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Conventional flood hazard maps depict a static perspective on flood risk and are helpful in flood 

forecasting. Then, time-series flood forecasting research was developed and widely conducted. Still, it has 

limitations because the univariate method used does not consider the influence of other variables, unlike 

regression. Also, the determination of flood hazard weights, which is usually conducted through empirical 

studies using AHP, has a good level of accuracy but has the drawback of expert subjectivity.  

A new approach is proposed for flood hazard forecasting, combining the Triple ES method with NN and 

determining weights in a data-driven manner using NN. A combination of time series and regression 

methods (significantly non-linear), namely Triple ES with NN, results in good accuracy with an MSE value 

of 3.03, MAE 1.20, RMSE 1.74, R² 0.54, and a MAPE of 32.93%.  

The evaluation results for flood hazard weight determination with an MSE of 0.0111 and a MAPE of 7.81% 

show promising results, and the weights can be used in Hazard Flood GIS. Visualization in the form of a 

GIS Hazard Map can be done after all related raster data have been combined. The computational 

outcomes, particularly the MSE and MAPE values, demonstrate the effectiveness of the proposed approach, 

providing a clear understanding of the model's performance. 

Povzetek: Z razvojem modela Triple ES in  nevronskih mrež učinkovito napoveduje poplavno nevarnost z 

vizualizacijo v obliki GIS. 

 

1 Introduction 
There is no doubt that river flooding is one of the most 

destructive natural disasters [1], [2], [3], as it encompasses 

impacts that include social, economic, and environmental 

dimensions. The development of flood control efforts and 

disaster reduction has successfully reduced some 

casualties due to flooding; however, this remains a global 

concern [4]. The flood in Demak that occurred some time 

ago has had a very significant impact on the local 

community. The flood in Demak that occurred some time 

ago has significantly impacted the local community. The 

flood caused by the breach of six levees on the Wulan 

River and heavy rainfall has resulted in 89 villages in 11 

sub-districts submerged with water levels ranging from 30 

to 80 cm, affecting approximately 93,149 [5]. This 

incident is not new for Demak, as it has frequently 

happened in previous years [6], [7], [8], [9], [10], [11]. 

The National Disaster Management Agency (BNPB) and 

the Meteorology, Climatology, and Geophysics Agency 

(BMKG) have implemented mitigation strategies to 

reduce the impact of flood disasters [12], [13], [14], and 

they also conduct flood risk projections based on weather 

data analysis and local geographical conditions. However, 

the predictions have a time limit for various reasons 

(weather and climate variability, environmental changes, 

and climate change). The BNPB and BMKG do not 

provide long-term flood predictions that extend beyond 

the current year [15], [16], [17], which presents research 

opportunities outside of these government agencies. 

Conventional flood hazard maps present a static view of 

flood risks. Still, they are less effective in capturing the 

dynamic characteristics of the variables that influence 

these risks over time, which are essential [3], [18], [19], 

especially in terms of long-term forecasting. Previous 

research has been conducted to perform long-term 

forecasting using ARMA and ARIMA methods [20], [21], 

and their weaknesses due to not considering seasonality 

components [22], [23], [24] have been addressed with 

SARIMA and Triple Exponential Smoothing [25]. 

However, the univariate nature of these methods still does 

not resolve the issue of the influence of other variables, so 

a combination of techniques is needed to simultaneously 

address several issues: trends, seasonality, and the impact 

between variables.   

In flood hazard mapping, an index must be multiplied by 

the variables influencing flooding. The determination of 

the flood hazard index, which has been carried out by 

BNPB in the form of the Indonesian Disaster Risk Index 
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(IRBI) using the Analytic Hierarchy Process (AHP) 

method, provides a guideline for the index used by 

decision-makers. However, it has several limitations [26], 

[27]: the necessity of having experts, difficulties in using 

comparative scales, potential low consistency, sensitivity 

to data changes, limitations in handling changes in 

priorities, and a limited number of variables. Therefore, 

research to create a separate index driven by data is an 

interesting endeavor to pursue [28]. 

This research aims to develop a flood hazard information 

system using a data mining approach with time series 

forecasting through a combination of the Triple 

Exponential Smoothing (Triple ES) method and Artificial 

Neural Networks (ANN). It is expected to address issues 

such as trends, seasonality, and the influence between 

variables simultaneously and determine the optimal 

weight of flood hazard variables using a data-driven 

approach with ANN. Optimization with gradient-based 

algorithms is used in every method to achieve the lowest 

possible error value. 

 

2 Data 
The data is in tabular, raster, and vector (shapefile) form. 

Tabular data contain relevant attributes or variables, such 

as rainfall, temperature, humidity, etc. Raster data (Figure 

1) consists of a grid of pixels representing spatial 

information: land cover (COPERNICUS 100m Proba-V-

C3 Global) & elevation (DEMNAS). The shapefiles used 

represent regional boundaries and river lines. 

This study uses three data types for deeper analysis and 

understanding of the phenomenon studied: flood database 

(Table 1), meteorological data (Table 2), and raster data. 

