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With the development of Industry 4.0, intelligent manufacturing has become a prominent trend. This study 

focuses on applying artificial intelligence algorithms to optimize mechanical manufacturing processes, 

aiming to improve productivity, product quality, and reduce resource waste. We introduce an intelligent 

scheduling algorithm based on deep reinforcement learning for machinery manufacturing processes. The 

model utilizes deep Q-network (DQN) to make efficient production scheduling decisions and can handle 

complex and dynamic production environments. The experimental results demonstrate the algorithm's 

superior performance in both single-production line and multi-production line collaborative operations. 

Specifically, it achieves significant improvements in key performance metrics, such as production cycle 

time, resource utilization, order delay rate, and emergency order response time. Additionally, the 

algorithm showcases strong adaptability, effectively managing different types of orders and production 

lots. Quantitative improvements are observed in production cycle time and order delay rate, which 

highlight the practical benefits of the proposed approach in real-world applications. 

Povzetek: Model razporejanja, ki temelji na učenju z globoko okrepitvijo in uporablja DQN, optimizira 

mehanske proizvodne procese, izboljšuje proizvodno učinkovitost, izkoriščenost virov in odzivne čase 

naročil, kar prikazuje transformativni potencial umetne inteligence v inteligentni proizvodnji. 

 

1 Introduction 
With the acceleration of the process of global economic 

integration and increasingly fierce market competition, the 

manufacturing industry is facing unprecedented 

challenges. On the one hand, customer demand tends to be 

personalized and diversified, requiring manufacturing 

enterprises to respond quickly to market changes; on the 

other hand, resource and environmental constraints have 

increased, forcing enterprises to improve production 

efficiency and reduce energy consumption and emissions. 

In addition, rising labor costs and shortage of skilled 

personnel also pose a severe test for the manufacturing 

industry. In order to cope with these challenges, the 

manufacturing industry has begun to seek the road of 

transformation and upgrading, in which intelligentization 

has become one of the important development directions.  

In recent years, artificial intelligence technology has 

made breakthrough progress, bringing new development 

opportunities for the manufacturing industry. Artificial 

intelligence can not only be used to optimize the 

production process and improve production efficiency, but 

also help companies to carry out fault prediction, quality 

control, supply chain management and many other 

aspects. For example, the use of machine learning 

algorithms can analyze equipment operation data to 

achieve predictive maintenance of equipment, thus 

avoiding losses caused by unplanned downtime; through 

deep learning technology, it can automatically detect 

product defects and improve inspection efficiency and 

accuracy. 

 

In recent years, scholars at home and abroad have 

conducted a lot of research on the application of artificial 

intelligence in the field of machinery manufacturing. For 

example, Qin J et al. [1] proposed a dynamic scheduling 

strategy based on deep reinforcement learning, which can 

significantly improve the flexibility and efficiency of the 

production line. Yang JZ. et al. [2] utilized convolutional 

neural network (CNN) to realize automatic detection of 

surface defects of parts, and its accuracy rate reached more 

than 98%. Reddy ASK. et al. [3] developed an equipment 

condition monitoring system based on Internet of Things 

(IoT) technology, which effectively reduces the 

equipment failure rate and improves the maintenance 

efficiency. Despite a number of successful cases, there are 

still some challenges and shortcomings in the application 

of AI technology in the field of machinery manufacturing.  

This study aims to optimize production scheduling in 

the mechanical manufacturing process through deep 

reinforcement learning, and improve production 

efficiency, resource utilization and order response speed. 

Specific research questions include: 1) How to design an 

efficient intelligent scheduling algorithm to adapt to 

complex production environments? 2) How to use deep Q-

network (DQN) to automate scheduling decisions? 3) 

How to solve the scheduling problems of multi-line 

collaboration and emergency orders? 4) How to adjust 

algorithm hyperparameters to achieve optimal 

performance in different production scenarios? The 

answers to these questions will provide new ideas for 

scheduling optimization in intelligent manufacturing. 
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Through this study, we expect to provide an 

innovative intelligent scheduling solution for China's 

machinery manufacturing industry, which will help 

enterprises realize the optimization and upgrading of the 

production process, so as to occupy a favorable position in 

the fierce market competition. At the same time, it also 

provides useful reference for the application and 

development of artificial intelligence technology in the 

field of manufacturing. This study innovatively adopts a 

deep reinforcement learning framework to construct an 

intelligent scheduling model, which improves the 

intelligence level of scheduling decision-making through 

autonomous learning and adaptation to complex 

production environments. Meanwhile, the comprehensive 

evaluation index system proposed in the study not only 

focuses on production efficiency, but also covers multiple 

dimensions such as resource utilization, cost savings and 

emergency order processing, forming a comprehensive 

performance evaluation system [4]. The intelligent 

scheduling algorithm demonstrates adaptability and 

robustness in dealing with uncertainties such as equipment 

failures and emergency orders through the dynamic 

adjustment mechanism and intelligent optimization 

strategy, and effectively handles multi-production line 

collaborative operations, which improves the flexibility 

and efficiency of the overall production system. 

2   Literature review 

2.1 Application of artificial intelligence 

technology in the field of machinery 

manufacturing  
Artificial Intelligence (AI) technology is gradually 

changing the face of the machine manufacturing industry. 

It not only improves the efficiency and flexibility of the 

manufacturing process, but also brings unprecedented 

opportunities for innovation in the manufacturing 

industry. The following are some of the more widely used 

aspects in the field of machine manufacturing: 

Intelligent design is an important application 

direction of artificial intelligence technology in 

mechanical engineering. By using generative design 

algorithms, a variety of design options can be 

automatically generated based on performance 

requirements and constraints. Xia TB. et al. [5] proposed 

a generative design framework based on deep learning, 

which utilizes a deep learning model to quickly generate 

design solutions that meet specific functional 

requirements. This automated design process not only 

shortens the product development cycle, but also improves 

the innovation and feasibility of the design. Production 

scheduling is a key link in machine manufacturing, which 

directly affects production efficiency and cost. In recent 

years, machine learning-based methods have been used to 

optimize production scheduling. Deshpande S. et al. [6] 

developed a dynamic scheduling strategy based on deep 

reinforcement learning, which is able to make intelligent 

decisions based on the real-time state of the production 

system, thus reducing production waiting time and 

improving resource utilization. This approach learns the 

optimal strategy by simulating different scheduling 

scenarios, which provides new ideas to improve the 

flexibility and efficiency of production lines. Predictive 

maintenance is used to reduce unplanned downtime by 

monitoring equipment condition data to predict potential 

failure points. Ning FW et al. [7] constructed a predictive 

maintenance system using support vector machine (SVM) 

and long-short-term memory network (LSTM). By 

analyzing the vibration signals of the equipment, the 

system is able to identify upcoming failures in advance, 

effectively reducing the equipment failure rate and extend 

the service life of the equipment. Quality control is a 

critical step to ensure that the product meets the standards. 

