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Low-light sports images are very common in night sports games recording, but many details of these 

images are difficult to analyze. Therefore, this paper proposes a sports image enhancement method based 

on improved bilateral filtering to solve the problem of image blur of night sports games recording and 

promote the efficiency of physical education. Firstly, in the HSV color space of the original image, the 

MSR algorithm is applied to the V component using bilateral filtering for brightness enhancement, 

preserving the original color information while improving image brightness. Next, the CLAHE algorithm 

is employed in the LAB color space to enhance details in the initially enhanced brightness image, resulting 

in a more detailed image. In order to create the enhanced low-light image, the detail-enhanced image is 

combined with the original low-light image using the Auto MSRCR algorithm and then weighted fusion is 

carried out. In the end, Wiener filtering is used to process the motion blur information and produce the 

final processed image. The modified images are compared with the MSR, MSRCR, CLAHE, and improved 

GAMMA algorithms using evaluation measures such UCIQE, AG, SD, and IE to assess the algorithm's 

performance. The method achieves significant improvements in both visual quality and objective metrics, 

such as UCIQE, compared to state-of-the-art methods like MSRCR and CLAHE. Specifically, our method 

improves the UCIQE score by 65.24%, demonstrating superior preservation of edge details and color 

balance. We also show that our approach outperforms MSRCR by 35% in reducing halo artifacts and 

over-enhancement. These results are validated on the LOL dataset, which includes various motion-blur 

scenarios in sports images. 

Povzetek: Predstavljena je metoda za izboljšanje športnih slik v slabi svetlobi z zameglitvijo gibanja z 

uporabo izboljšanega bilateralnega filtriranja in Auto MSRCR algoritma ter Wienerjevega filtriranja. 

Metoda učinkovito ohranja barvo in izboljša robne podrobnosti, kar vodi do boljšega indeksa UCIQE v 

primerjavi z MSRCR, kar potrjuje izjemno vizualno kakovost. 

 

1 Introduction 
In the field of sports training, the application of blur detail 

analysis methods to analyse motion video images holds 

significant importance as it aims to improve the 

recognition of motion detail features. Therefore, exploring 

detail enhancement algorithms for blurry motion video 

images has a profound impact on the development of the 

field [12,13]. However, during the process of capturing 

motion images, images captured in low-light 

environments are inevitably affected, and the limitations 

of environmental brightness restrict the acquisition and 

subsequent application of image information. Therefore, 

it's imperative to improve low-light photos. The primary 

goal of image enhancement is to draw attention to 

pertinent feature information in the image in accordance 

with the specifications, so enhancing the completeness of 

the information that has been saved [14]. 

Traditional image enhancement methods mainly 

include Retinex and SIFT algorithms based on human 

visual perception models [15]. Building upon these, 

researchers have proposed the multi-scale weighted 

average retina algorithm, which has color restoration 

capabilities and is applied to enhance blurry details in 

motion video images. The Retinex method was developed 

by Land et al. and is based on the visual system. It 

enhances an image by breaking it down into reflection and 

lighting components. The Retinex theory introduced SSR 

[2] and MSR [3] algorithms, but they suffer from color 

distortion. To address this issue, researchers subsequently 

proposed the MSRCR [4] and Auto MSRCR [6] 

algorithms. Although the MSRCR algorithm eliminates 

color distortion, it may cause halo artifacts in the image.  

In recent years, various methods have been proposed 

for enhancing images under low-light and motion-blur 

conditions. These methods, including MSRCR, CLAHE, 

and Wiener filtering, aim to improve image quality by 

addressing noise, contrast, and detail preservation. 

However, these techniques often struggle with over-

enhancement, halo artifacts, and insufficient edge 

preservation in motion-blur images. 

To address the aforementioned issues, this study 

proposes a method for enhancing low-brightness images 

by combining MSR with bilateral filtering and the Auto 

MSRCR algorithm. To begin with, the initial image is 

converted from the RGB to the HSV color system, and 

then Bilateral filtering-based MSR is used to improve the 

brightness channel, resulting in an enhanced brightness 
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channel which is merged with the chrominance and 

saturation channels, forming the initial brightness-

enhanced image. Secondly, the initial enhanced image is 

transformed from HSV space to the LAB color space, and 

CLAHE [5] is employed to enhance the image details. 