Flood event information is collected, and we create a 

Flood database that contains information related to flood 

events and variables at the location (depth, runoff, river 

distance, land cover, wind speed, rainfall, etc.). This 

database looks at flood risk, finds places likely to flood, 

and plans how to protect those places. Including 

temperature, precipitation, humidity, surface pressure, and 

wind speed, meteorological data helps us understand how 

the atmosphere and weather trends affect flooding and 

rain. A thorough understanding of how meteorological 

conditions interact with flood episodes and how they 

affect ecosystems and populations is obtained by 

combining these two forms of data.   

Elevation in raster form (satellite imagery) and river area 

(in shapefile/SHP format) of Demak Regency was 

obtained from the Geospatial Information Agency of 

Indonesia. River distance is obtained by performing 

Euclidean calculations for each pixel in the river area data 

and finding the nearest distance. The raster land cover data 

was obtained by accessing the API (Application 

Programming Interface) to the Copernicus Global Land 

Cover Layers (a product of Sentinel-2), which has a 

relatively high resolution (100 meters).  

 

 

 

 

 

 

Runoff is obtained by converting land cover according to 

the Runoff Coefficient Table [29]. All this data is stored 

and converted into raster format and resampled to 

approximately 30 meters. 

Then, the following data was obtained from ERA5-Land 

Hourly over 14 years (2011-2024) from the upstream area 

of the research location: precipitation, temperature, dew 

point, humidity, surface pressure, and wind speed. This 

data is stored as a database. 

Additionally, data on flood events sourced from mass 

media and the National Disaster Management Agency is 

collected as material for determining the flood hazard 

weight. All data is processed to assess flood hazard weight 

and forecast time series. 

 

Table 1: Flood event 
id date location coord depth 

1 2023-01-01 Betokan -6.87, 110.63 55 

2 2023-01-01 Bintoro -6.89, 110.63 83 

3 2023-01-01 Mangun jiwan -6.88, 110.59 48 

… … … … … 

 

Table 2: Meteorological data 
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3 Method 

3.1   Related works 
Based on various previous studies on the topic of river 

floods (Fig 1), two things are often discussed: risk maps 

[30], [31] and prediction models [32], [33], [34]. This 

study attempts to combine the two domains with a data 

mining approach. 
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Hazard

 

Figure 1: State of the art mind map 

This summary table (Table 3) organize the findings from 

various previous studies and existing limitations.  

 

Table 3: Related works 
Method Key findings Limitations 

Projected flood risk 

based on analysis of 
weather data and 

local geographical 

conditions 
 [7], [8], [9] 

Implementation of 

mitigation strategies 
to reduce the impact 

of flood disasters 

Does not provide 

long-term flood 
predictions beyond 

the current year 

ARMA & ARIMA 

 [15], [16], 

Long-term forecasting 

using ARMA and 
ARIMA methods 

Doesn't consider 

seasonal 
components 

SARIMA & Triple 

ES 
[17], [18], [19] 

Overcoming the 

disadvantages of 
ARMA and ARIMA 

by considering 

seasonal components 

Univariate 

properties do not 
resolve the 

influence of other 

variables 

Analytic Hierarchy 

Process (AHP) 

[20], [21] 

Determination of 

Indonesia's disaster 

risk index (IRBI) 

Requires expertise, 

difficulty in using 

comparative scales, 
low potential for 

consistency, 

sensitivity to data 
changes, 

limitations in 

handling priority 
changes, and 

limited number of 

variables 

 

This study develops a flood hazard information system 

using a data mining approach with time series forecasting 

through Triple Exponential Smoothing (Triple ES) and 

Artificial Neural Networks (ANN) methods. This 

approach is expected to overcome the problems of trends, 

seasonality, and influence between variables 

simultaneously and determine the optimal weight of flood 

hazard variables using a data-based approach with ANN. 

Each method is optimized with a gradient-based algorithm 

to achieve the lowest possible error values. 

 

 

 

3.2 Determination of river flood hazard 

weight with ANN 
Determining the weight of flood hazards, which is 

generally carried out using an empirical approach by using  

the Analytic Hierarchy Process method (AHP), is a very 

relevant research area in dealing with disaster threats by 

examining the relationship between hydrological variables 

in the past (such as rainfall, river flow, and topography), 

has provided insight into flood patterns [35], [36]. 

However, this has limitations because it heavily relies on 

the subjective assessments of experts; there is a significant 

possibility of personal bias that can influence the final 

results [37], [38]. Another data-driven approach is 

considered to be able to overcome this problem [39], [40]. 

Data-driven approaches, especially data mining with 

various methods, can utilize large amounts of data and 

identify complex patterns to determine the weight of flood 

hazards [41], [42]. In this task, the Artificial Neural 

Network (ANN) method is used, a computational model 

inspired by how the brain works [43]. Technically, it 

utilizes several processing units called neurons, processed 

through several hidden layers, requires an activation 

function to operate, and employs a specific optimization 

technique to achieve optimal predictions. Several steps 

were taken in this research to perform weight calculations 

using ANN. 