Yang J et al. [8] proposed an automatic surface defect 

detection method based on convolutional neural network 

(CNN). The method utilizes a large number of sample 

images to train the CNN model so that it can detect defects 

on the surface of the part in real time on the production 

line with an accuracy rate of more than 98%. This method 

greatly improves detection efficiency and accuracy and 

helps to reduce the defective product rate. 

 

2.2 Research on optimization methods of 

machine manufacturing processes  
With the intensification of market competition and 

technological progress, machinery manufacturing 

enterprises are paying more and more attention to the 

optimization of manufacturing processes. Process 

optimization can not only improve productivity and 

product quality, but also reduce costs and enhance the 

competitiveness of enterprises. The following are several 

common mechanical manufacturing process optimization 

methods and their specific application examples. 

Production process reorganization refers to the redesign of 

the production process to improve productivity and 

flexibility. he Yu BW et al. [9] showed that by 

reorganizing the process of an automotive parts 

production line, a balanced optimization of the production 

line was achieved, bottlenecks in production were 

reduced, and the overall production efficiency was 

improved. This work was carried out by using Value 

Stream Mapping (VSM) techniques to identify and 

eliminate unnecessary process steps and wastes, which 

ultimately led to a significant reduction in production 

cycle time. Process parameter optimization is the process 

of improving product quality and productivity by 

adjusting key parameters in the production process. For 

example, Malhan R et al. [10] explored the optimization 

method of energy consumption in the machining process, 

by using multi-objective genetic algorithm to optimize the 

cutting parameters, which both ensures the machining 

accuracy and reduces the energy consumption. This 

optimization method not only reduces energy costs, but 

also reduces environmental pollution. Modularization and 

standardization are effective means to improve the 

flexibility and efficiency of production. Ahmad HM et al. 

[11] proposed a manufacturing process improvement 

method based on modular design, which can be more 

convenient for production and maintenance by 

decomposing the complex product structure into several 
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independent modules. At the same time, standardized 

components can reduce variability in the design and 

manufacturing process, thus improving productivity and 

reducing production costs. 

The application of smart manufacturing technology 

can significantly improve the degree of automation and 

intelligence of the manufacturing process. For example, 

Wang JJ et al. [12] introduced the concept and 

development trend of a discrete manufacturing smart 

factory, which covers a variety of advanced technologies 

such as IoT technology, big data analytics, and artificial 

intelligence. The application of these technologies makes 

the production process more transparent, efficient and 

flexible. 

 

2.3 Predictive maintenance and quality 

control technology development  
Predictive maintenance and quality control are key 

technologies to ensure the reliability of equipment and 

product quality in the machinery manufacturing process. 

With the development of artificial intelligence and big 

data technologies, these technologies have been 

significantly enhanced. The following are the latest 

advances and application examples of predictive 

maintenance and quality control technologies. Predictive 

maintenance is a technology that predicts potential failures 

by monitoring the operating status of equipment, so that 

measures can be taken in advance to avoid unplanned 

downtime. In recent years, artificial intelligence 

techniques such as machine learning and deep learning 

have been widely applied to predictive maintenance. Ping 

YY et al. [13] developed an equipment condition 

monitoring system based on IoT technology, which 

collects data such as vibration and temperature through 

sensors installed on the equipment, and utilizes machine 

learning such as support vector machine (SVM) and long-

short-term memory network (LSTM) algorithms such as 

Support Vector Machines (SVM) and Long Short Term 

Memory Networks (LSTM) to predict potential failures. 

This method can effectively reduce the equipment failure 

rate and improve the maintenance efficiency. Luo JL. et 

al. [14] proposed an equipment fault diagnosis method 

based on wavelet transform and machine learning, which 

is capable of extracting features from the vibration signals 

of the equipment and classifying the faults using a support 

vector machine, which improves the accuracy of fault 

diagnosis. 

Quality control is a critical step to ensure that 

products meet standards. With the advancement of 

computer vision technology, quality control has become 

more automated and efficient. Ping YY et al. [15] utilized 

Convolutional Neural Networks (CNNs) to achieve 

automated detection of surface defects on parts with an 

accuracy rate of over 98%. They used a large number of 

sample images to train the CNN model, which enabled the 

model to detect surface defects of the product in real time 

on the production line, significantly improving the 

detection efficiency and accuracy. Liu BF. et al. [16] 

implemented online dimensional measurements of the 

product using machine vision technology, which ensured 

product quality by real-time capturing of images of the 

product and dimensional calculation. consistency. Jiang 

JC.et al. [17] developed an intelligent manufacturing 

platform with integrated predictive maintenance and 

quality control features. The platform is capable of 

automatically adjusting the production process, reducing 

failures and improving product quality through real-time 

data acquisition, analysis and feedback mechanisms. 

 

2.4   Problems and challenges 

Despite the significant progress made in the application of 

AI technology in the field of mechanical engineering, it 

still faces a series of problems and challenges that 

constrain the further promotion and application of the 

technology. 

As large amounts of data are generated within 

factories, data privacy and security have become a major 

issue. Many companies are reluctant to share sensitive 

data for fear of leaking it to competitors or third-party 

organizations, which limits the application of AI 

technologies. For example, Johnson KL. et al. [18] pointed 

out that in equipment condition monitoring, companies are 

often reluctant to upload equipment operation data to the 

cloud for analysis, which affects the training and 

optimization of predictive maintenance models. There are 

integration challenges between different AI technologies 

and manufacturing systems. For example, how to 

seamlessly integrate machine learning models into 

existing production control systems for efficient data 

exchange and automated updating of control logic. Kumar 

et al. developed a SWARA-CoCoSo-based approach for 

selecting spray painting robots, which integrates SWARA 

(Step-wise Weight Assessment Ratio Analysis) with the 

CoCoSo (Cost Consensus Solution) method to improve 

the selection process in robotic applications. In a similar 

vein [19], Ghoushchi et al. focused on risk prioritization 

in failure mode and effects analysis (FMEA) by extending 

the SWARA method and integrating it with the MOORA 

(Multi-Objective Optimization on the Basis of Ratio 

Analysis) method, enhanced by Z-numbers theory. This 

approach allows for more accurate and reliable risk 

assessment in industrial applications [20]. 

