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The rapid development of computer technology has made network stability and node positioning 

accuracy important challenges in optimizing computer network design. This study proposes an 

optimization method based on the Improved Genetic Algorithm (IGA) to improve the positioning 

accuracy and stability of network nodes. Firstly, by combining the characteristics of the centroid 

algorithm and the Approximate Point in Triangulation Test (APIT) algorithm, preliminary optimization 

of node positions is carried out. Subsequently, an IGA is utilized for further optimization, dynamically 

adjusting the crossover probability and mutation probability to balance global and local search 

capabilities and avoid the algorithm falling into local optima. The experimental results showed that IGA 

achieved significant performance improvement in node localization. Compared with the centroid 

algorithm, the maximum error of IGA has been reduced by 19% and the overall average error has been 

reduced by 8.8%. Compared with APIT, IGA has reduced the maximum error by 7% and the overall 

average error by 3.8%. Regarding fitness values, IGA exhibited faster convergence speed, achieving 

optimal results with only 75 iterations, surpassing traditional genetic algorithms and APIT algorithms. 

The node coverage rate reached 98.6%, far higher than the 85.3% of the centroid algorithm and 90.5% 

of the APIT algorithm. These results demonstrate that IGA has higher accuracy, stability, and 

computational efficiency in complex network environments, providing an efficient and reliable solution 

for optimizing the design of computer network nodes. 

Povzetek: Predlagan je izboljšan genetski algoritem (IGA) za optimizacijo lokacij vozlišč v 

računalniških omrežjih, ki z dinamičnim prilagajanjem verjetnosti križanja in mutacije poveča točnost, 

stabilnost in učinkovitost algoritma.

1 Introduction 

With the continuous progress of modern technology, 

computer networks play an increasingly important role in 

modern society. They connect various devices and 

systems, making the transmission and sharing of 

information more efficient and convenient. To meet the 

needs of users for high-quality network services, 

improving network performance and optimizing network 

design have become increasingly important. Traditional 

optimization algorithms frequently encounter issues of 

low efficiency and a propensity to fall into local optima 

when addressing large-scale network design problems. 

Therefore, it is necessary to introduce new optimization 

algorithms to solve these problems [1-2]. In recent years, 

researchers have made significant advancements in 

applying enhanced genetic algorithms to optimize 

computer networks. These enhancements include the 

introduction of new operators, optimization of algorithm 

parameters, and adjustments to the algorithms 

themselves. As a result, genetic algorithms are now more  

 

 

efficient and accurate when utilized for network design 

optimization. At the same time, researchers combine 

genetic algorithms with other optimization algorithms to 

create multiple hybrid optimization algorithms, which 

enhances network design performance and effectiveness 

[3-4]. The objective of the research is to achieve an 

optimized design of computer networks and to improve 

network performance indicators, including latency, 

throughput, resource utilization, and cost, through an 

Improved Genetic Algorithm (IGA). The research aims to 

solve the problems of slow convergence speed, 

susceptibility to local optima, and difficulty in dynamic 

adjustment of traditional network optimization methods 

in complex network environments. This study designs a 

computer network optimization technique based on a 

genetic algorithm as the core and introduces multiple 

techniques to improve performance. A fitness function 

based on network performance indicators is constructed 

to quantify the network optimization objectives. This 

technology adjusts the crossover and mutation 

probabilities adaptively by comparing individual fitness 
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and population average fitness, balancing global and local 

search capabilities. 

2 Related work 

The 5G era is coming and the network technology is 

developing rapidly. Numerous data have brought 

enormous challenges to the stability and reliability of 

computer networks. The reliability of computer networks 

is a major indicator of computer comprehensive 

performance. Computer networks are large and complex, 

and they are also easily affected by many adverse factors. 

