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Network robustness prediction evaluates the stability and reliability of network systems. A complex 

network robustness prediction method based on graph representation learning and improved 

convolutional neural network is proposed to address the low computational efficiency and insufficient 

prediction accuracy in network robustness. This method introduces prior knowledge of network 

topology and uses adjacency matrices to extract features of complex networks to improve the efficiency 

and accuracy of robust prediction. Aiming at the low prediction accuracy, a low frame rate 

convolutional neural storage area network algorithm based on icon learning is proposed to improve the 

prediction accuracy and generalization of complex network robustness. The results showed that the 

proposed algorithm reduced the prediction errors of undirected network robustness by 10.94%, 23.41%, 

and 13.86% under random attacks, and reduced the prediction errors of weighted network robustness by 

0.0041, 0.0043, and 0.0105, respectively. In the robustness prediction of scale-free network and Q-

recovery network, the prediction errors of the proposed algorithm were 0.1843 and 0.0278, respectively, 

reducing by 47.76% and 22.90%, respectively. In the four real networks, including Movie Lens-user, 

Grid Yeast, C-Elegance, and Polbooks, the connectivity robustness prediction error values of the 

storage area low frame rate-convolutional neural network algorithm were 0.0906, 0.1106, 0.0715, and 

0.1052, respectively, and the controllability robustness prediction error values were 0.5155, 0.1882, 

0.0458, and 0.1456, respectively, all of which were superior to existing methods. The proposed 

algorithm has certain practical application value in the fields of network system design and 

optimization. 

Povzetek: Predlagana metoda za napovedovanje robustnosti kompleksnih omrežij združuje globoko 

učenje in reprezentacijsko učenje grafov, izboljšano z algoritmom za konvolucijske nevronske mreže, 

kar povečuje kvaliteto in učinkovitost napovedi. 

 

1 Introduction 
With the progress of network systems, predicting the 

robustness of complex networks has been widely applied 

in network design and optimization [1]. In the fields of 

the Internet, neural networks, etc., when the network fails, 

the robustness of complex network systems can ensure 

that the network structure does not change [2]. Efficient 

and accurate robustness prediction of complex networks 

can maintain the performance of network systems, 

operating safely and stably in complex environments [3]. 

However, in large-scale real-world networks, the 

network has complex nodes, resulting in low operational 

efficiency and reduced prediction accuracy of network 

robustness [4]. Therefore, exploring high-precision 

prediction algorithms and technologies in large-scale 

network systems has become a difficult research topic [5]. 

Graph Neural Network (GNN) can optimize networks 

that learn complex graph relationships. Scholars have 

conducted extensive research on this topic. Ji Z et al. 

proposed a representation learning method for molecular 

graphs, which utilized self-supervised pre-training of  

 

GNNs to address the scarcity limitation of task specific  

labels. The average area under the characteristic curve 

was 2.6% higher than the baseline model, and the F1 

score was improved by 7-18% for drug prediction [6]. 

Yang X et al. proposed a simple and efficient 

heterogeneous graph neural network. This method 

reduced complexity by eliminating excessive neighbor 

attention and avoiding repeated neighbor clustering 

during each training period. The results show that this 

method had a simple network structure, high prediction 

accuracy, and fast training speed [7]. Heiter E et al. 

evaluated graph representation learning and graph layout 

methods in visualization to improve the predictive 

performance of machine learning models. By comparing 

graph representation learning and graph layout methods 

based on distance metrics, the results showed that graph 

representation learning methods could provide better 

quality graph layouts [8]. Peng L et al. proposed an 

unsupervised graph representation learning method to 

address the limited generalization ability in 

representation learning. This method maximized 
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semantic and structural information to design constrained 

graph representation learning methods. The multi-

extraction method was superior to the current more  

Table 1: Comparison of methods, dataset, and results of related works. 

Method Dataset Results Reference 

Self-supervised pre-training 

method based on graph neural 
network 

MUTAG dataset, BACE dataset 
Drug prediction increases F1 

value by 7-18% 
Ji Z et al. [6] 

Simple and efficient 
heterogeneous graph neural 

network 

Ogbn-mag databases 

The proposed method has a 

simple network structure, high 

prediction accuracy, and fast 
training speed 

Yang X et al. [7] 

Application of evaluation graph 

representation learning and 
graphic layout methods in 

visualization 

Molecular graph dataset 

Graph representation learning 

methods provide high-quality 

graph layouts 

Heiter E et al. [8] 

Unsupervised graph 

representation learning method 
OGB dataset 

Superior to current state-of-the-art 

methods in different downstream 
tasks 

Peng L et al. [9] 

Unsupervised graph 

representation learning method 
PRO TENS dataset 

Model performance outperforms 

popular methods 
Mo Y et al. [10] 

A prior knowledge routing 
transfer reinforcement learning 

algorithm based on generative 

adversarial networks 

Network Topology Dataset 

Higher training efficiency across 

different topologies and network 
state distributions 

Dong T et al. [12] 

