, which can be 

used for concrete damage detection in large buildings or long-term high load buildings. 

Povzetek: A hybrid GA-BP-SVM model enhances damage identification in prestressed concrete using 

piezoelectric wave measurement, achieving high accuracy (F1: 0.9925) and robustness (93.7% under 

noise), improving structural health monitoring.

1 Introduction 
Concrete materials have abundant raw materials, low 

prices, simple production processes, durability, and 

strong plasticity, which are widely used in infrastructure 

construction and building construction. With the large-

scale and diversified development of civil engineering, 

concrete may be subjected to strong external pressure or 

long-term corrosion, causing damage and leading to 

structural safety in buildings [1]. However, the early 

characteristics of concrete damage are not obvious. It is 

difficult to fully cover them through regular manual 

inspections, which cannot provide accurate results for 

assessing its health status. The piezoelectric wave 

measurement method uses piezoelectric materials to 

generate and detect waves. The instrument is small, easy 

to use, and not affected by the environment. It can be 

used for monitoring and warning, improving structural 

safety. The piezoelectric wave measurement method 

combined with machine learning algorithms can 

adaptively detect concrete damage, with high efficiency 

and accuracy. Back Propagation (BP) network can 

handle complex nonlinear problems and automatically 

extract patterns between data. It has high adaptability and 

self-learning ability, which is a commonly used feature  

 

classification algorithm. Genetic Algorithm (GA) 

simulates the natural selection process and has an 

automatic elimination mechanism. Through selection, 

hybridization, and mutation, the population evolves 

gradually towards the optimal solution. It is a meta-

heuristic algorithm used for optimization. Support Vector 

Machine (SVM) is an extensively applied supervised 

learning algorithm. SVM has high accuracy in 

classification and regression tasks, especially in high-

dimensional spaces, which has high generalization 

ability. Many scholars have conducted relevant research 

on piezoelectric wave measurement methods, GA, BP, 

and SVM algorithms. 

In response to the inaccurate measurement of 

explosion shock wave pressure under the instantaneous 

high temperature effect in the explosion field, Shi et al. 

used piezoelectric wave sensors to analyze the effects of 

environmental temperature and transient temperature. A 

theoretical analysis method for transient temperature was 

proposed. A transient temperature control strategy was 

designed by coating 0.5 mm thick lubricating silicone oil 

on the sensor membrane and 0.2 mm thick glass fiber 

cloth on the sensor side. The accuracy of the explosion 

shock wave pressure was improved to 97.8% [2]. To 

accurately predict whether the surface roughness of 
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precision manufactured aluminum alloys meets the 

requirements, Bai et al. designed a BP prediction method. 

The results showed that the predictive progress of the 

model was improved by 7.8%. BP recognized small 

features in high-precision manufacturing and solved the 

insufficient accuracy [3]. In response to the inaccurate 

prediction of the self-diffusion coefficient in pure liquids, 

Zeng et al. used the BP to establish a nonlinear method 

that predicted the self-diffusion coefficient of pure 

liquids at normal pressure. The R2, AARD, and RMSE 

for predicting the self-diffusion coefficient were 0.9940, 

7.09%, and 0.1106, respectively [4]. Jiang et al. used an 

optimized GA to plan the optimal layout of the clothing 

production line for the uneven work intensity among 

employees. The results showed that the balance rate of 

the production line increased from 70.5% to 97.05%, and 

the production cycle was shortened by 32.80%, verifying 

the efficiency improvement performance [5]. To solve 

the difficulty in early warning of nonlinear 

macroeconomic systems, Yin et al. proposed a CNN 

economic early warning system based on the IGA-BP. 

The correlation coefficient was 0.89, and the delay 

number was 0. The economic warning system based on 

IGA-BP algorithm was effective. The BP optimized by 

GA could improve its feature classification ability [6]. To 

optimize the ability to prevent and control large-scale 

crop diseases, Gangadevi et al. proposed an improved 

SVM plant disease and pest identification model. The 

recognition accuracy of the research model reached 

91.1%, which was superior to other models. The 

powerful feature classification ability of SVM could 

solve the crop disease prevention and control [7]. Dong 

et al. proposed a runoff prediction model based on SOA-

SVM to address the difficult runoff prediction caused by 

its nonlinear and non-stationary characteristics. The 

results indicated that the average error and RMSE 

indicators of the research model were superior to other 

models [8]. Zhang et al. designed a method for 

automatically extracting damage characteristics from 

point cloud data to address the inaccurate damage 

detection in reinforced concrete structures. The results 

indicated that the research method was an effective 

approach for post disaster impact assessment and large-

scale building damage detection [9]. 
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Figure 1: The principle of piezoelectric wave measurement 