As shown in Table 1, the current state-of-the-art 

(SOTA) methods primarily focus on production 

scheduling using reinforcement learning and optimization 

algorithms. However, these methods have limitations in 

handling complex production environments, coordination 

among multiple production lines, and sudden order 

changes. For instance, existing deep reinforcement 

learning methods (such as DQN) significantly improve 

production efficiency but are often constrained by high 

computational complexity in dynamic production settings. 

In contrast, this study introduces an enhanced DQN model 

that effectively addresses these challenges. It 

demonstrates superior performance in both single and 

multiple production line collaborations. By integrating 

deep reinforcement learning, this research not only 

enhances the flexibility of scheduling algorithms but also 

exhibits strong adaptability in processing multiple order 

types and production batches. The contributions of this 
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study provide a robust solution to the limitations faced by 

current methodologies, thereby advancing the field of 

production scheduling and optimization. 

 

 

Table 1: Research outcomes 

Study 

Name 

Main 

Methodology 

Application 

Field 

Key 

Results 
Limitations 

Contributions 

of This Study 

Study 

A 

Deep 

Reinforcement 

Learning 

(DQN) 

Mechanical 

Manufacturing 

Scheduling 

Improved 

production 

efficiency 

High 

computational 

complexity, 

difficulty in 

handling 

dynamic 

changes in 

production 

environments 

Proposed an 

optimized DQN 

model capable 

of effectively 

managing 

complex and 

dynamic 

production 

environments 

Study 

B 

Genetic 

Algorithm 

Production 

Planning 

Optimization 

Reduced 

production 

cycle time 

Difficulty in 

coordinating 

multiple 

production 

lines 

Proposed 

scheduling 

algorithms 

suitable for 

both single and 

multiple 

production line 

collaborations 

Study 

C 

Rule-based 

Scheduling 

Algorithm 

Production 

Scheduling 

Increased 

resource 

utilization 

Poor flexibility, 

unable to adapt 

to sudden 

situations 

Enhanced the 

adaptability and 

flexibility of 

scheduling 

algorithms by 

incorporating 

deep 

reinforcement 

learning 

Study 

D 

Reinforcement 

Learning (Q-

learning) 

Smart 

Manufacturing 

Improved 

order 

delay 

Inability to 

adapt to 

complex orders 

and production 

batches 

Proposed a 

Deep Q-

Network 

(DQN) solution 

with stronger 

adaptability, 

supporting 

various types of 

orders 

 

In the discussion section, we explicitly compare the 

experimental results of the intelligent scheduling 

algorithm with the state-of-the-art methods (SOTA) in 

related work. Compared with existing methods, the 

proposed method shows significant advantages in multiple 

performance indicators. Specifically, in terms of 

production cycle time and resource utilization, the 

proposed deep reinforcement learning (DQN) scheduling 

algorithm can effectively shorten the production cycle and 

optimize resource allocation, thereby improving overall 

production efficiency. The main reason for these 

differences is that this study introduced the deep Q 

network (DQN) model. Through the adaptive ability of 

reinforcement learning, the algorithm can respond to 

complex and dynamic production environments in real 

time and handle multiple order types and production 

batches at the same time. In addition, the innovation of the 

proposed method lies in the ability to optimize scheduling 

decisions through deep learning technology, which not 

only improves production efficiency, but also enhances 

the flexibility and adaptability of the system, especially in 

the scenarios of multi-line collaboration and sudden order 

processing. Overall, the method of this study provides a 

new solution for the field of intelligent scheduling, which 

has broad application prospects and practical significance. 
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3   Intelligent scheduling algorithm 

design and implementation 

3.1 Mechanical manufacturing process 

analysis  
The mechanical manufacturing process is a series of 

orderly operational steps that transform raw materials into 

finished products, and these steps usually involve multiple 

stages and different production equipment. In this section, 

the characteristics and components of the mechanical 

manufacturing process will be introduced in detail to lay 

the foundation for the design of the subsequent intelligent 

scheduling algorithm, the specific framework of which is 

shown in Fig. 1. 

The machinery manufacturing process consists of the 

stages of raw material preparation, machining, assembly, 

testing and packaging. Each stage consists of a series of 

specific processes that may involve different production 

equipment and operators. For example, in the machining 

stage, CNC machine tools may be required to cut and drill 

parts, while in the assembly stage, machined parts are 

assembled into the final product. In the mechanical 

manufacturing process, there is usually a strict sequence 

between processes. For example, part machining must be 

completed before assembly. This dependency requires that 

the scheduling algorithm must consider the sequential 

constraints between the processes. Each process requires 

specific resources (e.g., equipment, tools, labor, etc.) [21]. 

The availability of resources directly affects the order and 

time of execution of the processes. Intelligent scheduling 

algorithms need to consider how to rationally arrange each 

process under limited resource conditions. Modern 

manufacturing enterprises often need to deal with many 

different types of orders, each of which may have different 

production lots. Intelligent scheduling algorithms need to 

be able to handle mixed production problems with 

different batches and types [22]. 

There are a variety of common problems in the 

machinery manufacturing process that can affect the 

efficiency and productivity of the entire production line. 

Firstly, production bottleneck means that certain processes 

may become bottlenecks in the whole production process 

due to the limitations of equipment or human resources, 

resulting in a decrease in the efficiency of the whole 

production line. Secondly, in actual production, urgent 

orders may appear, which need to be completed in a short 

time, which requires the scheduling algorithm to have the 

ability to deal with emergencies, and to be able to respond 

quickly and adjust the production plan to meet the urgent 

demand. Finally, equipment failures are inevitable, and a 

reasonable scheduling strategy needs to take into account 

the maintenance plan of the equipment to reduce 

unplanned downtime and ensure the continuity and 

stability of the production process [23]. 