3.2.1 Create a flood and precipitation database, 

download raster data  

Historical data on flood events in the Demak region over 

the last 12 years has been collected, including the location 

and timing of the flood occurrences. Data on precipitation 

history was created for the upstream area (Grobogan Rain 

Station) over 14 years to complement the flood database 

and to understand the rainfall patterns that influence flood 

occurrences in the downstream area (Demak).   

Raster data covering river elevation and area were 

downloaded from the Indonesian Geospatial Information 

Agency and land cover data from Sentinel (using the 

Copernicus API).  The Surface Runoff band is created 

based on the land cover by converting the Runoff 

Coefficient Table [23]. In contrast, the river distance band 

is calculated using Euclidean distance (Eq 1) for each 

pixel relative to the nearest river area [44].  

 

𝑑 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 

 

(1) 

 

Flood data is updated based on raster: elevation, 

river distance, runoff, and land cover at the time and 

location of the flood event. The average value is calculated 

by reading the raster (GeoTIFF), then setting a radius of 

500 meters from the flood location point, creating 50 

random points, taking each value from those random 

points, and calculating the average value. The depth of 

flooding is one of the leading indicators in flood risk 

assessment. 
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3.2.2 Conducting modeling with ANN for 

calculating weights for each variable   

Conducting modeling using Artificial Neural Network 

(ANN) to predict flood risk based on input variables (Fig 

2) involves training the model, validation, and 

optimization to achieve accurate results. Calculating the 

weights for each variable involves the following steps: 

calculating the average weight, normalizing the weights, 

and determining the percentage weights. These weights 

indicate the extent of each variable's influence on flood 

risk and are used in creating the flood hazard index. 

To perform the calculations, the flood event database was 

updated with average elevation, average river distance, 

average surface runoff, and average rainfall.  

Then, outlier values in the data were removed using Z-

score, and the data was divided into training and testing 

sets. Data is standardized using StandardScaler to ensure 

all features are at the same scale. The artificial neural 

network model was built using Sequential, with multiple 

layers of Dense and Dropout to prevent overfitting. The 

model is compiled using an ADAM optimizer with an 

adjusted learning rate and an MSE loss function. To 

improve the model's performance, EarlyStopping stops 

training early if there is no increase in value loss after a 

few epochs. The model is trained with training data and 

validated with a subset of training data. After training, the 

model is evaluated with test data to obtain optimal MSE 

values. The predictions are made on a test set, the 

prediction results are classified into the nearest bins, and 

finally, the MAPE is calculated to measure the accuracy 

of the predictions. The prediction results and actual values 

are used to generate a comparison graph. 

Several layers are used to determine flood weights using 

ANN. First layer: 64 neurons with ReLU activation 

function. After this stage, 20% of the neurons will be 

dropped using the Dropout layer to prevent overfitting and 

improve the model's generalization. The second layer 

contains 32 neurons with a ReLU activation function. 

After this stage, 20% of the neurons will be dropped using 

the Dropout layer to prevent overfitting and improve the 

model's generalization—the third layer is one neuron with 

a linear activation function. The Adam optimizer 

(Adaptive Moment Estimation) is used with a learning rate 

of 0.001 because Adam combines the advantages of two 

optimizers, AdaGrad and RMSProp, to adjust the learning 

rate during training, so it requires less memory and is 

efficient. The MSE loss function was chosen because it is 

suitable for regression problems. The EarlyStopping 

callback automatically stops the training if the validation 

loss does not improve after five consecutive epochs and 

the best weight achieved during the training is selected. 

Model training using training data is carried out for a 

maximum of 100 epochs, with a batch size of 10. 20% of 

the training data will be used as validation data. 
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Figure 2: Determination of river flood hazard weight 

with ANN 

3.3 Build a flood forecasting model with a 

Combination of Triple ES, ANN, and 

gradient-based optimization 
The Triple ES method (Fig 3.a) is a technique for 

forecasting that considers level, trend, and season. This 

method is considered a univariate time series approach 

because it only predicts one variable. Meanwhile, the 

Neural Network method (Fig 3.b) predicts one dependent 

variable influenced by various independent variables but 

has no relationship with time. 
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The univariate time series approach, which has limitations 

in considering the influence between variables (because 

the forecast is only for one variable), has been improved 

with the multivariate approach (such as Vector 

Autoregression), which involves the influence between 

time series variables [45]. However, it still has limitations 

in handling situations where there are independent 

variables (X1, X2) that affect the dependent variable (Y) 

while also involving time [45].
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                                        (a)                                                                      (b) 

 

 

Figure 3: Basic methods: triple ES (a) and neural network (b) 

 

 

The combination of the Triple ES method and ANN (Fig. 

4) is carried out in this research to simultaneously address 

several issues: level, trend, seasonality, and the influence 

between variables.  