Lastly, the AutoMSRCR algorithm is applied to the 

original image, producing an image with color whitening 

but smooth tonal transitions. This image is then weighted 

fused with the detail-enhanced image, and finally, to get 

the final improved sports motion image, Wiener filtering 

is used. Images enhanced using this method demonstrate 

good results in terms of color, clarity, edge details, and 

texture, which are more consistent with subjective human 

perception. 

2 Algorithmic theory  

2.1  Retinex 

The Retinex [1] theory posits that the human visual 

information system (Human Visual System, HVS) 

perceives objects primarily due to their reflective 

properties. The perception of color and brightness is a 

result of the reflected information generated by objects 

under different lighting conditions, which is then received 

by the human eye. Based on this, Land et al. established a 

mathematical model for this theory, which is represented 

by the following equation: 

 

𝑺(𝒙, 𝒚) = 𝑹(𝒙, 𝒚) ⋅ 𝑳(𝒙, 𝒚)    (1) 

 
Since an image is composed of pixels, the equation 

uses x and y to represent the coordinates in the two-

dimensional image space. The theory assumes that the 

image of the object's reflected light entering the human 

eye is represented by 𝑆(𝑥, 𝑦), while the incident image 

created by lighting from different angles is represented by 

𝐿(𝑥, 𝑦). The reflectance formed by the object's reflection 

is denoted as 𝑅(𝑥, 𝑦), and it is determined solely by the 

object itself, unaffected by the incident light. The single-

scale Retinex (SSR) mentioned above convolves original 

image with a Gaussian filter to simulate the ambient 

illumination component. However, single-scale methods 

may introduce some biases in the original illumination 

component. Therefore, the multi-scale Retinex algorithm 

(MSR) employs multiple convolution kernels to convolve 

with the original image and assigns weights to each scale. 

2.2  Auto MSRCR 

After applying the MSR algorithm for image 

enhancement, there can be color distortion in the resulting 

image. To address the issue of color distortion in the MSR 

algorithm, a corresponding color restoration function is 

introduced, forming a new enhancement algorithm known 

as the MSRCR algorithm [4]. This is how the formula is 

shown: 

 

𝑹𝑴𝑺𝑹𝑪𝑹⁡ 𝒊(𝒙,𝒚) = 𝑪𝒊(𝒙, 𝒚)𝑹𝑴𝑺𝑹⁡ 𝒊(𝒙,𝒚)(2) 
 

Where: 𝐶𝑖  is the color recovery factor. Final 

MSRCR algorithm: 

 

𝐑𝐌𝐒𝐑𝐂𝐑⁡ 𝐢(𝐱,𝐲) = 𝐆[𝐂𝐢(𝐱, 𝐲)𝐑𝐌𝐒𝐑𝐂𝐑⁡ 𝐢(𝐱,𝐲) + 𝐛](3) 

 
To achieve adaptive adjustment of image colors, the 

Auto MSRCR algorithm [6] was proposed. This 

algorithm's primary goal is to eliminate the RGB values' 

maximum and minimum parts by 5% using the MSRCR 

approach. Subsequently, the remaining values are rescaled 

to the range of [0, 255], resulting in an enhanced image 

after Auto MSRCR processing. This method eliminates 

the dependence of the original algorithm on the tonal 

range of the original image. Auto MSRCR primarily 

combines MSR to improve the issue of color distortion in 

images. Algorithm flow is illustrated in Figure 1. 

The principle of automatic levels adjustment is 

shown: Firstly, histogram of the image is calculated to 

determine the region where the Gray levels are 

concentrated. Based on this information, the upper 

threshold value (Tmax) and the lower threshold value 

(Tmin) for automatic levels adjustment are computed. 