 

The above research indicates that existing detection 

methods have insufficient ability to detect small cracks 

and other damages in concrete structures in the early 

stages. Although existing literature has made significant 

progress in the application of machine learning and 

optimization algorithms, relatively little research has 

been done in the field of damage identification of 

prestressed concrete members, especially in the 

combination of piezoelectric wave measurement and 

GABP-SVM model. Existing methods often do not 

perform well when dealing with noise and uncertainty in 

complex environments. The piezoelectric wave 

measurement method can identify extremely small wave 

changes, providing a data basis for damage detection of 

concrete components. GA can be applied to optimize the 

BP for extracting damage features from piezoelectric 

wave measurement data. Therefore, introducing SVM 

algorithm for feature classification can improve the 

accuracy of damage detection in prestressed concrete 

components. The research aims to combine piezoelectric 

wave measurement method with GA, BP, and SVM 

algorithms to construct a new intelligent damage 

identification model for prestressed concrete 

components, monitoring the health status of concrete. 

The research is structured from three sections. The 

first introduces related algorithms and mechanisms in the 

concrete damage recognition model based on GABP-

SVM. The second section tests the model. The third 

section summarizes the research results. The latest 

research and comparison of research results in this field 

are shown in Table 1. 
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Table 1: Comparison chart of SOTA and research achievements in this field 

Algorithms Year Researcher Method MSE R2 F1 
Prediction 

accuracy 
SOTA lacks 

Optimize 

BP 

2023 Bai et al[3] BP / / / / 
Traditional BP may fall into 

local optima 

2022 Zeng et al[4] BP-ANN / 0.9940 / / 
Not tested for robustness in 
complex environments 

2022 Yin et al[6] IGA-BP / / / / Robustness unverified 

/ This study 
Improved 
GA-BP 

/ 0.9235 0.00724 / / 

Research 

model 

2024 
Gangadevi et 

al[7] 

FOA-

SVM 
/ / 0.945 91.1% 

Unoptimized FOA may 

obtain non optimal solutions 

2023 Dong et al[8] 
SOA-

SVM 
/ / / / Robustness unverified 

2022 Zhang et al[9] 

Point 

cloud 

data 

/ / / / 
Low efficiency and unstable 
accuracy 

/ This study 
GA-BP-

SVM 

6.548×10-

2 
0.9531 0.9836 93.7% / 

 

2 Methods and materials 
The study first introduces the principle of 

electromagnetic wave dynamic measurement method. 

Then, the GA is taken to optimize BP to improve the BP 

algorithm to identify concrete damage characteristics 

from piezoelectric wave measurement data. Finally, 

SVM is used to further classify and modify the output of 

GABP, improving the accuracy of damage detection in 

prestressed concrete components. 

2.1 Design of concrete damage feature 

classification algorithm based on 

GABP 

Under earthquake, high load and other conditions, cracks 

and other damages may occur on the surface or inside of 

prestressed concrete components. When cracks are small 

or damage occurs inside concrete components, they are 

usually difficult to detect. If not repaired timely, it may 

lead to major accidents such as structural collapse. 

Piezoelectric smart materials have positive/negative 

piezoelectric effects. The positive piezoelectric effect is 

manifested by the internal polarization when subjected to 

external forces, releasing charges proportional to the 

pressure. The negative pressure electric effect is 

manifested in the external electric field, where materials 

convert electrical energy into mechanical energy and 

undergo deformation [10-11]. Therefore, piezoelectric 

smart materials can be used as signal sensors, which are 

taken as signal transmission device in concrete structure 

damage detection. The principle of using piezoelectric 

intelligent materials for piezoelectric wave measurement 

is shown in Figure 1. 

In Figure 1, the signal transmission device deforms 

under the action of an electric field to generate sinusoidal 

stress waves, which propagate inside the concrete. 

During the propagation process, the signal will gradually 

decay due to energy loss caused by friction, scattering, 

and crack absorption between the medium and particles.  