Design dataset 

EO

Development

Process master 

program

Manufacturing 

Program

Design Institute 

Manufacturing 

Plant (Parallel Engineering)

Manufacturing Department

Formulation

Formulation
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Manufacturing Department Formulation FO AO TDR/TO
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Machine Shop 
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Figure 1: Mechanical manufacturing process framework 
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Fig. 1 illustrates the framework of a mechanical 

manufacturing process, highlighting the intricate steps and 

interactions between various departments and datasets. 

The process begins with the Design Institute and 

Manufacturing Plant, where the initial design dataset (EO) 

is formulated. This dataset is then used to develop a 

process master program, which serves as the blueprint for 

the manufacturing process. The Manufacturing 

Department plays a crucial role in translating these 

designs into actionable manufacturing programs, which 

are further detailed into MPR/MBOM (Manufacturing 

Process Record/Material Bill of Materials) to ensure that 

all materials and processes are accurately specified. The 

manufacturing process is further broken down into 

specific operations, such as FO (Fabrication Order) and 

AO (Assembly Order), which are executed in the Machine 

Shop and Transfer Shop, respectively. These operations 

are supported by detailed tooling design datasets 

(TDR/TO) that are developed in the Tooling Design 

Department. The Production Preparation Shop is 

responsible for fabricating the necessary tools and 

equipment, ensuring that the manufacturing process is 

well-prepared and efficient. This framework emphasizes 

the importance of parallel engineering, where design and 

manufacturing activities are integrated to streamline the 

process and reduce lead times. The seamless flow of 

information from design to manufacturing ensures that 

each step is well-coordinated, leading to efficient and 

effective production. The use of detailed datasets and 

programs at each stage ensures that the manufacturing 

process is both precise and adaptable, capable of handling 

complex and varied production requirements. 

 

3.2 Intelligent scheduling model construction 
3.2.1 Model architecture 
In building the intelligent scheduling model, we use the 

Deep Reinforcement Learning (DRL) framework, which 

is capable of handling complex decision-making problems 

and is particularly suitable for dynamic and uncertain 

environments in machine manufacturing processes. Deep 

Reinforcement Learning combines the powerful 

representation capability of Deep Learning with the 

decision-making capability of Reinforcement Learning, 

which is capable of learning mapping relationships from 

high-dimensional input data to complex decisions. 

The state space S contains the current state 

information of the machine manufacturing process, which 

includes: (1) Process completion: the completion progress 

ip  and remaining time 
it  of each process. (2) Equipment 

availability: the current status of each piece of equipment 

jd  (idle, in use, maintenance, etc.) [24]. (3) Resource 

Occupancy: the available quantity of each resource (e.g., 

raw materials, tools, etc.) 
kr  and the allocation status. (4) 

Urgent order information: whether urgent orders currently 

exist and their priority 
le . (5) Equipment Maintenance 

Schedule: Maintenance schedule for equipment, including 

maintenance dates 
dm  and estimated time required 

tm  

[25]
. 

The action space A defines all possible actions that 

the scheduling algorithm can select, specifically: selecting 

the next process to be executed 
1a . Allocate the necessary 

resources 
2a  (e.g., equipment, materials, etc.) for the 

current or next process. Adjusting the production schedule 

to accommodate urgent orders based on the current status 

3a . Initiate equipment maintenance program based on 

equipment status and maintenance schedule 
4a . 

Reward function R(s, a): the reward function defines 

the immediate reward obtained after taking action a in 

state s. The reward can be used to quantify the goodness 

of the scheduling decision. The design of the reward 

function needs to consider the following aspects: (1) 

Production efficiency: the faster a process or order is 

completed, the higher the reward. The inverse of the 

completion time can be used as part of the reward, as 

shown in Equation 1.  (2) Resource Utilization: 

Reasonable allocation of resources and avoiding resource 

wastage can be rewarded extra. Resource utilization can 

be calculated by the ratio of allocated resources to total 

resources, as shown in Equation 2. (3) Cost savings: Cost 

savings can be achieved by reducing unplanned downtime 

or reducing energy consumption. The less unplanned 

downtime, the higher the reward, as shown in Equation 3.  

(4) Urgent Order Processing: Additional rewards can be 

earned by responding quickly to urgent orders. The speed 

of fulfillment of urgent orders can be used as part of the 

reward, as shown in Equation 4 [26]. 

When optimizing the production cycle time, we 

assign a higher weight to reflect its key impact on 

production efficiency. At the same time, the weights of 

resource utilization and order delay can be adjusted 

according to actual conditions. We will further explain 

how to optimize the weights through experiments in the 

experimental section to achieve a balance between 

different optimization goals. 

1
( , )eff

i

R s a
t

=


 (1) 

( , )
allocated

k

res total

k

r
R s a

r
=  (2) 

( , ) unscheduled

cost tR s a m= −  (3) 

1
( , )urgent l

urgent

R s a e
t

=   (4) 

A policy ( | )a s  defines the probability distribution 

of taking a given action in a given state. In deep 

reinforcement learning, a policy is usually represented by 

a deep neural network that outputs the probability of each 

possible action a based on the current state s. The policy 

is usually represented by a deep neural network. The goal 

of the policy network is to maximize the long-term 

cumulative reward, as shown in Equation 5 [27]. 

( | ) argmax ( , )aa s Q s a =  (5) 
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3.2.2 Algorithm description 
We use Deep Q-Network (DQN) as the core algorithm for 

intelligent scheduling. DQN is a value-function based 

reinforcement learning method that uses a deep neural 

network to approximate the state-action value function Q 

(s, a) so that it is able to deal with high-dimensional input 

states. The algorithmic framework of DQN is shown in 

Fig. 2 [28]. 

State s DNN
EnvironmentTake action a

Reward r

Observe state s
 

Figure 2: Deep Q-network algorithm 

 

As shown in Fig. 2, the agent obtains information by 

observing the state of the environment, and then uses a 

deep neural network (DNN) to process and analyze it. 

Based on the results of the analysis, the agent takes 

corresponding actions to interact with the environment. 

When the agent's actions have an impact on the 

environment, it receives a reward signal r from the 

environment. This reward signal is used to guide the 

agent's learning process so that it can gradually learn how 

to make better decisions in the environment. The entire 

process reflects the trial-and-error process in 

reinforcement learning, that is, the agent continuously 

tries different action plans and adjusts its strategy based 

on the reward signal received, ultimately achieving the 

goal of optimizing its behavior. 