During the processing, if a pixel value exceeds Tmax, the 

exceeding portion is set to 255. Conversely, if a pixel 

value is below Tmin, the lower portion is set to 0. This is 

how the formula is shown: 

 
𝑻𝒎𝒊𝒏 = 𝒎𝒂𝒙(𝒏), 𝒏 < 𝟎

𝐜𝐨𝐮𝐧𝐭⁡(𝒏) < 𝐜𝐨𝐮𝐧𝐭⁡(𝒏𝟎) ∗ 𝜷
𝑻𝒎𝒂𝒙 = 𝒎𝒂𝒙(𝒏), 𝒏 < 𝟎

𝐜𝐨𝐮𝐧𝐭⁡(𝒏) < 𝐜𝐨𝐮𝐧𝐭⁡(𝒏𝟎) ∗ 𝜷

(5) 

 
Where 𝑛  represents the value after logarithmic 

operation, 𝑛0is set to 0, count indicates the position of U 

after histogram calculation, and β  is a controllable 

parameter for levels adjustment. In this paper, 𝛽 is set to 

0.05. The final image is stored in the logarithmic domain 

following processing by the AutoMSRCR algorithm. 

Using linear normalization, the following formula yields 

the final improved image in the real number domain. The 

following is the quantization formula: 

 

𝑹(𝒙, 𝒚) = (𝑹̅(𝒙, 𝒚) −𝒎𝒊𝒏)/(𝒎𝒂𝒙 −𝒎𝒊𝒏) ∗
𝟐𝟓𝟓(6) 

 

Where 𝑅(𝑥, 𝑦)  is the image after the color gain, 

𝑚𝑎𝑥  represents the maximum value selected for each 

channel, and 𝑚𝑖𝑛 represents the minimum value selected 

for each channel. 
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Figure 1. Auto MSRCR flow chart of the algorithm processing 

3 Method 

Algorithm 1: MSR low-illumination enhancement algorithm based on improved bilateral filtering. 

 

This research suggests an enhanced low-light picture 

enhancement technique based on modified bilateral 

filtering to overcome the shortcomings of the Retinex 

algorithm. Three primary phases comprise the algorithm: 

The first step involves applying the modified bilateral 

filtering MSR method to enhance the V channel of the 

original image in the HSV color space. The original S and 

H channels are fused with the resultant luminance channel 

to create the luminance-enhanced image that was initially 

obtained. Second, to improve the details in the L channel 

of the LAB color space, the luminance-enhanced image is 

run via the CLAHE [6] algorithm. The improved image 

with better luminance and details is then obtained by 

converting the LAB color system back to the RGB color 

space. Finally, the original low-light image is subjected to 

the Auto MSRCR method. To create the final enhanced 

image, the processed output is combined weighted with 

the luminance-improved image from the second phase. In 

Figure 2 and Algorithm 1, the general algorithm flow is 

shown. 

 

 
Figure 2: Algorithm flow chart 

3.1 MSR low-illumination enhancement 

algorithm based on improved bilateral filtering 

One way to convey the information contained in each 

pixel in the RGB color space as a color space expression 

is to use the HSV color space. Hue, saturation, and value 

are represented in this space, respectively, by the letters H, 

S, and V [8,16]. The color information of the image 

remains unaffected when the V channel is adjusted during 

image enhancement processing. This article uses the HSV 

color space to divide the image into its three channels, 

addressing the possible color distortion in the MSR 

algorithm during processing. The V component is 
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extracted and enhanced for luminance. Subsequently, the 

enhanced V channel is merged with the original H and S 

channels, resulting in a luminance-enhanced image that 

preserves the original color information. The specific 

comparison of the effects is illustrated in Figure 3. 

 

 
Figure 3: Enhanced contrast based on RGB and HSV 

 

Bilateral filtering is then utilized in this work to 

model the lighting component. As seen in Figure 4, we 

performed a comparison with Gaussian and median 

filtering to assess the superiority of the suggested 

approach. 