 

Therefore, there is the energy conservation 

I H R TE E E E= + + . IE  is the energy of stress waves, 

which is the initial stress wave energy. HE  represents 

energy loss, which refers to the energy lost during the 

propagation of stress waves in concrete due to friction, 

scattering, and absorption. RE  is the energy of the 

transmitted wave received by the sensor after passing 

through the concrete. TE  is the reflected wave energy, 

which refers to the energy reflected back by stress waves 

when they encounter damage or interfaces inside 

concrete. Therefore, by collecting signals through 

sensors, concrete damage can be monitored. There is 

much interference noise in the signals collected by 

sensors. Many options for dimensionality reduction can 

preserve the main information. Singular value 

decomposition can select the k largest singular values to 

explain most of the variance in the signal, preserving the 

main information. Therefore, the study uses singular 

value decomposition to reduce the dimensionality of the 

signals, set the threshold of cumulative variance 

contribution to 90%, and introduces the BP algorithm to 

identify the characteristics of concrete damage 

information in the signals. The BP is displayed in Figure 

2. 

In Figure 2, during the forward propagation process, 

initialization is first performed, and then the sample data 

enters the hidden layer for calculation using a transfer 

function. The result is then fed to the output layer, where 

the error and calculation result are calculated. Finally, the 

termination condition is reached and the prediction result 

is output. During the iteration process, if the termination 

condition is not satisfied, BP is performed, and updated 

the obtained training error to all neurons. Each neuron 

adjusts the weights and thresholds of the entire network 

on the basis of the training error. If the training frequency 

reaches the set condition or the error reaches the 
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minimum, the neural network ends. Otherwise, it enters 

the hidden layer to continue calculation until the 

condition is met. The forward propagation is shown in 

equation (1) [12]. 
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In equation (1), qr  is the output of the hidden layer. 

so  is the output of the output layer. E  is the input 

sample, A  is the output of the hidden layer. N  is the 

sample size. RH   and sH  represent the weight matrices 

of the hidden layer and the output layer. 1f  is the 

activation function of the hidden layer. 2f  is the 

activation function of the output layer.   is the neuron 

index of the hidden layer. s  is the neuron index of the 

output layer. The training error is shown in equation (2). 
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In equation (2), m  satisfies the output layer node. n  

satisfies the input layer node. 
nsi  satisfies the expected 

output of the network. J  represents the training error. 
1

2
 

is the coefficient used in error calculation. nsi  is the 

expected output value of the network for the i -th output 

node and the s -th sample. nso  is the output value of the 

n -th neuron in the output layer for the s -th sample. The 

updated network weights are shown in equation (3). 
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Figure 3: Genetic algorithm variation operation 

 

In equation (3), 
1

s



 +
 represents the weight matrix of 

the 1 + -th iteration from the hidden layer   to the 

output layer s . s



  is the weight matrix before the 

update. S  is the maximum number of output layers. 
K

k  

is the specific layer weight update for the k -th iteration. 

K  is the total number of iterations. g



  is the weight 

matrix from the input layer g  to the output layer   

during the  -th iteration. 
1

g



 +
 is the updated weight 

matrix. G  is the total number of input layers. 
L

d  is the 

weight update of the output layer for the l -th iteration. 

L  is the maximum number of iterations.   satisfies the 

learning rate.   is the maximum number of iterations. qr  

is the output of the hidden layer in the q -th iteration. 

gE  is the input sample in the g -th iteration. Due to the 

BP over-fitting in noisy environments, there are 

numerous heuristic algorithms that can be used to 

optimize BP, among which GA exhibits high stability 

and robustness when dealing with complex problems, 

and can better cope with noise and uncertainty. 

Therefore, the study introduces GA to optimize BP. The 

GA evaluates the suitability of individuals based on the 

fitness function and the gap between them and the 

optimal target. Genetic methods such as selection, 

crossover, and mutation are performed to simulate 

natural selection of better individuals. Different fields 

will use different fitness functions. Generally, the fitness 

function of GA is transformed from the objective 
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function to the fitness function, as displayed in equation 

(4). 

g( x )
f ( x )

g( x )


= 

−
     (4) 

In equation (4), when solving the minimization 

problem, the fitness function f ( x ) g( x )= −  is used. 

When solving the maximization problem, the fitness 

function is g( x ) . When the fitness function is not 

directly transformed from the objective function, the 

fitness function to solve the minimization problem is 

shown in equation (5). 
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Figure 4: Optimal classification hyperplane for SVM 
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In equation (5), maxC  is the maximum fitness value. 