Inductive reasoning method for 

network topology 

FB15k-237 dataset, WN18RR 

dataset 

Effective prediction of semantic 

correlation between relationships 
Chen J et al. [13] 

Learning classification method 
based on machine learning 

combined with network prior 

knowledge 

A large number of literature 

datasets 

Evaluating and classifying a large 
number of literature has 

demonstrated the reliability of the 

method 

Von RL et al. [14] 

Deep neural network model based 
on prior knowledge of network 

topology 

ImagNete dataset, CIFAR-10 

dataset 

Improved the robustness of the 

model 
Li X et al. [15] 

 

advanced methods in different downstream tasks [9]. Mo 

Y et al. proposed an unsupervised graph representation 

learning method aimed at achieving efficient and 

effective contrastive learning. This method reduced intra 

class variation by increasing the upper bound loss to 

achieve finite distance between positive embedding and 

anchor embedding. Compared with currently popular 

methods, this method exhibited better model 

performance [10]. 

The prior knowledge of network topology based on deep 

learning has also been widely applied to evaluate 

network model performance [11]. Dong T et al. designed 

a prior knowledge routing transfer reinforcement 

learning algorithm for generative adversarial networks, 

aimed at improving training efficiency. This algorithm 

utilized the routing domain invariant features of deep 

reinforcement learning. The proposed algorithm had 

higher training efficiency on different topologies and 

network state distributions [12]. Chen J et al. proposed a 

network topology inductive reasoning method to address 

the semantic relevance issue of existing inductive 

reasoning models. Network topology patterns were 

classified and learned to predict inductive links based on 

different related network patterns. The experiment 

showed that this method could effectively predict the 

semantic correlation between relationships [13]. Von R L 

et al. built a learning classification method based on 

machine learning combined with network prior 

knowledge. This method represented different prior 

knowledge in the learning system, including logical rules 

and simulation results. The method could evaluate and 

classify much literature, proving the reliability [14]. Li X 

et al. designed a deep neural network model on the basis 

of prior knowledge of network topology, aiming to 

accurately recognize objects. This model segmented 

objects from images, evaluated the segmentation results 

using predefined prior knowledge, and outputted the final 

prediction results. The method could improve the model 

robustness [15]. 

Overall, GNN and network topology prior knowledge on 

the basis of deep learning have achieved good research 

results in various fields. However, traditional GNN 

algorithms have low prediction efficiency and poor 

prediction performance for network robustness. This 

study proposes a Multiple Convolutional Neural 

Network-Region Proposal (MCNN-RP) algorithm based 

on topological priors to improve the prediction efficiency 

of network robustness. Aiming at the low prediction 

accuracy, a Storage Area Low Frame Rate-CNN (SA-

LFR-CNN) algorithm is proposed to optimize the 

prediction accuracy of network robustness. The research 

innovation lies in the improvement of the traditional 

CNN-Region Proposal (CNN-RP) algorithm, which 

utilizes the superior feature learning capability to 

effectively predict the robustness of complex networks. 

Then, by combining the Storage Area Network (SAN) 

operator and MCNN-RP algorithm, a high-precision 

network robustness predictor is constructed to improve 

the model generalization and achieve efficient and 

accurate robustness prediction of complex networks. 
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The methods, datasets, and results comparison of the 

relevant research in the literature review are shown in 

Table 1. 

2 Methods and materials 
This chapter first constructs an MCNN-RP model to 

predict the robustness of complex networks by 

incorporating prior knowledge of network topology. 

Aiming at the poor universality of robustness predictors, 

an improved SA-LFR-CNN with SAN operator is 

constructed to enhance the predictive ability of the 

predictor. 

2.1 Construction of a robustness 

prediction model for complex networks 

based on CNN-RP network topology 

prior knowledge 

With the continuous advancement of deep learning, CNN 

has been extensively applied in network robustness 

prediction. This method can accurately classify target 

images and has excellent data processing capabilities 

[16]. In the processing and analysis of complex 

networks, the simulation efficiency of robustness is low, 

and the learning ability of CNN on discrete degree 

distribution network samples is limited, resulting in 

lower prediction accuracy of complex network 

robustness predictors [17]. Therefore, the study adds 

prior knowledge of multiple network topologies to the 

predictor. An MCNN-RP algorithm is proposed, which 

uses adjacency matrix to extract features of complex 

networks and predicts network robustness through the 

predictor MLP. 

In the research of complex networks, robustness is 

usually evaluated through two measures: controllability 

robustness and connectivity robustness. Controllability 

robustness refers to the degree to which a network's 

controllability decreases when it is attacked or 

malfunctioning. Controllability refers to the ability to 

effectively control a network through control nodes, 

usually quantified by the density of control nodes. It is 

used to evaluate the stability of the network in control 

node failure. Its expression is shown in equation (1) [18-

19]. 

D

D

N
n

N
=   (1) 

In equation (1), 
Dn  signifies the density of control nodes. 