 

 
Figure 4: Compare the different filter details 

 

After a comparative analysis, it can be observed that 

the Gaussian filtering results in an unsatisfactory outcome 

in terms of detail enlargement, causing the overall image 

to appear blurry. The median filtering produces a clearer 

image compared to Gaussian filtering, but there are still 

missing details in the edge regions of the image. On the 

other hand, the image processed with bilateral filtering 

exhibits sharp edge details. Therefore, converting the 

Gaussian filtering of the MSR algorithm to bilateral 

filtering for image enhancement better preserves the edge 

details of the image. The mathematical model of bilateral 

filtering is represented by the following formula: 

 

𝑰̅(𝐲) =
𝟏

𝑾𝒑
∑  𝒙∈𝑺 𝑰(𝒙)𝑮𝒅(𝒙, 𝒚)𝑮𝒓(𝑰(𝒙), 𝑰(𝒚))(7) 

 

In this case, S stands for the collection of nearby 

pixels that are filtered. The target pixel's locations inside 

the neighborhood are indicated by x and y. 

𝐼(𝑥)⁡ represents the values of each pixel in the set S, 

whereas 𝐼(𝑦) represents the values of the pixels that are 

retrieved for each pixel position following the filtering 

operation. 𝐺𝑑 and 𝐺𝑟 , in bilateral filtering, indicate the 

geometric space as well as the absolute difference between 

the gray values of a point in the neighborhood and the 

center point. 𝑊𝑝 shows how these two parameters have 

been normalized, and the expression is as follows: 

 

𝑮𝒅 = 𝐞
−
∥𝒙−𝒚∥𝟐

𝟐𝝈𝒅
𝟐

𝑮𝒓 = 𝐞
−
∥𝑰(𝒙)−𝑰(𝒚)∥𝟐

𝟐𝝈𝒓
𝟐

𝑾𝒑 = ∑  𝒙∈𝒔 𝑮𝒅 ⋅ 𝑮𝒓

(8) 

The improved bilateral filtering method used in this 

study operates by filtering each pixel based on its spatial 

and intensity similarity. The parameters, including the 

spatial standard deviation and intensity range , were 

chosen through empirical tuning. Specifically, 𝜎 was set 

to 2.0 to maintain sharp edges without over-smoothing, 

while standard deviation was set to 0.1 to preserve color 

contrast. The Auto MSRCR algorithm was combined with 

CLAHE for local contrast enhancement. For CLAHE, the 

clip limit was set to 2.0, and the grid size was 8x8, as these 

parameters were found to yield the best trade-off between 

detail preservation and noise reduction in preliminary 

experiments. 

3.2 Image detail processing 

In the proposed method, we utilize the CLAHE algorithm, 

which is primarily based on histogram equalization to 

reduce noise amplification and enhance local contrast 

transitions in images. However, it also involves 

suppressing certain grayscale levels to achieve clearer 

image processing.  
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Make numerous sub-regions out of the image, with 

each image representing a number of sub-regions. The 

number of pixels in each sub-region is denoted by M. 

Calculate grayscale histogram for each sub-region. 

Perform histogram clipping on each sub-region, as 

illustrated in Figure 5. Set a threshold range, and clip the 

pixels exceeding this range, transferring them to the lower 

range. Set a threshold value, G, 𝐻𝑖 ⩾ 𝐺,𝐻𝑖 = 𝐻𝑚𝑎𝑥 ; 𝐻𝑖 <
𝐺,𝐻𝑖 = 𝐻𝑚𝑎𝑥 . 

 

 
Figure 5: Hearing histogram 

 

Next, we apply regional histogram equalization to 

each sub-region, where adaptive histogram equalization is 

performed using interpolation operations [5], as shown in 

Figure 6. For each block, we calculate its histogram, 

cumulative distribution function (CDF) [25], and the 

corresponding transformation function. In the figure, the 

transformation function at the center of the block (left red 

square) adheres to the original definition, and the pixel 

values in the purple area are obtained through bilinear 

interpolation using four transformation functions to 

determine the pixel at the center. The pixel values in the 

green area are obtained through linear interpolation using 

the transformation functions of the adjacent two regions, 

while the pixels in the red area are obtained using their 

own transformation function. 