C  is the fitness value. When solving the maximization 

problem, the fitness function is shown in equation (6). 

0
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0 0
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
 − 

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  − 
+ −

 (6) 

 

In equation (6), minC  is the minimum fitness value. 

c  is the fitness threshold. The core of GA operators is 

crossover and mutation, which bring the entire selection 
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process closer to the optimal solution. GA randomly 

generates new offspring in the population through 

crossover operations. When designing the crossover 

probability, excellent individuals should avoid cross 

pairing. This can avoid the disappearance of excellent 

individuals and ensure that new individuals are close to 

the optimal solution [13]. Similar to natural genetic rules, 

when there is only cross inheritance, the diversity of the 

population is insufficient, and individuals who are too 

similar can easily slow down or even stop the population 

evolution speed. Therefore, GA includes mutation 

mechanisms, which increase population diversity through 

mutation. The genetic mutation operation is displayed in 

Figure 3. 
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Figure 6: Damage identification model for prestressed concrete components based on GABP-SVM 
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Figure 7: Comparative experimental results of BP and GABP 

 

Figure 3 displays the mutation operation of binary 

encoding. Figure 3 (a), Figure 3 (b), and Figure 3 (c) 

depict the exchange, insertion, and flashback during the 

replication process. Genetic variation produces new 

individuals, which determines the local search of GA and 

can bring diversity to the population. These three genetic 

operators of GA simulate the recombination and 

mutation process of sexual reproduction, and select better 

individuals through fitness scores to evolve the entire 

population towards the optimal solution. The BP 

optimized by GA is used to map the space vector from n

-dimensional to m -dimensional, which can reduce the 

blindness in the weight adjustment process. The 

optimized weight correction is shown in equation (7) 

[14]. 

( 1) ( )

( 1) ( )

jk jk k r

ij ij k p

w w h E

w w i E

  
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+ = +


+ = +

   (7) 

In equation (7),   and   are learning factors, used 

to control the magnitude of weight adjustment. ( )ijw   

and 

( )jkw   satisfy the weights of each neuron in the hidden 

and output layers after   iterations. r  is the sample 

size. pE  is the sample error, used to guide the 
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adjustment of weights. ( 1)ijw  +  and ( 1)jkw  +  are 

the weights of each neuron in the hidden layer and output 

layer after 1 +  iterations. kh  and ki  are the gradient 

terms for weight updates, used to minimize the error of 

the network. The new fitness function is shown in 

equation (8). 

 

( )
1

m

p p

p

F k asb o t

=

 
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 
 
     (8) 

 

In equation (8), k  is the coefficient. m  is the 

number of output layer nodes. p po t−  is the output error 

of the network. During the optimization process, 

floating-point encoding is used to encode the basic 

solution space. After encoding is completed, the 

population of the GA is initialized. The population M  is 

shown in equation (9). 

M m n m q q m=  +  + +    (9) 

In equation (9), n  is the input layer node size in BP. q  

is the hidden layer node size in BP. The probability ip  of 

an individual being selected in GA is shown in equation 

(10). 
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In equation (10), i if k / F= . iF  represents the 

fitness value of node i , calculated by equation (8). After 

determining the individual population F , individuals are 

decoded and corresponding network connection 

thresholds and weights are generated. Genetic operations 

are performed on individuals with lower F -values until 

the maximum iteration is satisfied to obtain the optimal 

threshold and weights for the BP network, ultimately 

optimizing the BP network. 
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Figure 8: Comparison of optimization algorithms and experimental results 
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Figure 9: Comparison test results of SVM algorithm and classification algorithm
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2.2 Construction of damage identification 

model for prestressed concrete 

components based on GABP-SVM 

In practical applications, prestressed concrete 

components may have small cracks in the concrete due to 

factors such as insufficient compaction, natural 

shrinkage, and uncleared wood chips, which reduces the 

GABP feature recognition accuracy [15]. SVM is a 

supervised learning algorithm widely used in 

classification and regression analysis. The study 

introduces SVM to further classify GABP recognition 

results, aiming to improve the accuracy of concrete 

component damage detection. In classification problems, 

SVM attempts to find a hyperplane to maximize the 

boundary between two categories. The optimal 

classification hyperplane for SVM is shown in Figure 4. 

In Figure 4, in two-dimensional space, the 

classification hyperplane can be imagined as a line that 

separates two categories. In a higher dimensional space, 

the optimal classification hyperplane becomes a 

hyperplane. SVM can train a classifier for concrete 

damage feature classification by collecting and analyzing 

various concrete damage data. The optimal classification 

plane and lines G, G1, and G2 in SVM algorithm are 

displayed in equation (11). 