This leads to instability in the system, which exposes the 

entire computer network to significant risks. To ensure 

the stability and ongoing optimization of computer 

networks, computer network optimization design has 

become a prevalent point of discussion in computer 

research. Through their study of cloud computing, Fan et 

al. [5] presented a novel mathematical model for virtual 

network embedding in optical data center networks. This 

model reduced Network Topology (NT) complexity 

during optical fiber transmission. They used a 

comprehensive system of node awareness and path 

evaluation to derive algorithms with priority locations. 

The algorithm obtained by this model could reduce the 

latency of virtual network requests by 20% and improve 

the request rate by 13%. Rajendran and Venkataraman [6] 

proposed a new neural network algorithm to analyze 

network traffic built on the application and analysis of big 

data in network security. They used this method to 

conduct statistics on the worst data and abnormal activity 

sent by the network and conducted experiments with the 

data. Compared with traditional algorithms for neural 

networks, the optimized algorithm showed a notable 

enhancement in distinguishing between false alarms and 

actual detection, which significantly improved the 

security and stability of the network. Xiaokaiti et al. [7] 

raised an efficient data transmission strategy for the 

detection algorithm of computer network communities. 

They first combined NT attributes with social attributes 

when dividing communities and then selected the optimal  

 

 

relay node for network transmission based on the number 

of channels. This algorithm had high merit in data 

delivery efficiency and routing overhead in computer 

networks. Alsaqour et al. [8] put forward a 

location-assisted routing algorithm grounded on genetic 

algorithms to optimize the efficiency of MANET routing 

protocols. Firstly, through algorithm optimization, node 

information was added to the route and these nodes were 

grouped. These nodes were then sent to their destinations 

to adaptively update the node location. The results 

showed that the optimized algorithm could achieve a 

delivery rate of over 99% for small network overhead 

packets. Bu [9] developed a load-balancing scheduling 

algorithm for Internet of Things (IoT) clusters using a 

combination of Particle Swarm Optimization and Genetic 

Algorithm (PSOGA). The purpose of this algorithm was 

to address the persistent challenge faced by IoT networks 

due to high-volume business data traffic causing 

downtime. They first used the CPU, RAM, and network 

bandwidth to measure the server node information, then 

adjusted the appropriate function value, and used the IGA 

to obtain the optimal solution. The results showed that the 

optimized algorithm could reduce latency and error rates 

by 5%, while also reducing server overload and 

downtime. Network coding could integrate coding 

capabilities with network multi-path propagation, bolster 

the capacity of computer networks, and facilitate more 

intricate security solutions. To address the susceptibility 

of network coding to attacks, Wu et al. [10] developed a 

comprehensive unicast secure transmission scheme based 

on Random Linear Network (RLN). The matrix was 

randomly generated from the received nodes and the 

resulting vector was sent back to the source node via the 

link to form a new matrix. This approach effectively 

thwarted network eavesdropping attacks. The 

comparative analysis between the research and the 

advanced methods is shown in Table 1. 

 

Table 1: Comparative analysis of research and the advanced methods 

Reference Technical Method Advantages Disadvantages 
Comparison with 

IGA 

Fan et al. [5] 

Virtual network 

embedding with node 

awareness and path 

evaluation. 

Reduces latency by 20% 

and improves request rate 

by 13%. 

Limited applicability; 

does not optimize node 

positioning. 

IGA reduces error 

by 8.8%, with 

broader 

applicability. 

Rajendran et 

al. [6] 

Enhanced neural 

network algorithm for 

malicious traffic 

detection. 

Improves security and 

reduces false alarms. 

High computational 

cost; lacks node 

optimization. 

IGA achieves 

2.41% error, with 

higher efficiency. 

Xiaokaiti et 

al. [7] 

Community detection 

algorithm to optimize 

data transmission. 

Improves transmission 

efficiency and reduces 

routing overhead. 

Dependent on BT; 

limited precision. 

IGA reduces error 

by 3.8%, offering 

better stability. 

Alsaqour et 

al. [8] 

Genetic algorithm for 

optimizing mobile ad 

Achieves 99% small 

packet delivery rate with 

Suitable for small 

networks; struggles 

IGA reduces error 

to 2.46%, with 
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hoc network routing. low overhead. with large-scale 

networks. 

wider applicability. 