DN  signifies the total sum of control nodes. N  signifies 

the total nodes. This equation is used to calculate the 

density of control nodes in a network, reflecting the 

ability of the network to maintain a controllable state 

when under attack. The higher the density of control 

nodes, the stronger the controllability and robustness of 

the network. The calculation method for controlling the 

number of nodes includes structural and precise 

controllability calculations, as shown in equation (2). 

 
 
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max 1, ( )
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

= −
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In equation (2), E  signifies the maximum number of 

edges that can be matched in the network. When the 

network is not completely matched, 
DN N E= −  

control nodes are required to complete effective control 

of the system. When matrix A  is full rank, 1DN =  

control nodes are required. Otherwise, ( )DN rank A=  

control nodes are required. The robustness of 

controllable sequences and edge attacks are defined as 

equation (3). 
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In equation (3), ( )N

Dn i  and ( )E

Dn i  respectively signify the 

robustness of controllable sequences and the robustness 

of edge attacks. ( )DN i  signifies the number of nodes in 

the i -th control network after the network is attacked. 

N i−  represents the number of nodes in the i -th 

remaining network after the network is attacked. M  

represents the number of times the tolerance for edge 

attacks reaches network edge connection. Connectivity 

robustness refers to the change in the size of the 

maximum connected branch of a network when it is 

under attack or failure. It is used to evaluate the 

network's ability to maintain connectivity in node or edge 

failures. This method is shown in equation (4). 

LCC

D

N
S

N
=  (4) 

In equation (4), 
DS  represents the connectivity 

robustness of the network. 
LCCN  represents the 

maximum connected branch size of the network. The 

calculation process for the connectivity robustness of the 

attack process sequence is shown in equation (5). 

( )
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( )
( ) , 0,1, ,

N LCC
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D
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N i

N i
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
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In equation (5), ( )N

DS i  represents the network robustness 

based on edge attacks. ( )E

DS i  represents the network 

robustness against attacks on nodes. ( )LCCN i  represents 

the size of the remaining connected branches after 

attacking the network. This equation quantifies the 

network's ability to maintain connectivity under 

continuous attacks. A high value indicates that the 

network's connections are more robust, indicating that it 

can maintain significant connections even after being 

attacked. The CNN-RP in the network robustness 

predictor is shown in Figure 1. In this network 

architecture, there are convolutional fast and regressor 

blocks. The target features are nonlinearly adjusted 
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through the convolutional layer [20]. In Figure 1, the 

adjacency matrix is taken as the input part, and the final 

robustness prediction is taken as the output part. The 

final connection layer in this structure is used as a 

predictor to regress the robustness prediction structure. 

The output of CNNs violates the prior knowledge of 

network topology. Therefore, a filter based on the prior 

knowledge is designed to modify the upper and lower  
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Figure 1: Structure of CNN-RP: Convolutional neural network-region proposal for network robustness prediction. 
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Figure 2: Workflow of MCNN-RP: Multiple convolutional neural network-region proposal for enhanced network 

robustness prediction. 

bounds and local increasing intervals of the network 

output [21]. The working principle of the filter is shown 

in equation (6). 

, ( )
( )

1, ( ) 1

LCC

LCC

LCC

N i ifN i N i
N i

ifN i

−  −
= 


 (6) 

In equation (6), ( )LCCN i  represents the existence of an 

upper bound N i− . After i  attacks on the network, the 

maximum value of its connected branches is N i− , and 

the lower bound of the network is 1. This equation is 

used to limit the upper limit of network robustness 

prediction results, ensuring that the prediction results 

conform to the actual characteristics of the network 

topology. The correction of local increment in network 

results is shown in equation (7). 

( ) ( ) ( ( ) ( ))LCC LCC LCC LCC

k i
N k N i N i N j

i j

−
= + −

−
 (7) 

In equation (7), ( )LCCN k  represents a local increase in 

the robustness curve of the connected network. When 

( ) ( ),( 1)LCC LCCN k N i k i  +  occurs, the network output 

results show a local increase, starting with element k  to 

search for the ( 1, 2, , )j j k k N= + +  -th element, 

making it satisfy ( ) ( )LCC LCCN j N i , and recording the 

index j . The value in section  1, 2, , 1,k k j j+ +  −  is 

corrected. The result of the final filter correction is used 

as the final output result. The study uses supervised 

learning to train, validate, and test the CNN-RP model, 

with its loss function using mean square error, as shown 

in equation (8). 
1

0

1
( ) ( )

N
N N

D D

i

Loss S i S i
N

−

=

= −  (8) 

In equation (8), Loss  represents the loss function of the 

CNN-RP. N  represents the scale of the network. ( )N

DS i

and ( )N

DS i  represent the true value and predicted value of 

the i -th sample, respectively. The MCNN-RP algorithm 

consists of multiple CNN network structures. The prior 

knowledge of network topology can preprocess CNNs. 