 

Forecasting each variable uses Triple ES first, and 

estimation is done using Neural Network.
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Figure 4: Forecast with hybrid approach

3.3.1 Preparation  

Some data that affect rainfall are grouped by year and 

month: Temperature (C), Dewpoint (C), Humidity (g/kg), 

Surface Pressure (kPa), Wind Speed (m/s), and Total 

Precipitation (mm/day). The aggregation functions used in 

this data processing are max and sum. The sum function is 

used for total precipitation to obtain the total rainfall over 

a specific period, which is essential for predicting rainfall 

accumulation. Temperature, dew point, Humidity, surface 

pressure, and wind speed each use the max function, 

identifying extreme conditions that may affect rainfall. 

This aggregation function is beneficial in achieving 

accuracy in forecasting and prediction.   

3.3.2 Prediction of each influential variable 

Triple ES performs initial forecasting for each variable 

using gradient-based optimization: L-BFGS-B with loss: 

MSE. Then, evaluation is conducted by calculating MSE 

and MAPE for each variable and comparing the forecast 

results with the test data. At the end of this activity, model 

1 for forecasting is saved. 

Triple ES is a time series forecasting method that is an 

advanced form of exponential smoothing because it  

 

 

 

involves three parameters: α (alpha) as the level, β (beta) 

as the trend, and γ (gamma) as the seasonal component 

[46]. The steps taken in Triple ES are to calculate Level, 

Trend, and Seasonality and make forecasts (Eq 2-5). 

Where: 𝐿𝑡 is the level at time (t), 𝑇𝑡 is the trend at time (t), 

𝑆𝑡 is the seasonal component at time (t), 𝑌𝑡  is the actual 

value at time (t), (m) is the seasonal period, (k) is the 

forecast horizon.  

 

𝐿𝑡 = 𝛼
𝑌𝑡

𝑆𝑡−𝑚
+ (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) 

(2) 

𝑇𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1 (3) 

𝑆𝑡 = 𝛾
𝑌𝑡
𝐿𝑡
+ (1 − 𝛾)𝑆𝑡−𝑚 

(4) 

𝐹𝑡+𝑘 = (𝐿𝑡 + 𝑘𝑇𝑡)𝑆𝑡−𝑚+𝑘 (5) 

 

3.3.3 Creating and training a neural network model  

 

𝑧 =
𝑥 − 𝜇

𝜎
 (6) 

 

The standard scaler shifts the feature distribution so that it 

has a mean of zero and a standard deviation of one (Eq 6), 

ensuring that all features are on the same scale. Where: 𝑥 
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is the original value of the feature, 𝜇 is the mean of the 

feature, 𝜎 is the standard deviation of the feature, and 𝑧 is 

the normalized value of the feature.  

3.3.4 Conducting testing for combination method 

It begins with forecasting the variables using Model 1 

(forecasting) that has been created before, forecasting 

several months in the testing data as variable X. Then, it 

continues with the use of Model 2 (prediction) that has 

been developed to predict variable Y. The prediction 

results are then processed by rounding to the nearest class 

to round the predictions to the values closest to the score 

class. The prediction results are saved for evaluation. A 

join of actual data and predicted data was performed for 

evaluation, and then MSE, RMSE, R Squared and MAPE 

were calculated.Then, the optimal model produced is used 

to make forecasts for a period of 20 years (2025-2045). 

3.4 Visualization and calculation of river 

flood hazards based on raster 
Visualizing river flood hazards using rasters requires 

integrating geospatial data and raster processing 

(especially starting with DEM). Raster processing allows 

for data analysis in a grid format, which is very useful for 

illustrating variations in topography and land use that can 

influence water flow. 

Several steps are taken to produce a Time Series Hazard 

Map for a particular month and year. This process begins 

with collecting relevant geospatial data, such as elevation 

maps, rainfall data, and land use information (to determine 

runoff values). Once the data is collected, the next step is 

preprocessing, which includes cleaning and normalizing 

the data to ensure consistency and accuracy. Next, a 

hydrological analysis is carried out to determine areas at 

high risk of flooding by considering various variables. 

First, the prepared raster data will be analyzed using a 

hydrological model to simulate water flow and potential 

inundation. This model will produce a flood risk map 

showing the most vulnerable areas. Then, the analysis 

results will be visualized as a thematic map that is easy to 

understand. 

3.4.1 DEM (digital elevation model)   

To be able to retrieve DEM Raster data, DEMNAS Data 

Download is carried out from the Geospatial Information 

Agency (BIG) via tanahair.indonesia.go.id. Then, Raster 

Data Processing (Merging & Clipping) is carried out. 