Bu [9] 
PSO and GA combined 

for load balancing. 

Reduces load and 

downtime by 5%. 

Focuses on load 

balancing; lacks 

positioning accuracy. 

IGA improves 

accuracy by 8.8%, 

offering a 

comprehensive 

solution. 

Wu et al. 

[10] 

Secure transmission 

using random linear 

network coding. 

Enhances security and 

prevents eavesdropping. 

Does not optimize 

node positioning or 

transmission 

efficiency. 

IGA achieves 5.2% 

error, with better 

precision and 

stability. 

 

Previous research has found that related work 

mainly focuses on specific aspects of computer network 

optimization, including security enhancement, data 

transmission efficiency, and load balancing. However, 

they have shortcomings in addressing the accuracy of 

network node localization and overall stability under 

different network conditions. Existing algorithms such as 

the centroid algorithm and Approximate Point in 

Triangulation Test (APIT) have significant drawbacks, 

including limited accuracy and sensitivity to node 

density. Traditional algorithms, such as genetic 

algorithms and MANET routing protocols perform well 

in specific network types, but perform poorly in 

large-scale or dynamic environments. Using genetic 

algorithms to assist routing protocols can improve 

network overhead and delivery rates. This fully optimizes 

the genetic algorithm and enhances network delivery. To 

optimize computer network nodes for better 

environmental conditions, this study uses centroid and 

APIT algorithms, which provide better conditions for 

computer network optimization. Then, based on node 

optimization, an IGA is used to construct a network 

design optimization model. Through optimizing the 

traditional ant colony algorithm, the efficiency of 

network nodes in computer network optimization design 

is enhanced. This paper aims to increase the stability and 

reliability of computer network optimization design. 

3 Construction of computer network 

optimization design model based 

on genetic algorithm 

3.1 Optimization of node location based on 

centroid algorithm and APIT 

algorithm 

From the perspective of topology, a computer network is 

composed of several network nodes and communication 

links connecting these network nodes. This indicates that 

the positioning of network nodes is indispensable in 

computer network data transmission. The centroid 

algorithm is the most typical node localization algorithm 

among commonly used localization algorithms. The 

algorithm has four advantages: low storage energy 

consumption, simple algorithm principle, low computing 

energy consumption, and low communication energy 

consumption. 

Before using this algorithm for localization, it is first 

necessary to determine whether the location node that the 

sensor needs to determine is located within the region. At 

the same time, nodes requiring location determination 

will continually emit various 
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Figure 1: Schematic diagram of centroid algorithm positioning 
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communication signals to the surrounding environment. 

To determine whether the unknown node is in the 

monitoring area, it is essential to verify the strength of the 

signal obtained at the beacon node. The strength can 

reflect the unknown node location [11]. The principle of 

the centroid algorithm is obtained built on the algorithm 

for the centroid. In any irregular polygon, there must be a 

center of mass inside it. Usually, the coordinates of each 

vertex are accumulated, and then the average value is 

calculated to determine its specific coordinates. The 

specific location can be represented by Formula (1), and 

its algorithm diagram is shown in Figure 1. 

1 1

1 1
( , ) ( , )

n n

i i

i i

x y x y
n n= =

=           (1) 

In Formula (1), n  represents a n -sided shape. 

( , )x y  means the coordinate of the vertex. The centroid 

of this n-sided shape can be obtained by calculating the 

formula. 

If the polygon is situated within the solved region 

and has matching coordinates, then the centroid 

coordinates of the octagon can be computed using 

Formula (2). 