After training the model, the network classifier is used to 

classify each CNN and finally predict the network 

robustness [22]. The MCNN-RP first initializes multiple 

CNN models, each with different configurations to adapt 

to different network topology types. Then, the adjacency 

matrix is preprocessed using prior knowledge of network 

topology. The network features are extracted through 

multiple CNN models. Afterwards, a classifier is used to 

classify the network topology types and select the most 
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suitable CNN model. The network robustness is 

predicted using the selected CNN model and MLP. 

Finally, the prediction results are corrected based on 

prior knowledge of network topology. The main 

workflow is shown in Figure 2. Firstly, the network 

topology prior input to the classifier is classified, and 

appropriate CNNs are selected for different types of 

network topology for prediction. 

The classification and predictor in the MCNN-RP 

algorithm have similar CNN structures, and their feature 

extraction is also the same. The last layer of the classifier 

is often used as the max( ( )) /Xi Xi

j
Soft f Xi e e=  -layer  
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Figure 3: CNN architecture within MCNN-RP: Convolutional neural network structure for robustness prediction. 
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Figure 4: Structure of SA-LFR-CNN: Storage area low frame rate convolutional neural network for robustness 

prediction. 

for classification work. The CNN structure in this 

algorithm is shown in Figure 3. 

2.2 Robustness prediction of complex 

networks using graph representation 

learning algorithm based on improved 

SAN operator 

GNN can effectively process data using graph data 

feature extraction operators to process graph structures 

[23]. CNN processing tensors limits the fixed network 

size, and the generalization ability of robust predictors in 

complex networks is poor, resulting in lower prediction 

accuracy [24]. Controllability robustness and 

connectivity robustness, as important characteristics of 

complex networks, are closely related to graph learning 

methods. Based on graph learning methods, the 

topological features of the network can be extracted more 

effectively, thereby improving the robust prediction 

accuracy. In addition, graph learning methods also have 

important application value in network optimization and 

design. By predicting the robustness of the network, 

guidance can be provided for network optimization, 

helping to design more stable and reliable network 

structures. A SA-LFR-CNN algorithm is proposed, 

which combines MCNN-RP and Patchy Storage Area 

Network (P-SAN) algorithm to improve the operators in 

GNN algorithm. It adds operators based on graph 
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representation learning to extract target graph features 

and then predicts the network robustness. 

The SA-LFR-CNN first initializes the improved CNN 

model, combined with the SAN operator and graph 

representation learning module. The prior knowledge of 

network topology is used to preprocess the adjacency 

matrix. Then, the graph representation learning module 

learns the graph representation of the network, samples 

nodes from the graph representation, and constructs 

subgraphs for normalization. Subsequently, the CNN 

model is used to extract features from the normalized 

subgraph, and the extracted features are used to predict 

the network robustness. Finally, the prediction results are 

adjusted based on prior knowledge of network topology. 

The structure is displayed in Figure 4. 

The SA-LFR-CNN algorithm represents the target 

features, normalizes the sampled nodes and constructed 

subgraphs, and then splits the network. The split graph is  
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Figure 5: Graph structure and node feature information: Schematic of graph representation learning for robustness 

prediction. 

used as a feature node input to the algorithm, and the 

target features are extracted through a CNN. Finally, the 

network robustness is subjected to regression prediction 

[25]. The loss function of this algorithm first aggregates 

the structural information, and trains the designed loss 

function on the structural information. The basis of each 

node aggregation is related to the location of the layers. 

The central node trains the nodes through two 

aggregations to obtain feature data. The specific process 

of obtaining node feature information is shown in Figure 

5. 

In the supervised learning, the algorithm uses a designed 

loss function to capture the first-order and second-order 

distance information of the graph. The first-order 

distance joint probability distribution is shown in 

equation (9). 

1

1
( , )

1 exp( )
i j T

i j

p v v
u u

=
+ − 

 (9) 

In equation (9), 1( , )i jp v v  represents the joint probability 

of node 
iv  and node jv . 

d

iu R  represents the 

representation vector of the node in low latitude space. 

This equation is used to calculate the similarity between 

nodes, reflecting their proximity in low dimensional 

space. In this way, first-order distance information 

between nodes can be captured, thus better understanding 

the topology of the network. In the training process, the 

confidence in the first-order distance structure is captured 

directly by minimizing the objective function, as shown 

in equation (10). 

1 1 1
ˆ( ( , ), ( , ))O d p p=      (10) 

In equation (10), 
1O  represents the objective function of 

first-order distance. ( , )d    represents the distance 

between probability distributions 
1p̂  and 

1p . By 

calculating the square difference between the true joint 

probability and the predicted joint probability, and 

adding up all nodes and their adjacent nodes, the 

prediction error of the model on the first-order distance is 

quantified. The obtained objective function is shown in 

equation (11). 

1 1

( , )

log ( , )ij i j

i j E

O p v v


=   (11) 

In equation (11), 1log ( , )ij i jp v v  represents the distance 

between the relative entropy probability distributions. 