( ) Tf x w x b= +      

                                                                       (11) 

 

In equation (11), w  satisfies the normal vector. b  

satisfies the bias amount. Among all the classified 

samples, ( )1 1,x y , ( )2 2,x y , ... and ( ),i ix y  need to satisfy 

equation (12). 

 

( ) 1i iy wx b+                   (12)                     

In equation (12), different w  and b  can determine 

different position planes. The optimal classification plane 

calculation is shown in equation (13). 
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In equation (13), 
21

min
2

w  represents the minimum 

confidence range. Equation (13) can be converted into 

equation (14). 
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In equation (14), 
21

min
2

w  can be used as a 

prerequisite for the optimization problem. When the 

current condition cannot be met, relaxation variables 
i  

and 
*

i  are introduced to relax the range of the premise 

conditions. At this time, the objective function is to 

minimize the confidence range, as shown in equation 

(15). 
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In equation (15), C  satisfies the penalty factor, 

which is the punishment for data that exceeds the   

range [16]. Through the above classification constraints, 

SVM has excellent ability in classification. The SVM is 

displayed in Figure 5. 

In Figure 5, in neural network architecture, the input 

layer receives feature vectors from the original input of 

the data source, with each feature vector representing a 

sample. The hidden layer is composed of multiple 

neurons and connected to each input node in the input 

layer, forming a fully connected structure. The output 

layer is responsible for outputting classification results, 

and the number of neurons is usually equal to the number 

of categories in the classification problem. In the SVM 

structure, the input space refers to the space of the 

original input data, while the feature space refers to the 

space of the feature vectors obtained through hidden 

layer processing. SVM can map data from the input 

space to the feature space to complete classification 

tasks. The model structure for identifying damage in 

prestressed concrete components combining GABP and 

SVM is shown in Figure 6. 

In Figure 6, the sensor of piezoelectric fluctuation 

measurement method identifies the fluctuation changes 

in prestressed concrete components. After collecting 

recognition data and conducting preliminary processing, 

it is input into a BP optimized by GA to identify the 

characteristics of concrete damage. Afterwards, the 

calculation results are fed into the SVM for further 

classification and correction, improving the accuracy of 

damage detection in prestressed concrete components. At 

the end, the visualization results of damage identification 

are output. A damage recognition method for prestressed 

concrete components is constructed on the basis of 

GABP-SVM. During the training, the original signal is 

first preprocessed. This includes removing the DC bias 

from the original signal to make the average value of the 

signal zero, and using a bandpass filter to remove high-

frequency noise and low-frequency interference to 

preserve useful signal components. The most important 
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thing in the pre-processing process is to reduce 

dimensionality through SVD, retain the main singular 

values, and remove noise and redundant information. 

After that, a BP neural network is created and the 

dimensions of the input layer, hidden layer, and output 

layer are set. Then, GA is used to optimize the weights 

and thresholds of BP neural network to improve the 

performance of the model. Finally, SVM is used to 

classify the output of the optimized BP neural network to 

further improve the classification accuracy and complete 

the model training. Compared with the traditional SVM, 

this study uses SVD to denoise the data. Moreover, the 

powerful nonlinear modeling capability of the improved 

BP algorithm is combined with the linear classification 

performance of SVM. By fully utilizing the advantages 

of these two algorithms, the classification problem of 

complex data collected by sensors can be better solved. 

This method enables GABP-SVM to better perform 

damage detection tasks. 
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Figure 10: Comparison test results between GABP-SVM algorithm and other algorithms 
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Figure 11: Comparison test results between GABP-SVM algorithm and other algorithms 
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Figure 12: Experimental results of training GABP 
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Figure 13: Comparison of 4 algorithms for fault recognition in 3 parts 

 

3 Results 
To verify the damage identification model for prestressed 

concrete components based on GABP-SVM, relevant 

experiments are conducted. The experiment conducts 

performance tests on the optimization algorithm GA, 

feature classification algorithm GABP, and SVM used in 

the research, verifying the computational efficiency and 

classification accuracy. Afterwards, comparative tests are 

conducted with other concrete component damage 

identification models to verify the generalization ability 

and the damage identification performance. 