Step 1: Initialization. Initialize two deep neural 

networks, i.e., the main network Q
 and the target 

network Q 
, where   and    are the parameters of the 

main and target networks, respectively. Initialize   = . 

Set the initial state 
0s  and the discount factor  , where 

0 1   is used to weigh the importance of immediate 

and future rewards. The reward function is constructed 

based on the objectives of production scheduling 

optimization, such as production cycle time, resource 

utilization, and order delay. Specifically, the reward 

function consists of multiple parts: first, the shorter the 

production cycle time, the higher the reward; second, the 

higher the resource utilization, the higher the reward; 

finally, for order delays, the shorter the delay time, the 

higher the reward. In practical applications, these parts are 

weighted and summed to ensure that the model can 

balance the optimization of various indicators. The choice 

of weights is adjusted through experiments to ensure the 

appropriate balance between different objectives. 

Step 2: State observation. At each time step t, the 

intelligent body observes the current state 
ts . The state 

ts  

contains all the necessary information related to 

scheduling, such as equipment status, resource allocation, 

production progress, etc [29]. 

The state 
ts  can be represented as a vector or tensor 

containing information in multiple dimensions as shown 

in Equation 6. 

1 2 1 2 1 2[ , ,..., , , ,..., , , ,..., , , ]t m n os d d d r r r p p p e m=  (6)
 

where 
id  denotes the equipment status, 

jr  denotes 

the resource allocation, 
kp  denotes the production 

progress, e denotes the presence or absence of urgent 

orders, and m denotes the equipment maintenance 

schedule. 

Step 3: Action selection. Based on the current state 

ts  and the strategy ( | )a s , the action 
ta  is selected. In 

the early stage of training, the ò  -greedy strategy can be 

used to balance the exploration and utilization, i.e., 

randomly selecting the action with a certain probability ò  

and selecting the best action under the current strategy 

with a probability (1 )−ò . 

Step 4: Execute the action. The action 
ta  is executed 

and receives the new status 
1ts +
 and the reward 

tr . The 

reward 
tr  is calculated based on the scheduling effect and 

aims to quantify the goodness of the current decision. The 

reward function can be designed Eq. 7. 

 

1 2 3 4efficiency( , ) resource( , ) cost( , ) urgent( , )t t t t t t t t tr w s a w s a w s a w s a=  +  +  +   

(7)
 

where 
iw  denotes the weights of the components, 

efficiency resource cost, ,  and urgent  denote the 

incentive functions for productivity, resource utilization, 

cost savings, and emergency order processing, 

respectively. 

Step 5: Store the experience playback. Store 

1( , , , )t t t ts a r s +
 into the experience replay buffer D. The 

experience playback buffer is used to store historical 

interaction data for use in subsequent training. The size of 

the experience playback buffer D is set to N. When the 

buffer is full, new experiences will overwrite the old ones 

to keep the data fresh. 

Step 6: Training. Randomly draw a batch B of 

experiences from the experience playback buffer D for 

training, which can be done using the mini-batch method 

to improve the training efficiency. Assuming the size of B 

is m, m experiences are randomly drawn from D 

1{( , , , )}i i i is a r s +
. A target network Q 

 is used to estimate 

the expected return of the next state and the parameters of 

the main network Q
 are updated to minimize the loss 

function. The update rule for the target network is

1max ( , ; )i i a iy r Q s a  +
 = + . The loss function is in the 

form of Mean Squared Error (MSE) as shown in Equation 

8. The steps of gradient updating are shown in Equation 9. 

Where   is the learning rate. 
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1
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i i i
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The learning rate was set to 0.001, which was the best 

value obtained through cross-validation in preliminary 
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experiments, in order to ensure the convergence of the 

model and avoid gradient explosion; the discount factor 

was selected as 0.99, based on the common practice in Q-

learning to balance the relationship between short-term 

rewards and long-term rewards. In addition, in order to 

improve the exploration ability of the model, the 

exploration rate (ε-greedy) gradually decayed during the 

training process. 

Step 7: Update the target network. Every certain 

number of time steps, the parameters of the main network 

are copied to the target network, i.e. . This is done to 

stabilize the training process and to avoid frequent 

changes in the target network leading to unstable training. 

Step 8: Repeat steps 2 through 7 until a 

predetermined number of training sessions have been 

reached or a satisfactory level of performance has been 

achieved. 

 

3.3 Scheduling strategy 
In the design and implementation of intelligent scheduling 

algorithms, in addition to the core algorithmic framework, 

it is also crucial to develop an effective scheduling 

strategy. The scheduling strategy determines how to apply 

the intelligent scheduling algorithm in a specific 

production environment to achieve optimal productivity 

and resource utilization. We propose the following 

scheduling strategies, which can be adjusted and 

optimized according to the specific needs of the machine 

manufacturing process, and their scheduling framework is 

shown in Fig. 3. 

 
Figure 3: Scheduling framework 

 

3.3.1 Priority scheduling strategy 
The priority scheduling strategy allocates resources and 

sequences production according to the importance and 

urgency of the tasks. This strategy is particularly useful for 

processing urgent orders or critical tasks to ensure that 

they are prioritized. Its core consists of two steps: 

emergency order prioritization and critical task 

identification. (1) Emergency Order Prioritization: When 

an emergency order arises, the scheduling system re-

evaluates the current task priorities to ensure that the 

emergency order can be put into production quickly. This 

usually involves dynamically adjusting the resource 

allocation on the production line to ensure quick response 

to urgent orders. The identification of urgent orders can be 

based on customer requirements, order size and other 

factors. (2) Critical task identification: Identify tasks that 

are critical to the production process and ensure that they 

are adequately resourced and prioritized. These critical 

tasks may include high-margin orders, orders from long-

term customers, or processes that are critical to the 

continuity of the production line. By assigning higher 

priority to these tasks, you can ensure that the overall 

efficiency of the production line is not compromised. 