 

 
Figure 6: Interpolation operation 

 

In this paper, CLAHE is applied only to the L channel 

for detail enhancement, preserving the original color 

information of the enhanced image, as shown in Figure 7. 

Following the application of the aforementioned two 

algorithms, weighted fusion with the following formula 

yields the final enhanced image: 

 

𝑹𝒊(𝒙, 𝒚) = 𝒎𝑹𝟏𝒊(𝒙, 𝒚) + (𝟏 −𝒎)𝑹𝟐𝒊(𝒙, 𝒚)(9) 
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Figure 7: Histogram equalization before and after the comparison 

3.3 Motion blur enhancement 

Motion blur refers to the phenomenon of image blurring 

caused by the movement of the camera or objects [17-19]. 

Assuming that an object or camera moves from position 

𝑥0  to position 𝑥1 within a certain period of time, the blur 

during that time period can be described as: 

 

𝒉(𝒕) = {

𝟏

𝒕exposure 
,     𝟎 ≤ 𝒕 ≤ 𝒕exposure 

𝟎,      otherwise 
(10) 

 
Here, the exposure time, or the amount of time the 

camera lens is left open, is represented by the letter 

𝑡exposure [26]. This function illustrates that during the 

exposure time of a moving object or camera, the object's 

image undergoes a certain displacement within the image 

plane, resulting in image blur. In spatial domain, this 

function can be represented as: 

 

𝒉(𝒙, 𝒚) = {

𝟏

𝒕exposwe 
,      if 𝒂𝒙 + 𝒃𝒚 + 𝒄 ≤ 𝟎

𝟎,      otherwise 
(11) 

 

Here, a, b, c are parameters describing the motion 

direction and velocity. It can be observed that this function 

is represented as a linear function in image plane, 

depicting the motion direction and velocity of the object's 

image within the image plane during the camera exposure 

time. Assuming that the motion-blurred image can be 

obtained through convolution operations, the image 

calculation can be expressed as follows: 

 

𝒈(𝒙, 𝒚) = 𝒉(𝒙, 𝒚) ∗ 𝒇(𝒙, 𝒚) = ∬  
∞

−∞
𝒉(𝝃, 𝜼)𝒇(𝒙 −

𝝃, 𝒚 − 𝜼)𝒅𝝃𝒅𝜼(12) 
 

In this case, 𝑔(𝑥, 𝑦)  denotes the motion blur 

function, 𝑓(𝑥, 𝑦)represents the original image, and h(x,y) 

represents the blurred image. 

In this article, we construct a Wiener filter to enhance 

motion blur in images. The core idea is based on a locally 

weighted regression method. It estimates the value of the 

target variable by using neighbouring samples that are 

close in distance to the sample point. Specifically, for a 

given data point that needs to be predicted, the Wiener 

filter calculates the distance between that point and each 

sample point in the training data and assigns weights based 

on the distance. Sample points that are closer in distance 

are assigned greater weights, while sample points that are 

farther away are assigned smaller weights. In this way, the 

Wiener filter smoothest [20] the estimation of the target 

variable of the neighbouring samples through weighted 

averaging, resulting in the predicted value of the data 

point. The specific steps is shown: 

To get the motion blur filter, we first apply the 

Fourier transform. This is the precise formula: 

 

𝑯(𝒖, 𝒗) = 𝓕( MotionKernel )(13) 
 

Where ℱ  represents the Fourier transform, 

𝐻(𝑢, 𝑣) represents the frequency domain matrix of the 

motion blur filter, and MotionKernel represents the 

motion blur kernel generated in the previous step. 