3.1 Performance analysis of damage 

feature classification algorithm based 

on GABP-SVM 

The study uses the piezoelectric wave measurement 

method to extract rich wave data information from 

prestressed concrete components. GA, BP, and SVM 

algorithms are used to identify damage characteristics. 

To verify the effect of BP optimized by GA, a 

comparative test is conducted between BP and GABP. 

The computer configuration used in the experiment is 

Intel ® CoreTM i9-9980XE, with an 8-core 2.1GHz 

CPU, 16GB of memory, and 1TB of hard drive. The 
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experiment selected 2,000 samples from the classic 

MNIST dataset for algorithm training and testing, with 

80% of the dataset used for training and 20% for testing, 

as displayed in Figure 7. 

In Figure 7 (a), the experimental results of the GABP 

algorithm on the testing set showed that the fitting degree 

between the GABP feature classification results and the 

true values was high. The R2 of the GABP was 0.9235, 

and the MSE was 0.00724. In Figure 7 (b), the BP 

algorithm on the testing set show that the fitting degree 

between the BP feature classification results and the true 

values was lower than that of GABP. The R2 of the BP 

was 0.8682, and the MSE was 0.01416. The results 

showed that the R2 value of GABP was 0.0553 higher 

than that of BP, and the MSE value of GABP was 

0.00692 lower. The GABP has better feature 

classification ability than the basic BP algorithm. To 

verify the computational efficiency of the improved 

method, a comparative test is conducted between the 

GABP algorithm and three heuristic algorithms, namely 

Grey Wolf Optimization (GWO), Bat Algorithm (BA), 

and Particle Swarm Optimization (PSO), to optimize the 

BP algorithm, as displayed in Figure 8. 

In Figure 8 (a), in the unimodal function, the average 

fitness of GABP dropped to the lowest at 417 iterations, 

and the average fitness of GWO-BP dropped to the 

lowest at 440 iterations. However, BA-BP algorithm and 

PSO-BP algorithm had slower iteration speeds than BA-

BP and GWO-BP algorithms, and had not yet converged 

after 500 iterations, with average fitness values still at a 

high level. In Figure 8 (b), in multimodal functions, the 

average fitness value of the GABP algorithm dropped to 

the lowest after 48 iterations. The global search speed of 

the GWO-BP in the early stage was similar to that of the 

BA-BP algorithm, but the speed was slower in local fine 

search. The average fitness value of the GWO-BP 

algorithm dropped to the lowest after 174 iterations. The 

PSO-BP and BA-BP algorithms converged faster in 

multi-modal functions than in unimodal functions, but 

convergence was still incomplete after 500 iterations. 

The genetic operation of GA provides various ways to 

generate new solutions, increase the diversity of 

understanding, and help GA better explore the solution 

space. Therefore, GA has strong global search 

capabilities. Moreover, GA has strong parallel computing 

ability, which can significantly improve the convergence 

efficiency, so that the convergence efficiency of GA-BP 

is higher than that of PSO-BP and BA-BP. To verify the 

classification accuracy of SVM, a comparative test is 

conducted using Random Forest (RF), Decision Tree 

(DT), and SVM. 1,600 samples from the CIFAR-10 

dataset were selected for algorithm training and testing, 

with 80% of the dataset used for training and 20% for 

testing. The results are shown in Figure 9. 

In Figure 9 (a), the predicted value of SVM was close to 

the standard value, with a prediction accuracy of 0.94. In 

Figure 9 (b), the predicted value of the RF was far from 

the standard value, with a prediction accuracy of 0.74. In 

Figure 9 (c), compared with the standard value, the 

predicted value of DT was very discrete, and the distance 

between the predicted value and the standard value was 

farther than SVM and RF, with a prediction accuracy of 

0.58. 

3.2 Performance Analysis of GABP-SVM 

Algorithm 

To verify the performance of the GABP-SVM algorithm, 

experimental tests are conducted. The study conducted 

comparative experiments with Extreme Gradient 

Boosting (XGBoost) in ensemble learning, Visual 

Geometry Group Network (VGG), and AlexNet Neural 

Network (AlexNet). The experiment selected 20,000 data 

samples from the Kesi West Reserve bearing dataset, 

with 80% of the dataset used for model training and 20% 

for model testing. Four algorithms were used in the test 

to identify and classify faults in the inner, outer, and 

rolling elements of bearings. The additive Gaussian 

white noise in 
38 (SNR d )b− 

 was introduced as 

interference data. The experimental results are shown in 

Figure 10. 