Merging is carried out because the raster covering the 

Demak area consists of several GeoTIFF files, which are 

combined into one raster file. The Clipping process is 

carried out according to the boundaries of the study area 

(Shapefile, which is also obtained from BIG). Coordinate 

Transformation (resolution 30 m for each pixel) and 

Coordinate System equalization (EPSG: 4326) are needed 

because data integration is carried out, namely the 

combination of data from various sources; in this study, 

the integration of elevation raster with raster: rainfall, 

runoff, and river distance will be carried out. Coordinate 

Transformation and Coordinate System equalization are 

carried out by changing all rasters into the same coordinate 

system so that a more comprehensive analysis can be 

carried out. Normalization and inverting are carried out at 

the analysis stage. Because the higher the location, the 

lower the risk of flooding, so when using the Min-Max 

Normalization method as a score, the invert is carried out 

(Fig 5.a). 
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Figure 5: Raster Processing: a) DEM, b) River Distance, 

c) Runoff, d) Precipitation, e) Hazard 

3.4.2 River distance raster creation   

Two shapefiles are first downloaded from BIG (boundary 

and river line) to perform river distance raster processing 

(Fig 5.b), which is needed for the analysis. After that, the 

distance to the nearest river is calculated using the distance 

transformation method (euclidean distance) so that each 

pixel will contain the distance value to the nearest river 

line. Next, a coordinate transformation is performed to 

ensure that the raster has a resolution of 30 meters and uses 

the EPSG:4326 coordinate reference system, which is 

essential for the suitability of geospatial data. After the 

distance raster is generated, perform a Min-Max 

normalization analysis to transform the distance values 

into a more standardized range, followed by value 

inversion so that areas closer to the river have higher 

values. Finally, the results of this processing are saved as 

a raster for further analysis. 
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3.4.3 Runoff raster creation   

Landcover Raster (Copernicus Global Land Cover 

Layers) taken within a 40 km radius of the research 

location is used in the Runoff Raster Creation (Fig 5.c), 

which aims to produce a map of potential water runoff. 

This raster has a resolution of 100 m [47], which is good 

enough to be used in flood analysis. It describes the land 

cover that affects the value of water runoff: forest, 

agricultural land, urban, etc. The runoff value is 

determined for each pixel based on the Runoff Coefficient 

Table [29], which provides different coefficients for 

different land cover types, reflecting how much rainwater 

will flow as runoff compared to what the soil absorbs. 

Furthermore, a coordinate transformation is carried out to 

ensure that the runoff raster has a resolution of 30 meters 

and uses the EPSG:4326 coordinate reference system, 

which is essential to maintain the consistency of 

geospatial data and facilitate integration with other data. 

After obtaining the runoff value, a Min-Max 

normalization analysis is carried out to transform the 

runoff value into a more standardized range, making it 

easier to interpret the data. The last step is to save the 

results of this processing as a raster. 

3.4.4 Precipitation raster   

The relationship between rainfall in upstream areas and 

the distance to the river of a location provides a score for 

the influence of rainfall at a location. Based on actual and 

forecast data on rainfall, the target month and year for 

analysis are first determined because rainfall can vary 

significantly over time. After that, the previously created 

river distance raster (the distance between the nearest 

rivers from each location) is read. To maintain the 

consistency of geospatial data, coordinate transformation 

is carried out to create a rainfall raster with a resolution of 

30 meters using the EPSG:4326 coordinate reference 

system. The rainfall value is divided by 10 (to adjust the 

scale) and then multiplied by the distance to the river. The 

last step is to save the processing results in a raster (Fig 

5.d). 

3.4.5 Hazard raster 

In Hazard Raster processing (Fig 5.e), the first step is 

determining the target month and year for the analysis 

because risk conditions can vary depending on a specific 

time. After that, read the previously generated elevation, 

river distance, runoff, and rainfall rasters, which provide 

essential information about the factors that affect the risk. 

The analysis is carried out by calculating the hazard value 

of each pixel by multiplying it by the weight value 

determined for each factor, which can include elevation, 

distance to river, runoff, and rainfall. The last step is to 

save the results of this processing as a raster.  

 

4 Result and discussion 
This section explains all the results that have been 

obtained, in the form of numbers, tables, and map 

visualizations. 

4.1 Raster data processing 
The raster calculation process is designed to produce 

several key parameters: elevation, distance to river, and 

runoff analysis. This process is continued by creating a 

raster to assess the impact of upstream rainfall on 

downstream areas based on total monthly rainfall and river 

distance. 

The elevation raster describes the height of the land 

surface relative to sea level, starting with the raster 

merging process and continuing through resampling (Fig 

6.a), truncation, and finally, normalization, which includes 

an inversion step (Fig 6.b). This is important because 

higher locations tend to have less impact on flooding.  

The distance to the river raster reflects the shortest 

distance from each pixel to the river. It starts with a base 

map depicting the river flow (Fig 6.c) and then calculates 

the shortest distance for each pixel using the Euclidean 

distance method (Fig 6.d). Pixels closer to the river are 

shown in bluer colors.  

Precipitation, the impact of upstream rainfall on 

downstream areas, is calculated by involving the distance 

of the nearest river to each pixel (Fig 6.g).  

The land cover raster is the raw data that provides 

information about the land cover at each pixel (Fig 6.e). 

The color code for the legend is according to the Discrete 

Classification in the Copernicus Global Land Service [48]. 

Then, the land cover value is converted into runoff (Fig 

6.f) based on the runoff coefficient table [29]. In the raster 

visualization, a bluer color indicates more water, which is 

considered runoff. 