 

3.3.2 Resource balancing scheduling strategy 
The Resource Balance Scheduling strategy is designed to 

optimize resource allocation, avoid resource wastage, and 

ensure that all processes run efficiently. Resource 

requirements for each process are predicted based on 

production schedules and historical data. This can be 

achieved through machine learning models that use past 

data to predict the type and number of resources required 

for each process in a future period. Resource demand 

forecasting helps to plan and procure the necessary 

resources in advance, avoiding delays due to resource 

shortages in the production process. Resource allocation 

is dynamically adjusted based on real-time production 

status to meet the needs of different processes. This means 

that the scheduling algorithm needs to continuously 

monitor changes in the production process and adjust the 

resource allocation strategy according to these changes in 

a timely manner. Dynamic resource allocation can be 

realized by intelligent algorithms, such as deep 

reinforcement learning-based methods, which can make 

optimal resource allocation decisions based on the current 

state and expected changes. 

The discount factor (γ) determines the importance of 

future rewards. We tested different γ values through 

multiple experiments to ensure that the model can 

effectively balance the relationship between current 

rewards and future rewards. The choice of learning rate 

(α) affects the convergence speed of the model. We use a 

grid search method to train and evaluate model 

performance at different learning rates to select the best 

learning rate setting. The tuning process of these 

hyperparameters is crucial to improving model 

performance and stability. 

 

3.3.3 Bottleneck identification and optimized 

scheduling strategy 
The Bottleneck Identification and Optimized Scheduling 

strategy focuses on identifying bottlenecks in the 

production process and taking steps to reduce their impact 

on overall productivity. Production data is analyzed on a 

regular basis to identify bottlenecks that are causing 

production delays. This can be accomplished through data 

analytics techniques, such as using data mining algorithms 

to discover which parts of the production process are often 

the limiting factors. Optimize the identified bottlenecks, 
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such as by adding equipment, adjusting process 

sequences, or improving process efficiency. For example, 

if a particular piece of equipment is found to be a frequent 

bottleneck, this can be mitigated by adding similar 

equipment or improving the operational efficiency of the 

equipment. In addition, bottlenecks can also be eliminated 

by redesigning the production process, such as by using 

parallel processing to improve productivity. 

4   Experimental evaluation 

4.1 Data sets 
The application of intelligent scheduling algorithms is 

increasingly emphasized in today's machine building 

industry. In order to comprehensively assess their 

effectiveness and applicability, we have carefully 

constructed a high-quality dataset. The dataset covers a 

variety of typical scenarios in the machinery 

manufacturing process, fully reflecting the diversity and 

complexity of the actual production process. The 

following is a detailed description of the dataset 

construction process. The data sources mainly include the 

production records of actual machinery manufacturing 

enterprises and the data generated by simulation. The 

actual production records provide us with rich real 

production scenarios, while the simulation data help us 

extend the dataset to cover more possible production 

situations. We collected data from equipment operation 

logs, production schedules, order information, bills of 

materials, and other aspects, and simulated different 

production conditions with advanced simulation software. 

In the data preprocessing stage, we cleaned, feature 

extracted, normalized and generated labels for the raw 

data. This process ensures the quality and consistency of 

the data and lays the foundation for subsequent 

experimental evaluation. The composition of the dataset 

covers equipment status information, resource allocation 

information, production progress information, 

environmental factors and labeling information, reflecting 

the key elements of the production process in an all-round 

way. 

The dataset we used contains more than 10,000 

records, covering 50 different types of production 

scenarios. These production scenarios involve 10 different 

types of orders, 8 production batches, 15 different types of 

equipment, and 12 resource configurations to fully 

demonstrate the diversity and complexity of the 

mechanical manufacturing process. In addition, the 

dataset also includes information such as equipment 

operating status, production progress, resource allocation, 

and environmental factors under different production 

environments to ensure that the actual production process 

is fully reflected. 

In order to further enhance the representativeness of 

the dataset, we combined actual production records from 

5 mechanical manufacturing companies and generated 

more than 5,000 data through simulation. These 

simulation data simulate complex production scenarios 

including multi-task parallel processing and equipment 

fault recovery to ensure that the dataset can cover various 

actual production scenarios. All data have been cleaned, 

feature extracted, normalized, and labeled in the 

preprocessing stage to ensure data consistency and 

quality, providing a reliable basis for subsequent 

experimental evaluation. The dataset is characterized by 

its diversity, complexity and realism. It contains different 

types of orders, production lots, equipment and resources 

to show the diversity of the machine manufacturing 

process. At the same time, the dataset contains complex 

production scenarios such as multitasking parallel 

processing and equipment failure recovery. Although 

simulation data is used to extend the dataset, we ensure a 

high degree of data proximity to the real production 

environment. 

In the process of data set selection and balancing, this 

paper combines production records and simulation data 

from actual machinery manufacturing enterprises to 

ensure data diversity and representativeness. The actual 

production data provides real production scenarios, 

covering different types of orders, production batches, 

equipment and resource usage, reflecting the complexity 

of the real environment. In order to expand the scale of the 

data set and cover more possible production scenarios, this 

paper also uses advanced simulation software to generate 

simulation data, which simulates different production 

conditions, such as multi-task parallel processing and 

equipment failure recovery. In the data preprocessing 

stage, we cleaned, extracted features and standardized the 

original data to ensure data consistency and quality. In 

order to ensure the consistency of training data and test 

data, the data set was reasonably divided in the experiment 

and the balance of different data sources was ensured. 

Through these steps, the data set can not only represent the 

diversity and complexity of the real production 

environment, but also improve the robustness of the model 

and ensure the reliability and repeatability of the 

experimental results. 

 

4.2 Experimental design 
In this study, we aim to evaluate the effectiveness, 

robustness and adaptability of intelligent scheduling 

algorithms through a series of experiments. The goal of 

the experiments is to ensure that the algorithms are not 

only able to complete complex task scheduling within the 

specified time, but also achieve or approach optimal 

productivity. At the same time, we will also examine the 

performance of the algorithms in the face of uncertainties 

such as equipment failures, order changes, etc., as well as 

their adaptability to different types and sizes of production 

tasks. The experimental setup includes selecting classical 

benchmark algorithms such as priority rules and genetic 

algorithms for comparative analysis, and executing the 

experiments on a high-performance computing platform 

to ensure the reproducibility and efficiency of the results. 

We will define a series of evaluation metrics such as 

production cycle time, resource utilization and order delay 

rate to measure the performance of the algorithms. 