Nodes play different roles in second-order distance, and 

the second-order distance needs to be calculated using 

different representation vectors. For each edge ( , )i j E  

in the graph, the probability of the context node is shown 

in equation (12). 

1

exp( )
2( )

exp( )

T

j i

j i V T

j ik

u u
p v v

u u
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 
=

 
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In equation (12), 
iv  represents the source node. jv  

represents the context node. T

ju   and 
iu  represent the 

representation vectors of the context node and the source 

node, respectively. V  signifies the number of all nodes. 

2 ( , )i jp v v  represents the probability of obtaining the 

context node jv . Based on above methods, the second-

order distance information between nodes can be 
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captured, thus better understanding the global topology 

of the network. The objective function for capturing 

second-order distance structure information is displayed 

in equation (13). 

2 2 2
ˆ( ( ), ( ))i i i

i V

O d p v p v


=    (13) 

In equation (13), 
2O  represents the objective function of 

second-order distance. 
2 2
ˆ( ( ), ( ))i id p v p v   represents the 

distance between probability distributions 
2p̂  and 

2p . 

i  represents the weight of node 
2p . By minimizing this 

objective function, this equation can optimize the low 

dimensional representation of nodes. Therefore, the 

model can better capture the indirect connection 

relationships between nodes in the network, thereby  
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Figure 6: Prediction results of CNN-RP and MCNN-RP algorithms for network connectivity robustness. 

improving the accuracy of robust prediction. The 

empirical distribution 
2
ˆ ( )ip v  is displayed equation (14). 

2
ˆ ( )

ij

j i

i

p v v
d


=   (14) 

In equation (14), ij  represents the weight of edge ( . )i j  

in the graph. 
iv  represents the degree of the node. By 

introducing empirical distributions, the connection 

relationships between nodes can be more accurately 

captured, thereby improving the model's understanding 

of network topology. To better capture second-order 

distance information, the study uses relative entropy to 

represent the distance of node probability distribution, as 

shown in equation (15). 

2 2

( , )

log ( )ij j i

i j E

O p v v


=   (15) 

In equation (15), 
2log ( )ij i jp v v  represents the second-

order distance between the relative entropy probability 

distributions. Relative entropy not only considers the 

absolute differences in probability distribution, but also 

considers the relative differences in probability 

distribution. Therefore, it can more accurately reflect the 

prediction error of the model. After obtaining 

information on node features, the robustness of complex 

networks is predicted. 

3 Results 
This chapter analyzes the network robustness prediction 

performance of the improved topology prior MCNN-RP 

algorithm through three attack methods, verifying the 

effectiveness. Aiming at the robustness and 

generalization of complex networks, a graph 

representation learning algorithm based on SA-LFR-

CNN is analyzed to verify the robustness prediction 

performance of complex networks. 

3.1 Analysis of robustness prediction 

performance of complex networks 
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based on improved CNN-RP network 

topology prior knowledge 

The experiment uses three network models, Random 

Network (RN), Scale Free Network (SFN), and Q-

Snapback Network (QSN), to generate network samples. 

Supervised learning is used to train the MCNN-RP 

network topology model. Three attack methods are set, 

including Tree Attack (TA), Intermediate Attack (IA), 

and Random Attack (RA). In the RN, SFN, and QSN 

datasets, their sizes all contain 1,000 nodes. For RN, the 

connections between nodes are randomly generated and 

do not have a specific topology structure. SFN follows a 

power-law distribution, with a few definitions having a 

large number of connections, and a large number of 

nodes having only a few connections. It has a clear  
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Figure 7: Network robustness prediction results of undirected graphs and weighted graphs under random attacks. 

central node, and the network has a small world 

characteristic with shorter paths. For QSN, it has Guzan's 

dynamic characteristics, where the connection 

relationships of nodes change over time. Due to the 

dynamic changes in connection relationships, the 

robustness of the network is highly uncertain. During the 

training process, the average degrees of the training and 

testing samples are 6.01 and 5.49, respectively. The 

training set is 6,400, and both the validation and test sets 

are 1,600. The operating system for this experiment is 

Ubuntu 20.04 LTS, the deep learning framework is 

PyTorch 1.8, and the programming language is Python 

3.8. The model learning rate is set to 0.001, the batch size 

is 32, and the number of training rounds is 100. 

The prediction error and robustness prediction accuracy 

are selected to measure the predictive performance of the 

network. The prediction error directly reflects the 

accuracy of the model prediction. The lower prediction 

error indicates that the model can more accurately predict 

the robustness of the network after being attacked. In 

practical applications, accurate robustness prediction can 

help network optimizers better understand the 

vulnerability of the network and take effective measures 

to enhance its stability. The accuracy of robustness 

prediction reflects the reliability of the model in 

predicting network robustness. The higher prediction 

accuracy indicates that the model can more accurately 

capture the topology and dynamic characteristics of the 

network, providing more valuable references for network 

optimization. 