 

 

(a) 
 

(b) 
 

 
(c) 

 

(d) 
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(e) 

 

 

(f) 

 

(g) 

 

 

Figure 6: Raster Processing: a) Raw Elevation, b) 

Inverted Elevation, c) River Flow, d) River Distance, e) 

Land Cover, f) Runoff, g) Precipitation 

4.2 River flood hazard weight 
This study aims to assess river flood hazard weights using 

Artificial Neural Networks (ANN), offering 

advancements over traditional methods like the Analytic 

Hierarchy Process (AHP). By creating a flood and rainfall 

database and utilizing relevant raster data, ANN modeling 

calculates the weight of variables influencing flood 

hazards. This data-driven approach is expected to yield 

more accurate results and enhance the effectiveness of 

flood hazard information systems. 

4.2.1 Flood database and raster data 

A comprehensive database was constructed to develop a 

data-driven flood hazard weighting system. The first data 

includes flood events with the following structure: id, 

flood, region, year, date, information, and coordinates 

(Table 1). The second data comprises 11 years (2013-

2023) of precipitation from the upstream region of 

Grobogan. Subsequently, raster data was collected. The 

obtained Raster Elevation data was integrated with river 

distance, land cover, and runoff information. The flood 

database was updated using raster data for the column's: 

runoff, river distance, precipitation, and elevation. 

Precipitation data was populated by querying Grobogan's 

upstream precipitation database. 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Flood database 
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Table 4: Flood database (continued) 
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4.2.2 Flood hazard model with ANN 

The data is prepared before applying ANN. When a 

negative weight is found at the end of the process, the data 

preparation process is corrected by inverting the variables 

with negative weights. A negative weight indicates an 

inverse relationship between the input and target 

variables. Higher elevations and greater distances from the 

river are related to a reduced risk of flooding. This makes 

sense, as areas that are elevated or farther from the river 

are less prone to being impacted by floodwaters. The 

variables were defined as X1: elevation, X2: river 

distance, X3: runoff, X4: precipitation, and Y: flood depth 

(target). Outliers were removed using the Z-score method 

to ensure data quality. The dataset was split into training 

and testing sets with an 80:20 ratio. Next, the data was 

standardized to improve the model’s performance. 

The neural network model was constructed using a 

sequential architecture. The model included an input layer 

with 64 neurons and a ReLU activation function, followed 

by a dropout layer with a 20% dropout rate. This was 

followed by a hidden layer with 32 neurons and another 

dropout layer with a 20% dropout rate. The output layer 

consisted of a single neuron with a linear activation 

function. The model was compiled using the Adam 

optimizer with a learning rate 0.001 and MSE loss 

function. Early stopping was incorporated to prevent 

overfitting, monitor the validation loss with five epochs, 

and restore the best weights. 

The model was then trained on the prepared dataset, and 

its performance was evaluated using MSE and MAPE. 

The model achieved an optimal MSE of 0.0111, indicating 

a high level of accuracy in its predictions. Additionally, 

MAPE was 7.81%, reflecting the model’s precision in 

forecasting relative to the actual values. 

4.2.3 Weight 

The weight calculation results show elevation: -0.0435, 

river distance: -0.0492, runoff: 0.0411, and precipitation: 

0.0623. At this stage, negative weight results for elevation 

and river distance indicate that both variables negatively 

influence flood predictions. In the context of flood hazard 

weighting, this is considered invalid, so the data 

preparation is repeated. The data for both variables is 

inverted.   

After inverting both variables and repeating the 

process, the output shows that elevation has the highest 

average weight of 0.2096, followed by river distance at 

0.0899, precipitation at 0.0729, and runoff at 0.0124. After 

normalization, the elevation weight becomes 0.5499, 

indicating that elevation is the most significant factor in 

the flood hazard model. The distance from the river and 

rainfall also have a considerable influence, with weights 

of 0.2360 and 0.1913, respectively, while surface runoff 

has the least impact, with a weight of 0.0325. Thus, 

elevation is the most influential variable in this model, 

followed by the distance from the river and rainfall, while 

surface runoff has the most minor contribution. 

 

4.3 Combination of triple ES and ANN  
To forecast the precipitation, the first step is to group 

historical statistics on rainfall by year and month and then 

find the highest value for each variable. Then, we used 

Triple ES to make predictions about each variable. The 

data was split into two groups: training data (from 2011 to 

2019) and testing data (2020–2024). Using L-BFGS-B 

optimization, weather factors like temperature, humidity, 

pressure, and rainfall are used for forecasting. Once the 

model is made, each variable's MSE and MAPE values are 

found by comparing the predicted results with the actual 

data. The model is then saved as Model 1.  

Based on the test results, the optimal seasonal period is 48 

months (4 years). Based on the test results, the optimal 

seasonal period is 48 months (4 years); the test results for 

all periods are reported in Table 2. Periods from 12 to 36 

show increasing error values, but it turns out that the 48-

season period shows the lowest error (MAPE: 32.93%). 

The 60 period failed because the training data was 

insufficient for training for two full seasons (120).  