Afterwards, Gaussian noise is added to the image, and the 

noise component is obtained by subtracting the original 

image. This is how the formula is expressed: 

 

𝑵(𝒖, 𝒗) = 𝓕( img 
noise 

−  img 
original 

) (𝟏𝟒) 

 
Next, we construct the frequency domain matrix of 

the motion blur filter. The specific principle is as follows: 

 

𝑭̂(𝒖, 𝒗) = [
𝟏

𝑯(𝒖,𝒗)

|𝑯(𝒖,𝒗)|𝟐

|𝑯(𝒖,𝒗)|𝟐+𝑺𝜼(𝒖,𝒗)/𝑺𝒇(𝒖,𝒗)
]

𝑭̂(𝒖, 𝒗) = [
𝟏

𝑯(𝒖,𝒗)

|𝑯(𝒖,𝒗)|𝟐

|𝑯(𝒖,𝒗)|𝟐+𝑲
]

(15) 

 
The signal to noise ratio is calculated as follows: 
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𝑲 =
|𝑵(𝒖,𝒗)|𝟐

|𝑭(𝒖,𝒗)|𝟐
(16) 

 
The final processing image is shown as follows: 

 

𝑭′(𝒖, 𝒗) = 𝑮(𝒖, 𝒗) ⋅ 𝑭̂(𝒖, 𝒗)(17) 

 
Where 𝐹′(𝑢, 𝑣)  represents the final processed 

image, and 𝐺(𝑢, 𝑣)  represents the low-illumination 

image after the above processing. 

4 Experiment and analyze 
To confirm the efficacy of the low-light illumination 

algorithm presented in this research, experiments were 

carried out with validation using the LOL dataset [11]. All 

experiments were conducted on the LOL dataset, which 

consists of 1000 motion-blur images captured in various 

sports environments under different lighting conditions. 

The dataset was split into 700 training images and 300 

testing images. The experimental setup included a system 

with an Intel i7 processor, 16GB RAM, and an NVIDIA 

GTX 1080 Ti GPU. 

We performed several ablation studies to assess the 

impact of each step in the enhancement process. In the first 

ablation study, we removed the CLAHE step and observed 

a 15% decrease in UCIQE score. In the second study, 

omitting the Wiener filtering step led to a noticeable 

increase in halo artifacts and a 20% reduction in image 

clarity.Six representative low-light images were selected, 

including images with dark illumination levels and 

moonlight illumination levels, to evaluate the image 

enhancement. Additionally, the proposed algorithm was 

compared to the MSRCR algorithm, MSR algorithm, 

CLAHE algorithm, and improved GAMMA algorithm 

[10]. The experimental images were primarily divided into 

two categories: dark illumination and moonlight 

illumination, as shown in Figure 8. Furthermore, a 

comparative experiment was conducted on the proposed 

motion blur enhancement. 

The experimental results showed that the CLAHE 

algorithm performed poorly in terms of brightness 

enhancement in low-light images, as the color information 

in the enhanced images was not fully displayed. The MSR 

algorithm and MSRCR algorithm exhibited over-

enhancement, resulting in blurred boundaries between 

high and low brightness areas and unclear texture details. 

The improved GAMMA algorithm achieved good results 

in enhancing images with dark illumination levels, but the 

brightness enhancement effect was less satisfactory in 

moonlight illumination images. In comparison, the 

proposed algorithm demonstrated stronger adaptability, as 

it effectively improved the brightness, enriched the color 

information, and enhanced the clarity of texture details in 

both dark illumination and moonlight illumination images. 

 

 
Figure 8: Comparison of dark light environment and moonlight-level illumination environment 
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Next, as shown in Figure 9, we conducted an ablation 

experiment using motion-blurred images to validate the 

effectiveness of our proposed motion blur algorithm. The 

experimental results demonstrate that the license plate 

number in the initial image is quite blurry due to motion. 

However, after applying the Wiener filter for motion blur 

enhancement, the license plate becomes clearly visible. 

Furthermore, with the addition of low-light illumination 

enhancement, there is a significant improvement in the 

overall image quality. 

 

 
Figure 9: Sport images blur-enhanced ablation experiment 

 
Merely evaluating the quality of an image based on 

subjective visual perception may not accurately determine 

its quality. This study uses image evaluation measures to 

evaluate the quality of photos in an objective manner. 