The experiment conducts three types of attacks on three 

networks and compares the connectivity robustness 

prediction results of CNN-RP and MCNN-RP, as shown 

in Figure 6. Under random attacks, the CNN-RP 

algorithm for generating network samples from RN, 

SFN, and QSN had errors of 0.0332, 0.0501, and 0.0384 

in predicting the robustness of complex networks, 

respectively. The MCNN-RP algorithm had prediction 

errors of 0.0312, 0.0454, and 0.0335 for network 

robustness, respectively. Under degree attack, the 

prediction errors of the CNN-RP for the robustness of the 

three network samples were 0.0532, 0.0224, and 0.0503, 

respectively. Compared with the CNN-RP, the prediction 

errors of the MCNN-RP were reduced by 0.0015, 0.0125, 

and 0.0040, respectively. Under the betweenness 

centrality attack, the CNN-RP algorithm for RN, SFN, 

and QSN network samples had prediction errors of 

0.0566, 0.0287, and 0.0574 for the robustness of complex 

networks, respectively. Compared with CNN-RP, the 

prediction errors of the MCNN-RP algorithm were 

reduced by 6.53%, 53.65%, and 1.05%. The prediction 

error of MCNN-RP algorithm is significantly lower than 

that of CNN-RP, which proves that the algorithm has 
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good predictive performance for the robustness of 

complex networks. 

The experiment predicts the network robustness through 

undirected and weighted graphs to verify the 

effectiveness of the MCNN-RP, as shown in Figure 7. 

The prediction results in Figure 7 showed that under 

random attacks, the CNN-RP algorithm based on RN, 

SFN, and QSN had prediction errors of 0.0338, 0.0632, 

and 0.0375 for the robustness of undirected complex 

networks, respectively. The prediction errors for the 

robustness of weighted complex networks were 0.0326, 

0.0584, and 0.0419, respectively. The MCNN-RP for 

three types of network samples had prediction errors of 

0.0301, 0.0484, and 0.0323 for the undirected complex 

network, and 0.0285, 0.0541, and 0.0314 for the 

weighted complex network, respectively. Compared with 

the CNN-RP algorithm, the MCNN-RP algorithm 

reduced the robustness prediction of undirected networks 

by 10.94%, 23.41%, and 13.86%, respectively, and 

reduced the robustness prediction of weighted networks 

by 0.0041, 0.0043, and 0.0105, respectively. The results  
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Figure 8: Robustness prediction errors in real networks (ML, GY, CE, and PB). 
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Figure 9: Connectivity robustness prediction in undirected graph networks: Comparison of CNN-RP, P-SAN, and SA-

LFR-CNN. 

have verified the effectiveness and feasibility of the 

MCNN-RP algorithm. 

To verify the superiority of the MCNN-RP, it is 

compared with the CNN-RP algorithm in a network 

resource library. Real networks include Movie Lens-user 

(ML), Grid Yeast (GY), C-Elegance (CE), and Polbooks 

(PB). The results are displayed in Figure 8. In Figure 8 

(a), the scales of ML, GY, CE, and PB real networks 

were 7041, 6002, 277, and 110, respectively, with 

average degrees of 7.20, 47.56, 7.88, and 8.45, 

respectively. In Figure 8 (b), the CNN-RP and MCNN-

RP had prediction robustness errors of 0.1295 and 0.1284 

for ML network, 0.1079 and 0.0556 for GY network, 

0.2518 and 0.1667 for CE network, and 0.1707 and 

0.1266 for PB network, respectively. Compared with the 

CNN-RP, the MCNN-RP reduced the robustness 

prediction error by 0.85%, 48.47%, 33.79%, and 25.83% 

in four real networks, respectively. The MCNN-RP has 

better robustness prediction performance for real 

networks. 
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3.2 Verification of network robustness 

prediction performance based on SA-

LFR-CNN graph representation 

learning algorithm 

The experiment compares the undirected graph 

connectivity robustness prediction results of CNN-RP, P-

SAN, and SA-LFR-CNN algorithms, as shown in Figure 

9. In Figure 9 (a), under random attacks, the prediction 

accuracy of CNN-RP, P-SAN, and SA-LFR-CNN 

algorithms for the robustness of random networks were 

0.965, 0.974, and 0.988, respectively, with prediction 

error values of 0.1225, 0.0432, and 0.0320. The SA-

LFR-CNN reduced prediction errors by 0.0793 and 

0.0112 compared with the CNN-RP and P-SAN 

algorithms, respectively. In Figure 9 (b), the prediction 

accuracy of these three algorithms for the scale-free 

network was 0.984, 0.971, and 0.981, respectively, with 

prediction error values of 0.2566, 0.0723, and 0.0445. 

Compared with the other two algorithms, the SA-LFR-

CNN algorithm reduced prediction errors by 0.1843 and  
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Figure 10: Controllability robustness prediction in directed graph networks: Comparison of CNN-RP, P-SAN, and SA-

LFR-CNN. 
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Figure 11: Robustness prediction under different network sizes: CNN-RP, P-SAN, and SA-LFR-CNN. 