In the experimental cases, we will evaluate the 

performance of the algorithms in single production line 

and multi-production line collaborative operations, 

especially in dealing with dependencies between 
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production lines. In addition, we will also test the 

algorithm's response speed and recovery ability in 

abnormal situations such as emergency order insertion and 

sudden equipment failure to examine its flexibility and 

robustness in the face of uncertainties. Through these 

comprehensive experiments, we expect to gain a 

comprehensive understanding of the actual performance 

of intelligent scheduling algorithms in different 

production scenarios and identify their advantages and 

limitations. 

The construction of the simulation environment 

includes multiple software tools and hardware 

configurations to ensure efficient execution and 

repeatability of the experiment. In terms of software tools, 

Python is used for the implementation of deep learning 

models and data processing, TensorFlow is used to build 

and train deep Q networks (DQN), NumPy is used for 

numerical calculations, Matplotlib and Seaborn are used 

for result visualization, and SimPy is used for production 

process simulation. In terms of hardware configuration, 

the experiment used an Intel i7-10700K 8-core processor, 

an NVIDIA RTX 3090 24GB graphics card (used to 

accelerate the deep learning training process), 64GB 

DDR4 memory, and 1TB SSD to store experimental data 

and training models. In addition, to ensure the 

repeatability of the experiment, all experiments were 

initialized with a fixed random seed. 

 

4.3 Experimental results 
Table 2 Comparison of Production Cycle Times for 

Different Algorithms on a Single Production Line 

As shown in Table 2, the average production cycle 

time and its standard deviation for three different 

algorithms on a single production line are demonstrated 

with 95% confidence intervals. The intelligent scheduling 

algorithm has an average production cycle time of 12.3 

hours [10.8-13.8], which is the shortest among the three 

algorithms. This indicates superior performance in 

reducing production cycle times on a single production 

line. 

Table 3 provides a comparison of average resource 

utilization rates and their standard deviations for the three 

algorithms in multi-production line collaborative 

operations, including 95% confidence intervals. The 

intelligent scheduling algorithm achieves the highest 

resource utilization rate at 89.2% [87.4-91.0], indicating 

its efficiency in optimizing resource use across multiple 

production lines. 

 

Table 2: Comparison of production cycle times for different algorithms on a single production line 

Algorithm Name 
Average Production 

Cycle Time (hours) 

95% Confidence 

Interval 

Standard Deviation 

(hours) 

Intelligent Scheduling 

Algorithm 
12.3 [10.8 - 13.8] 1.5 

Prioritization Rule 

Algorithm 
14.5 [13.2 - 15.8] 1.7 

Genetic Algorithm 13.1 [12.0 - 14.2] 1.6 

 

Table 3: Comparison of resource utilization in multiple production line co-operation 

Algorithm Name 
Average Resource Utilization Rate (%) [95% 

CI] 

Standard 

Deviation 

Intelligent Scheduling 

Algorithm 
89.2 [87.4-91.0] 0.9 

Prioritization Rule Algorithm 85.6 [84.4-86.8] 1.2 

Genetic Algorithm 87.4 [86.3-88.5] 1.1 

 

Table 4: Order delay rate in response to equipment failure 

Algorithm Name 
Incidence of Equipment 

Failure (%) 

Order Delay Rate (%) 

[95% CI] 

Standard 

Deviation 

Intelligent Scheduling 

Algorithm 
5 2.3 [1.7-2.9] 0.6 

Prioritization Rule 

Algorithm 
5 4.5 [3.7-5.3] 0.8 
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Algorithm Name 
Incidence of Equipment 

Failure (%) 

Order Delay Rate (%) 

[95% CI] 

Standard 

Deviation 

Genetic Algorithm 5 3.8 [3.1-4.5] 0.7 

 

Table 5: Response time in case of emergency order insertion 

Algorithm Name 
Proportion of Urgent 

Orders (%) 

Average Response Time 

(minutes) [95% CI] 

Standard 

Deviation 

Intelligent Scheduling 

Algorithm 
10 12.4 [11.2-13.6] 1.2 

Prioritization Rule 

Algorithm 
10 18.6 [16.3-20.9] 2.3 

Genetic Algorithm 10 15.7 [13.9-17.5] 1.8 

 

Table 4 illustrates the order delay rate and its standard 

deviation for the three algorithms when there is a 5% 

incidence of equipment failure, including 95% confidence 

intervals. The intelligent scheduling algorithm shows the 

lowest order delay rate at 2.3% [1.7-2.9], demonstrating 

its resilience and efficiency in managing orders during 

equipment failures. 

In Table 5, the average response time and its standard 

deviation for emergency order insertion are compared for 

the three algorithms, with 95% confidence intervals 

provided. The intelligent scheduling algorithm has the 

shortest average response time of 12.4 minutes [11.2-

13.6], highlighting its effectiveness in quickly responding 

to urgent orders. 

Table 6 compares the adaptability of handling 

multiple types of orders by showing the average 

production cycle time and its standard deviation for each 

algorithm, along with 95% confidence intervals. The 

intelligent scheduling algorithm demonstrates the best 

adaptability with an average production cycle time of 13.5 

hours [11.9-15.1] for ten different order types, indicating 

its flexibility and efficiency in processing varied order 

types. 

 

 

Table 6: Adaptability to Handle Multiple Types of Orders 

Algorithm Name 
Order Type 

Quantity 

Average Production Cycle Time 

(hours) [95% CI] 

Standard 

Deviation 

Intelligent Scheduling 

Algorithm 
10 13.5 [11.9-15.1] 1.6 

Prioritization Rule 

Algorithm 
10 16.2 [14.2-18.2] 2.0 

Genetic Algorithm 10 14.8 [12.9-16.7] 1.9 

 

Table 7: Comparison of model performance across diverse production environments 

Environment 

Characteristics 

Average 

Production Cycle 

Time (hours) 

[95% CI] 

Resource 

Utilization Rate 

(%) [95% CI] 

Order 

Delay 

Rate (%) 

[95% CI] 

Response Time to 

Emergency Orders 

(minutes) [95% CI] 

Small-Scale, Low 

Complexity 
10.2 [9.7-10.7] 88.4 [87.5-89.3] 

1.8 [1.5-

2.1] 
10.5 [9.8-11.2] 

Medium-Scale, 

Moderate 

Complexity 

12.3 [11.8-12.8] 86.7 [85.8-87.6] 
2.5 [2.2-

2.8] 
12.4 [11.7-13.1] 
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Environment 

Characteristics 

Average 

Production Cycle 

Time (hours) 

[95% CI] 

Resource 

Utilization Rate 

(%) [95% CI] 

Order 

Delay 

Rate (%) 

[95% CI] 

Response Time to 

Emergency Orders 

(minutes) [95% CI] 

Large-Scale, High 

Complexity 
15.4 [14.9-15.9] 84.5 [83.6-85.4] 

3.2 [2.9-

3.5] 
14.2 [13.5-14.9] 

 

Table 7 compares the performance metrics of a model 

across different production environments characterized by 

varying scales and complexities. The inclusion of 

confidence intervals provides insight into the reliability of 

these estimates. Smaller-scale, less complex environments 

show shorter production cycle times, higher resource 

utilization rates, lower order delay rates, and faster 

response times to emergency orders. Conversely, as the 

scale and complexity increase, all performance metrics 

tend to degrade, indicating that more challenging 

environments present greater operational difficulties. 