The initial forecasting results (Triple ES) show that 

temperature (2.15%), dewpoint (2.89%), humidity (4.0%), 

and surface pressure (0.12%) have very low error values 

(MAPE) and are suitable for use in the following 

prediction stage. Wind speed has an error that is relatively 

low (12.8%) and acceptable in time-series analysis. 

Precipitation has a very high error (66.51%), which is 

addressed in the following prediction stage. 

To help improve prediction accuracy, separate variables 

were created: normalized and binned, with Min-Max 

normalization used for all variables except for 

precipitation, which used equal-width binning. The 

variables Temperature, Dewpoint, Humidity, Surface 

Pressure, and Wind Speed receive scores from 

normalization within the range of 0-1. The total 

precipitation variable also gets a score of 0-1 but as a result 

of binning into four categories: light rain (score: 0.25), 

moderate rain (0.5), heavy rain (0.75), and hefty rain (1). 

The data is divided into two parts: training data and testing 

data. 

The next step with ANN is to achieve optimal results; 

several treatments are carried out to train the model. It 

starts with the use of a standard scaler for data 

normalization, the use of 2 hidden layers (the first hidden 

layer using 100 neurons, and the second hidden layer using 

50 neurons), a maximum of 500 iterations, activation 

function: ReLU, and optimizer: ADAM. At the end of this 

activity, model 2 for prediction is saved. The model 

generated with ANN shows a MAPE evaluation result of 

0.3585, which means an average difference of 32.93% 

between the model's predictions and the actual data. The 

mean squared error between the expected and actual 

values is represented by an MSE of 0.11, indicating a 

small prediction error, meaning the model's performance 

is quite good. 

The final step is a combination of methods (Fig 7), using 

models 1 and 2 sequentially, to forecast variable X for 

several years using model 1 for testing purposes. Then, the 

prediction of the Y variable is based on the forecast results 

of the X variable. Final evaluation results of the 
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combination of methods in MSE and MAPE are obtained; 

MSE: 3.03 shows that the average square error is relatively 

low, and MAPE 0.3293 means that the forecast misses by 

32.93% of the actual value). In the context of time-series 

forecasting, it isn't easy to obtain high accuracy compared 

to prediction techniques, so this value indicates a 

reasonable level of accuracy.  

Table 5 presents a comparison between the Triple 

Exponential Smoothing (ES) method, which uses a 

seasonal period of 48 and achieves a Mean Absolute 

Percentage Error (MAPE) of 66.51%, and the Ensemble 

Method, which was tested with seasonal periods of 12, 24, 

36, and 48. The optimal performance was observed with a 

seasonal period 47, resulting in a MAPE of 32.93%. It is 

important to note that a seasonal period 60 could not be 

applied as it failed to meet the requirement of at least two 

complete cycles. 

 

Table 5: Evaluation 
Metric Triple ES 

(48) 

Ensemble 

(12) 

Ensemble 

(24) 

Ensemble 

(36) 

Ensemble 

(48) 

MAPE 66.51% 35.85% 35.10% 36.73% 32.93% 

MAE 79.44 1.28 1.23 1.30 1.20 

MSE 12472.07 3.28 3.33 3.10 3.03 

RMSE 111.68 1.81 1.83 1.76 1.74 

R² 0.29 0.51 0.50 0.53 0.54 

 

 
Figure 7: Precipitation forecast, training & testing 

 

Once the model's accuracy is deemed sufficient, a forecast 

is made using this model for the next 20 years (2025-2045) 

in Fig 8. The results of this forecast are used for 

visualization purposes. 

 

 
Fig 8: Precipitation forecast 

 

4.4 Visualization in the form of a flood hazard 

map 
Visualization in the form of a hazard map can be done 

using year and month parameters. Fig 2 shows the flood 

hazard calculation results with the variables elevation, 

river distance, runoff, and precipitation in a time-series 

manner. Because elevation, river distance, and runoff are 

relatively constant, rainfall provides the main difference 

in this time-series-based flood hazard research. When 

preparing all raster data, a transformation is performed to 

set the coordinate reference system (CRS) to EPSG:4326 

with the desired resolution.  

Elevation data was created by combining several rasters 

that form the Demak Regency and then clipped according 

to the regional boundaries. Because the elevation of the 

sea area is ignored, the empty values are changed to NaN, 

and the values are also set to 0 if they are negative (beneath 

the surface of the sea). The flood hazard weight 

calculation results indicate that the elevation variable's 

weight is negative. A negative weight for the elevation 

variable means that an increase in elevation tends to 

reduce the value calculated in the model. In the context of 

flood danger, the higher an area is, the less likely it is to 

be affected by floods. The maximum elevation value of 

254.16 meters indicates that Demak has relatively low 

topography, making it more at risk of flooding, mainly 

since Demak is located in a coastal area with many rivers. 