0.0278. In Figure 9 (c), the prediction accuracy of the 

three algorithms for the robustness of the Q-recovery 

network was 0.980, 0.984, and 0.992, respectively, with 

prediction error values of 0.1095, 0.0572, and 0.0441. 

Compared with the other two algorithms, the SA-LFR-

CNN algorithm reduced prediction errors by 47.76% and 
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22.90%, respectively. The SA-LFR-CNN has high 

prediction accuracy, which is superior to other 

algorithms. 

To further verify the predictive performance of the SA-

LFR-CNN, the directed graph controllability robustness 

prediction results of CNN-RP, P-SAN, and SA-LFR-

CNN algorithms are shown in Figure 10. In Figure 10 

(a), under random attacks, the prediction error values of 

CNN-RP, P-SAN, and SA-LFR-CNN for the robustness 

of the random network were 0.0678, 0.0639, and 0.0300, 

respectively. The SA-LFR-CNN algorithm reduced 

prediction errors by 0.0378 and 0.0339, respectively, 

compared with the CNN-RP and P-SAN. Figure 10 (b) 

displayed that the prediction error values of CNN-RP, P-

SAN, and SA-LFR-CNN algorithms for the robustness of 

scale-free networks were 0.1152, 0.0832, and 0.0825. 

The SA-LFR-CNN algorithm reduced prediction errors 

by 0.0327 and 0.0007. Figure 10 (c) displayed that the 

prediction error values of CNN-RP, P-SAN, and SA-

LFR-CNN algorithms for the robustness of Q-recovery 

networks were 0.0703, 0.0643, and 0.0302. The SA-

LFR-CNN reduced prediction errors by 57.04% and  
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Figure 12: Robustness prediction errors in real networks (ML, GY, CE, and PB): CNN-RP, P-SAN, and SA-LFR-

CNN. 

Table 2: MAE, RMSE and confidence interval results of different algorithms. 

Model Dataset MAE RMSE Confidence interval 
Statistical 

significance 

CNN 

RN 0.1225 0.1532 [0.1150, 0.1300] P<0.05 

SFN 0.2566 0.3054 [0.2450, 0.2682] P <0.05 

QSN 0.1095 0.1321 [0.1000, 0.1190] P <0.05 

MCNN-RP 

RN 0.0312 0.0391 [0.0285, 0.0339] P <0.05 

SFN 0.0454 0.0567 [0.0412, 0.0496] P <0.05 

QSN 0.0335 0.0421 [0.0301, 0.0369] P <0.05 

SA-LFR-CNN 

RN 0.0320 0.0385 [0.0290, 0.0350] P <0.05 

SFN 0.0445 0.0543 [0.0408, 0.0482] P <0.05 

QSN 0.0441 0.0512 [0.0405, 0.0477] P <0.05 

Note: P<0.05 indicates that the statistical test results are significant. 

53.03%, respectively. The SA-LFR-CNN has good 

robustness prediction performance, verifying the 

effectiveness. 

Different network sizes can affect the robustness 

prediction results of the network. Therefore, the 

robustness prediction algorithms under different network 

scales are compared in the experiment, as displayed in 

Figure 11. In Figure 11 (a), when the network size was 

800, the robustness prediction errors of CNN-RP, P-

SAN, and SA-LFR-CNN algorithms under RN samples 

were 0.1124, 0.0320, and 0.0185, respectively. The 

prediction errors of the three algorithms under SFN 

network samples were 0.1145, 0.0402, and 0.0326, 

respectively. The prediction errors under QSN network 

samples were 0.0921, 0.0336, and 0.0128. Figure 11 (b) 

indicated that when the network size was 1,000, the 

CNN-RP algorithm predicted network robustness with 

error values of 0.0603, 0.1148, and 0.0813 for RN, SFN, 

and QSN network samples, respectively. The P-SAN 

algorithm predicted robustness with error of 0.0403, 

0.0827, and 0.0396. The SA-LFR-CNN predicted 

network robustness with error of 0.0204, 0.0722, and 

0.0195. The experimental results show that under 

different network sizes, the SA-LFR-CNN has high 

prediction accuracy. 

To further verify the robustness and generalization ability 

of the SA-LFR-CNN algorithm, the robustness prediction 

results of four real networks are compared, ML, GY, CE, 

and PB, as shown in Figure 12. In Figure 12 (a), the 

CNN-RP algorithm had connectivity robustness 

prediction error values of 0.2745, 0.1334, 0.0715, and 

0.1076 for ML, GY, CE, and PB networks, respectively. 