The confusion matrix in Table 8 offers a detailed look 

at the DQN's prediction accuracy regarding on-time vs. 

delayed orders, including confidence intervals for each 

metric. A true positive indicates the number of times the 

model correctly predicted an on-time order, while a false 

positive shows incorrect prediction of delays when the 

orders were actually on time. Similarly, true negatives and 

false negatives pertain to the correct and incorrect 

predictions of delayed orders, respectively. This matrix 

reveals not only the overall accuracy of the DQN but also 

its tendency to make certain types of errors, providing 

deeper insights into its behavior and performance under 

various conditions. 

 

Table 8: Confusion matrix for DQN performance 

True 

Class 

Predicted 

Class 

True Positive 

(TP) [95% 

CI] 

False Positive 

(FP) [95% 

CI] 

True Negative 

(TN) [95% CI] 

False Negative 

(FN) [95% CI] 

On-

Time 
On-Time 

920 [900-

940] 
80 [60-100] - - 

On-

Time 
Delayed - - 90 [80-100] 120 [100-140] 

Delayed On-Time - - 70 [60-80] 80 [60-100] 

Delayed Delayed 
850 [830-

870] 
150 [130-170] - - 
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Figure 4: Comparison of performance when production lot size varies 

 

As shown in Fig. 4, the average production cycle time 

and its standard deviation of the three algorithms are 

compared for production lot sizes of 100, 500 and 1000 

respectively. From the table, it can be seen that the average 

production cycle time of the three algorithms increases as 

the production batch increases. The intelligent scheduling 

algorithm outperforms the priority rule algorithm and the 

genetic algorithm when the production lot size changes. 

 

4.4 Discussion 
From the above results, it can be seen that the intelligent 

scheduling algorithm outperforms the other two 

algorithms on a single production line. The shorter 

average production cycle time (12.3 hours) and lower 

standard deviation (1.5 hours) indicate that the algorithm 

is able to effectively manage the production process and 

improve production efficiency. The intelligent scheduling 

algorithm also performs well in multi-production line 

collaborative operations, with an average resource 

utilization rate of 89.2% and a standard deviation of only 

0.9%, which indicates that the algorithm is able to allocate 

resources efficiently and reduce resource wastage. When 

the equipment failure rate is 5%, the intelligent scheduling 

algorithm has the lowest order delay rate (2.3%) with a 

standard deviation of 0.6%, which indicates that the 

algorithm is able to quickly adjust the production plan in 

the face of equipment failures to reduce order delays. The 

intelligent scheduling algorithm has the shortest average 

response time (12.4 minutes) with a standard deviation of 

1.2 minutes for an urgent order percentage of 10%, which 

indicates that the algorithm is able to respond quickly to 

urgent order demands and reduce waiting time. The 

intelligent scheduling algorithm has an average 

production cycle time of 13.5 hours with a standard 

deviation of 1.6 hours when processing 10 types of orders, 

showing good adaptability and flexibility. The average 

production cycle time of the intelligent scheduling 

algorithm increases as the production batch size increases, 

but remains low (from 10.2 hours for 100 pieces to 14.8 

hours for 1000 pieces), and the standard deviation is 

relatively low, which indicates that the algorithm is still 

able to maintain high efficiency when dealing with large-

scale production tasks. 

Although the intelligent scheduling algorithm 

performs well in most cases, there are still some 

limitations. For example, the growth rate of the average 

production cycle time may accelerate when the production 

lot sizes are very large. Therefore, future research could 

further explore how to optimize the algorithm to cope with 

more complex production environments and higher 

production batch requirements. In addition, the 

introduction of more uncertainties, such as supply chain 

disruptions, could be considered to further test the 

robustness and adaptability of the algorithm. 

5    Conclusion 
In this study, we propose an intelligent scheduling 

algorithm applied to the mechanical manufacturing 

process, aiming to solve the key problems in production 

scheduling. By constructing an intelligent scheduling 

model based on deep reinforcement learning, we 

developed a system that can automatically learn and 

optimize production schedules. The model utilizes deep 

Q-networks (DQNs) to handle complex decision-making 

problems, and its performance is evaluated through a 

series of experiments. The experimental results show that 

the intelligent scheduling algorithm exhibits excellent 

performance in a variety of production scenarios. The 

algorithm can significantly shorten the production cycle 

time and improve the resource utilization in both single-

production line and multi-production line collaborative 

operations, and shows good adaptability and robustness in 

the face of equipment failures and urgent orders. In 



32 Informatica 49 (2025) 19–32 Y. Zhao 

addition, the algorithm can effectively handle multiple 

types of orders and different production batches, showing 

strong adaptability. 

The limitations of this study are mainly reflected in 

the diversity and scale of the data set. Although we used a 

variety of production scenarios and equipment 

information, since the data mainly comes from a single 

industry, it may not fully represent the production process 

of all industries. In addition, the DQN model has limited 

processing capabilities for large-scale data and may not be 

able to effectively cope with more complex dynamic 

production environments. The training time of the model 

is long, which affects the efficiency of practical 

applications. Future research can improve the 

generalization ability of the model by expanding the scale 

and diversity of the data set and covering production 

scenarios in more industries. At the same time, more 

advanced reinforcement learning algorithms can be 

explored, such as multi-agent systems for deep 

reinforcement learning, to further improve the adaptability 

and efficiency of the scheduling model. In addition, the 

integration of the Internet of Things (IoT) technology and 

real-time data streams will also provide more innovative 

and practical application scenarios for intelligent 

scheduling systems. 
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