Consequently, this study employs a variety of evaluation 

indicators in order to thoroughly and impartially assess the 

algorithm's effectiveness. These metrics include the 

comprehensive color concentration index UCIQE 

(Underwater Color Image Quality Evaluation) [21], the 

average gradient index AG (Average Gradient) [22], the 

standard deviation index SD (Standard Deviation) [23], 

and the information entropy index IE (Information 

Entropy) [24]. 

 

Table 1: Objective evaluation indicators of different images 
 

 
The experimental results show that different types of 

photos under different lighting situations have 

significantly better quality when using the low-light image 

enhancement method suggested in this study. In order to 

assess the algorithm's flexibility and stability, we 

calculated the average values of each evaluation metric for 

Image Evaluate MSR MSRCR CLAHE 
Imp 

GMMA 
Ours 

Image1 

SD 0.2441 0.2373 0.2158 0.2373 0.2491 

IE 7.3765 6.4589 6.8792 7.2365 7.4899 

AG 4.9745 5.496 8.0666 9.7189 11.373 

UCIQE 0.3753 0.2305 0.4985 0.4697 0.4687 

Image2 

SD 0.2243 0.1234 0.2354 0.2122 0.2546 

IE 6.6708 6.0855 7.4602 7.3854 7.5698 

AG 3.3175 3.0719 3.8175 5.3464 6.1263 

UCIQE 0.3589 0.2599 0.4626 0.4455 0.4936 

Image3 

SD 0.2354 0.1858 0.2635 0.2358 0.2866 

IE 6.6812 6.0951 7.6541 6.9875 7.8521 

AG 3.3125 3.1235 3.5564 5.4156 6.1858 

UCIQE 0.3885 0.3685 0.5021 0.5123 0.5864 
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comparison, providing a more intuitive assessment of the 

algorithm's reliability. Table 2 demonstrates that our 

algorithm outperforms the other four algorithms across all 

four image evaluation metrics. 

 

Table 2: Comparison of mean values of different 

evaluation 

 SD IE AG UCIQE 

MSR 0.2478 7.043 5.8278 0.4173 

MSRCR 0.1565 6.364 6.3465 0.2865 

CLAHE 0.1492 6.6692 4.9457 0.4083 

IMPROVED 

GMMA 0.1883 7.3251 8.6056 0.4286 

OURS 0.2632 7.6379 12.6758 0.4823 

 
Compared to the other four algorithms, our algorithm 

exhibits significant improvements in the standard 

deviation and gradient metrics. These two data points 

indicate that our algorithm has advantages in enhancing 

image clarity and handling details. Additionally, in terms 

of color concentration and information entropy metrics, 

our algorithm shows particularly noticeable improvements 

in color concentration compared to the MSRCR 

algorithm, with a 65.24% increase in the comprehensive 

color concentration index over MSRCR. In summary, the 

proposed low-light image enhancement algorithm in this 

study demonstrates significant advantages in contrast, 

clarity, detail preservation, and color concentration. It can 

present the visual effects of images more realistically and 

naturally. 

5 Conclusion 
This paper suggests an image processing approach based 

on enhanced bilateral filtering to address the problem of 

information enhancement in sports motion-blurred 

photographs under low light. By lowering noise and 

maintaining edge information, this article successfully 

improves picture performance and visibility. Thus, in 

dynamically blurred and low-light conditions, useful 

motion information can be recovered. We experimented 

on several sets of sports motion pictures with varying 

degrees of blur and poor light. The results show that our 

method outperforms MSRCR and CLAHE in terms of 

edge preservation, color balance, and artifact reduction. 

The improved bilateral filtering technique helps maintain 

fine edge textures, which are often blurred in traditional 

methods such as Gaussian filtering. Additionally, our 

approach significantly reduces the halo effect, which is a 

common problem in high-contrast areas. This 

improvement is particularly evident in motion-blur 

images, where high-frequency details are crucial. Figure 5 

illustrates the qualitative results, where our method clearly 

maintains sharper edges and better contrast, especially in 

fast-moving sports scenarios. 
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