The low elevation increases the likelihood of flooding 

during heavy rainfall or rising sea levels. Because the 

location of Demak Regency is generally close to the sea, 

scoring does not use height categories as usual for 

visualization purposes. Instead, it uses min-max 

normalization, which means the score ranges from 0 to 1 

relative to the area. In performing this normalization, 

because negative elevation values (below sea level) are 

replaced with zero, the zero value is considered the 

minimum elevation value. The maximum elevation value 

is calculated; if NaN values are in the pixels, they will be 

ignored. Normalization is done by dividing each value by 

the maximum value that has been calculated. The 

normalized values are then inverted so that the highest 

value becomes the lowest and vice versa. 

A distance transformation creates a raster for river 

distance, and the results are converted from degrees to 

meters. Like elevation, min-max normalization is also 

used to score for river distance. After normalization, the 

values are reversed so that the most significant value 

becomes the smallest and vice versa. Using inverse values 

in the score of the nearest distance to the river is related to 

the method of flood risk assessment. The closer an area is 

to the river, the higher the flood risk. By reversing the 

distance value, areas closer to the river will receive a 

higher score, indicating a more significant flood risk. 

Conversely, areas further from the river will receive a 

lower score, indicating a more negligible risk. The 

maximum distance to the river of 12,807.14 meters means 

that the farthest point in the analyzed area is 

approximately 12.8 km from the river. 

Raster Land Cover was obtained from Copernicus Global 

Land Cover Layers: CGLS-LC100 Collection 3 [48], by 
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setting a coordinate point in Demak Regency and then 

defining a polygon with a radius of 50 km from the center 

point. Then, the Land Cover value is converted into 

Runoff according to the runoff coefficient table [23]. The 

runoff value is already in score form, so normalization, 

binning, or scoring is not needed again. A positive weight 

on this variable indicates that a higher runoff value means 

a higher risk of flooding. A higher runoff value means 

more surface water flows rather than being absorbed into 

the ground. This increases the potential flood risk because 

the ground surface cannot effectively absorb rainwater, 

causing water to flow and accumulate in certain areas. A 

high runoff value can be caused by various factors, such 

as excessive rainfall, impermeable soil, or land use 

changes like roads and buildings that increase the area of 

impermeable surfaces. Runoff forecasting uses double 

exponential smoothing to obtain the trend component and 

forecast results. However, the percentage change from the 

forecast results shows minimal annual variation, 

especially in the early years, with a slight upward trend in 

the following years; this may be due to the limited data. 

This increase in value is not significant enough to be 

considered a major factor in flood hazard assessment. 

Given the slight fluctuations and relatively stable trends, 

this runoff value is regarded as constant in the context of 

flood hazards, which is why this study only uses data from 

2019, the most recent data available. 

The use of Triple ES and NN causes the total rainfall 

forecast to produce a repeating pattern (Fig 9), the trend 

component remains but does not dominate, so there is no 

forecast of annual rainfall increase. The use of forecast 

data for creating flood hazard maps is done by providing 

the year and month as parameters, then the rainfall values 

are taken from the forecast data to form rainfall raster data. 

In determining the rainfall value for each pixel in Demak 

Regency as the downstream area, a multiplication is 

performed between the rainfall value of the upstream area 

(Grobogan) and the river distance that has been 

normalized and inverted. The closer to the river, the more 

the rainfall influence value is considered to be the same as 

the upstream area. 

 

 
(a) 

 
(b) 

 
(C) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 9: Flood hazard map, based on historical data and 

forecast results: 

(a) 2012-02, (b) 2012-12, (c) 2021-02, (d) 2021-11, (e) 

2026-01, (f) 2026-02, (g) 2030-01, (h) 2039-01, (i) 2042-

02, (j) 2043-01, (k) 2044-01, (l) 2045-01 

 

Flood hazards were historically high in 2021, particularly 

in February, when alarming risk figures were recorded, 

indicating the potential for significant environmental and 

community impacts. However, compared to the previous 

year, the flood probability has decreased significantly in 

2022 and beyond, raising hopes that mitigation efforts are 

starting to bear fruit.  

This study's projection analysis reveals a worrying upward 

trend in flood risk despite a decline in 2022. Flood risks 

are projected to increase from 2025 to 2025, with January 

and February of 2026 being the high-risk months. There is 

a possibility that the hazard will continue to grow as this 

trend is not limited to 2026 but will continue beyond (the 

projections of this study are limited to 2045). This 

suggests the need to consider future flood risks further and 

implement mitigation strategies to save communities and 

the environment from adverse impacts. 

 

5 Conclusion 
The conclusion drawn from this research is that the 

combination method of Triple ES and ANN is capable of 

predicting rainfall while considering influencing factors, 

with a MAPE of 32.93%.  

Based on a 20-year forecast, flood risk can be estimated 

on a seasonal basis. Because of the use of seasonal 

components, the trend component is used only to support 

the seasonal component and does not represent the overall 

trend prediction (up and down).  

For future research, it is recommended to use methods that 

only consider the trend component, such as Double 

Exponential Smoothing. 

The flood danger in Demak Regency is not only from river 

factors but also from tidal flooding, so it is recommended 

to consider coastal flooding in future research. 
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