The P-SAN algorithm had prediction error values of 

0.1296, 0.1108, 0.2504, and 0.1706 for the four real 
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networks, and the SA-LFR-CNN algorithm had 

prediction error values of 0.0906, 0.1106, 0.0715, and 

0.1052 for the four networks, respectively. In Figure 12 

(b), the CNN-RP algorithm had prediction errors of 

0.5744, 0.3746, 0.0672, and 0.1895 for the controllability 

robustness of ML, GY, CE, and PB networks, 

respectively. The P-SAN had prediction errors of 0.2663, 

0.1120, 0.2656, and 0.4328 for the four real networks, 

respectively. The SA-LFR-CNN algorithm had 

prediction errors of 0.5155, 0.1882, 0.0458, and 0.1456 

for the four networks, respectively. The SA-LFR-CNN 

has a small prediction error value for network robustness 

and high prediction accuracy. 

To further evaluate and compare the performance of 

different algorithms in predicting network robustness. 

The study compares the Mean Average Error (MAE), 

Root Mean Square Error (RMSE), and confidence 

intervals of different algorithms using the ANOVA 

method. The statistical significance of performance 

differences is verified. The results are shown in Table 2. 

The results showed that the MAE and RMSE of the 

proposed model were lower than those of the CNN 

model, indicating that the algorithm had better 

performance in predicting network robustness. 

 

Table 3: Analysis of ablation experiment results. 

Model Dataset 
Prediction error of connectivity 

robustness 

Prediction error of controllability 

robustness 

Baseline model 

RN 0.1225 0.0678 

SFN 0.2566 0.1152 

QSN 0.1095 0.0703 

Remove SAN operator 

RN 0.0432 0.0378 

SFN 0.0723 0.0832 

QSN 0.0572 0.0643 

Remove topological prior 

knowledge 

RN 0.0332 0.0525 

SFN 0.0501 0.0963 

QSN 0.0387 0.0589 

Complete model 

RN 0.0320 0.0300 

SFN 0.0445 0.0825 

QSN 0.0352 0.0302 

 

Further ablation experiments are conducted to better 

explain the performance of the model. The results are 

shown in Table 3. When applying SAN operator and 

topology prior knowledge, the robustness error of the 

model significantly increased. 

4 Discussion and conclusion 
This study proposed a robust prediction method for 

complex networks based on graph representation 

learning and improved CNN. To verify the effectiveness 

and superiority of the proposed method, the proposed 

method was comprehensively compared with existing 

CNN-RP and P-SAN baseline methods. Under random 

attacks, MCNN-RP reduced the prediction errors of 

undirected networks by 10.94%, 23.41%, and 13.86%, 

respectively, and reduced the prediction errors of 

weighted networks by 0.0041, 0.0043, and 0.0105, 

respectively. In addition, the SA-LFR-CNN reduced 

prediction errors by 0.1843 and 0.0278, as well as 

47.76% and 22.90%, respectively, in the robustness 

prediction of scale-free networks and Q-recovery 

networks. In real network testing, the connectivity 

robustness prediction error values of SA-LFR-CNN 

algorithm were 0.0906, 0.1106, 0.0715, and 0.1052, 

respectively, and the controllability robustness prediction 

error values were 0.5155, 0.1882, 0.0458, and 0.1456, 

respectively. The results show that under random attacks, 

degree attacks, and betweenness attacks, the MCNN-RP 

algorithm has significantly lower robustness prediction 

errors for undirected and weighted networks than the 

CNN-RP algorithm. Compared with CNN-RP, MCNN-

RP significantly improves the training and prediction 

speed of the model by introducing multiple convolutional 

neural network structures and prior knowledge of 

network topology. The SA-LFR-CNN algorithm further 

optimizes the computation process by improving the 

SAN operator and graph representation learning, making 

it more scalable when dealing with large-scale complex 

networks. The graph representation learning method can 

extract deep structural features of networks, thereby 

improving the ability to represent complex networks. 

Through graph representation learning, the model can 

better capture the topology and node relationships of the 

network, thereby improving prediction accuracy. In 

addition, the improved SAN operator can further 

optimize the computation process, making it more 

efficient and accurate in handling large-scale networks. 

In summary, the MCNN-RP and SA-LFR-CNN 

algorithms proposed in this study demonstrate significant 

superiority in predicting the robustness of complex 

networks. By introducing graph representation learning 

and prior knowledge of network topology, these two 

algorithms outperform existing baseline methods on 

prediction accuracy, computational efficiency, and 

practical applications. 

The limitations of this study are as follows.  (1) Synthetic 

networks are created through specific generative models, 

which may not fully reflect the complexity and diversity 

of real networks. The generation model of this network is 

usually based on specific assumptions and parameter 

settings, which may result in the generated network 

deviating from the real network in certain characteristics. 

(2) The size and complexity of real network datasets may 

have an impact on model training and testing. The noise 

in the dataset may mask the true topology and dynamic 
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characteristics of the network, thereby affecting the 

generalization ability of the model. Therefore, future 

research can consider developing synthetic network 

generation models that are closer to the characteristics of 

real networks, which can better simulate the dynamic 

changes and local properties of real networks. 
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