In Figure 10 (a), XGBoost algorithm identified the 

fault characteristics of the rolling elements, but the fault 

characteristics of the inner and outer rings were not 

accurately classified. In Figure 10 (b), AlexNet algorithm 

could recognize the inner, outer, and rolling element 

features, but did not complete the classification task for 

the three types of features. In Figure 10 (c), VGG16 

algorithm did not complete the recognition and 

classification of fault types, and the recognition results 

had many discrete points. The accuracy and robustness of 

the model were both at a low level. In Figure 10 (d), 

GABP-SVM algorithm accurately identified the fault 

characteristics of the inner and outer rings and rolling 

elements of rolling bearings and completed the 

classification. The results show that in noisy 

environments, the feature recognition ability of GABP-

SVM algorithm is superior to XGBoost, AlexNet, and 

VGG16 algorithms. The setting of crossover and 

mutation rates in GA will affect the optimization effect 

of parameters, thereby affecting the performance of the 

model. To analyze the impact of GA parameters on 

model performance, a sensitivity analysis is conducted. 

The study conducted tests different combinations of 

mutation rate and crossover rate, and the test results are 

shown in Figure 11. 

In Figure 11, as the crossover rate increased, the 

performance of the model gradually improved. When the 

crossover rate was 0.7, the R2, F1 score, and accuracy of 

the model were all the highest. When the crossover rate 

was 0.9, the indicator values decreased. In different 

crossover rate values, the indicator value first increased 

and then decreased with the increase of mutation rate. 

When the crossover rate was 0.7 and the mutation rate 

was 0.05, the R2, F1 score, and accuracy were at their 

highest values, which was the optimal parameter setting 

for GA in GABP-SVM. 
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3.3 Performance analysis of damage 

identification model for prestressed 

concrete components based on GABP-

SVM 

The above experiment shows that the feature 

classification algorithm used in the study has high 

accuracy. To verify the performance of combining the 

two for damage feature recognition, a comparative 

experiment is conducted between the GABP-SVM model 

and concrete damage recognition models based on SVM 

and GABP, as well as a model that integrates PSO and 

RF. The experiment first trains GABP to obtain the 

optimal weights and thresholds of BP, as presented in 

Figure 12. 

In Figure 12 (a), after 54 iterations, the calculated 

optimal fitness value was 0.0326421, and the optimal 

number of hidden layers was 9. In Figure 12 (b), after 

100 iterations, the optimal fitness value calculated was 

0.0336789, and the optimal hidden layer was 21. The BP 

is set as the optimal threshold and weights. A 

comparative experiment is conducted between the 

optimized GABP-SVM and other models mentioned 

above, as presented in Table 2. 

In Table 2, the symbol ''*'' indicates a P<0.05 when 

compared to other algorithms, indicating that the 

difference in results is statistically significant. Among 

them, R2 is mainly used for regression analysis to 

determine the classification ability of the model. The 

range of R2 values is [0, 1], and the larger the R2, the 

higher the classification accuracy of the model. The 

Mean Squared Error (MSE), R2, and F1 scores of the 

GABP-SVM model in the damage location recognition 

results were 7.962×10-4, 0.9756, and 0.9836, 

respectively, which were superior to the SVM model, 

GABP model, and PSO-RF model. In the results of 

identifying the degree of damage, the MSE, R2, and F1 

scores of the GABP-SVM model were 6.548×10-2, 

0.9531, and 0.9925, respectively, which were also 

superior to other models. To further verify the 

robustness, comparative tests are conducted on the 

models that performed better in an environment with 

added noise. The test results are shown in Figure 13. 

In Figure 13 (a), the PSO-RF model had an accuracy 

of 82.6% in identifying damage to prestressed concrete 

components. In Figure 13 (b), the accuracy of SVM 

model in identifying damage to prestressed concrete 

components was 69.8%. In Figure 13 (c), the accuracy of 

GABP-SVM model for damage identification of 

prestressed concrete components was 93.7%. The results 

indicate that in noisy environments, the damage 

recognition accuracy of the GABP-SVM model is 

significantly higher than that of the SVM and PSO-RF 

models. To further analyze the robustness of the research 

model under different damage scales, the experimental 

data is organized into three datasets: minor damage, 

moderate damage, and serious damage to test the model. 

The experimental results are shown in Table 3. 

In Table 3, "*" represents a P<0.05 when compared to 

other algorithms, indicating that the difference in results 

is statistically significant. The recognition ability of 

GABP-SVM and PSO-RF models for serious, moderate, 

and minor damages showed a decreasing trend, while the 

decrease in GABP-SVM was smaller than that of PSO-

RF. GABP-SVM maintained a high overall recognition 

level, with MSE, R2, and F1 scores of 0.0907, 0.5054, 

and 0.4062 for PSO-RF for minor damages, respectively. 

The results indicate that the GABP-SVM model exhibits 

higher robustness than the comparison model under 

different damage scales. 

4 Discussion 
Comparative experiments were conducted on the basic 

algorithms that make up the research model, and a 

damage identification model for prestressed concrete 

components based on GABP-SVM was verified. The R2 

of the GABP feature recognition was 0.9235, and the 

MSE value was 0.00724, which was better than the BP 

algorithm. Jin et al. reached similar conclusions using 

GABP for rolling bearing fault diagnosis [17]. In the 

calculation of unimodal and multimodal functions, the 

GABP algorithm solved for the optimal solution that was 

closer to the true result after 417 and 48 iterations, 

respectively. This result was similar to the one obtained 

by Khatri et al. using GA to improve the load-bearing 

performance of fluid dynamic sliding bearings [18]. 

However, the research algorithm exhibits higher feature 

recognition ability and convergence efficiency compared 

to the latest advanced algorithms. The reason is that the 

GA is used to automatically optimize the parameters of 

the BP algorithm. In addition, the GA is improved to 

avoid getting stuck in local optima. The classification 

prediction accuracy of SVM algorithm was 0.94, which 

was better than RF algorithm and DT algorithm. This 

result was similar to the conclusion of the SVM-based 

radial deformation error evaluation method for turbine 

blades proposed by Chen et al [19]. In the model testing, 

the GABP-SVM model performed better than the SVM 

model, GABP model, and PSO-RF model in identifying 

the location and degree of damage. In the robustness test 

of the model with added noise, the accuracy of the 

GABP-SVM model in identifying damage to prestressed 

concrete components was 93.7%, which was 11.1% and 

23.9% higher than the PSO-RF and SVM. Zhao et al. 

proposed similar conclusions in the research of concrete 

mesoscopic damage characteristics detection based on 

improved R-CNN [20]. However, the GABP-SVM 

model is more robust than the newly proposed model 

based on the improved R-CNN model. Also, due to the 

deep optimization of GA in this study, it avoids falling 

into local optimal solutions in complex environments, 

thus ensuring the stability of the model. The results 

indicate that the designed model not only has excellent 

accuracy in identifying damage to concrete components, 

but also has extremely high robustness. From this, the 

study uses RF to preprocess the data and GA to optimize 

the parameters of BP. The improved BP output results 

are input into SVM for further feature classification, 

greatly improving the recognition ability of concrete 

component damage and the generalization ability in 

complex concrete structures. Finally, the study analyzes 
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the computational complexity and scalability of the 

GABP-SVM model. The analysis results show that as the 

data size increases, the computational complexity does 

not significantly increase. In high-dimensional data, the 

GABP-SVM model can still maintain high feature 

recognition ability. The results indicate that the 

dimensionality reduction techniques introduced in the 

study and the parallel computing capability of the GA 

enable the GABP-SVM model to have higher 

computational efficiency and scalability. 

5 Conclusion 
Concrete is widely used in urban construction and 

industrial production. Concrete components are prone to 

damage and structural instability under conditions such 

as earthquakes, long-term high loads, and environmental 

corrosion. A smart concrete damage identification model 

was constructed by combining machine learning 

algorithms with the intelligent sensing effect of 

piezoelectric materials, aiming to accurately evaluate the 

health status of concrete. The study used piezoelectric 

wave measurement method to collect small wave signals 

from concrete. The GA was used to optimize BP to 

identify the characteristics of concrete damage from the 

signals. In addition, SVM was introduced to further 

classify and modify the recognition results of GABP, and 

a damage recognition model for prestressed concrete 

components based on GSBP-SVM was constructed. The 

designed model could accurately identify the damage 

location and degree of concrete, with high robustness. 

Concrete has extremely wide applications. Currently, 

there are a large number of buildings with complex 

structures and large volumes. In addition to prestressed 

concrete components, various forms of concrete 

components are different. Future research can focus on 

different forms of concrete components to broaden the 

applicability of the research model. 
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