1 2 8 1 2 8( , ) ( , )
8 8

x x x y y y
x y

+ + + + + +
=                          (2) 

The 1 2( , )x y 8 8( , )x y  in Formula (2) represents 

the coordinates of eight vertices. To use centroid 

positioning algorithms for positioning, it is essential to 

rely on the smoothness of the entire network structure and 

the specific distribution of positioning nodes within the 

network. If an error occurs in the coordinates calculated 

by unknown nodes, it will bias towards areas with 

densely distributed beacon nodes, potentially resulting in 

significant errors with the centroid algorithm. Therefore, 

the algorithm's calculation accuracy is typically not high, 

and the positioning accuracy may be low. However, the 

centroid algorithm only needs to broadcast once to locate 

all unknown nodes. In many applications that do not 

require high positioning accuracy, the centroid algorithm 

is still the most suitable method. 

APIT is an improved algorithm for the centroid 

algorithm. It requires a completely random selection of 

many known coordinate nodes, and the coordinate nodes 

are grouped every three. In accordance with these nodes, 

the triangles drawn on the graph will be completely 

randomly distributed throughout the entire region. There 

will be some overlap between these triangles to calculate 

the coordinates of unknown nodes. The specific operation 

steps are: First, multiple coordinate nodes around 

unknown nodes are identified, and three known location 

nodes are randomly 

 

Figure 2: Schematic diagram of APIT algorithm positioning 

selected each time. Then, the approximate location of the 

signals received by these known location nodes is 

determined. If there are m beacon nodes, the paper will 

randomly select and match them, and use the combination 

of three random position points to form 
3

nC  triangle. It 

shows that some triangular regions can contain unknown 

nodes, while others do not. These specific points, which 

contain triangular regions of unknown nodes, are 

connected to each other. Finally, the recorded location 

algorithm is utilized to calculate the specific location of 

unknown nodes. The incorporation of a greater number of 

unknown nodes into the algorithm results in enhanced 

accuracy in location estimation [12-13]. However, this is 

accompanied by an increased computational burden. In 

such a scenario, choosing a subset of vertices to create a 

polygon based on the real circumstances, as illustrated in 

Figure 2, can be beneficial. In Figure 2, the node 

positioning accuracy of the APIT is significantly greater 

than that of the centroid positioning algorithm. 

Due to the relatively large impact of node density on 

APIT, when the beacon node density is relatively large, 

APIT can achieve relatively ideal positioning accuracy. 



Design and Application of Improved Genetic Algorithm for… Informatica 49 (2025) 171–186 175 

 

APIT also has good performance in irregular wireless 

signal propagation models and irrational circular 

propagation models. However, APIT also has a 

significant disadvantage. When connecting triangles, it 

may mistake points located outside the triangle for points 

inside the triangle. The probability of generating this 

situation can reach a maximum of 13% through research 

[14], which will have a significant impact on positioning 

accuracy. The algorithm must divide a large number of 

triangular regions to identify the locations of unknown 

nodes and necessitates multiple beacon nodes. As a 

result, the algorithm performs numerous calculations, 

which elevates the likelihood of encountering errors. 

3.2 Construction of improved genetic 

algorithm model 

The research and analysis of the centroid and APIT 

algorithms in node location optimization have revealed 

shortcomings in both algorithms concerning their 

calculation and location processes. Additionally, the use 

of genetic algorithms for node localization requires extra 

constraints, which may lead to increased computational 

time and reduced efficiency, resulting in premature 

convergence [15]. To obtain better positioning 

optimization results, an IGA model is studied and 

constructed. The flow chart of the model is shown in 

Figure 3, and the blue box in the figure shows the 

improved steps. 

Compared with Traditional Genetic Algorithms 

(TGA), the paper has improved the node localization of 

genetic algorithms and constructed a matrix. The specific 

construction of the matrix is shown in Formula (3). 

11 12 11

2 21 22 2

1 2

( )

n

n

m m m mn

a a as

s a a a
S m

s a a a

  
  
  = =
  
  

   

                      (3) 

The m  in Formula (3) represents a total of m  

chromosomes in the genetic algorithm. n  means that 

each chromosome has n  elements. 1s , 2s ms  are 

each chromosome. In TGA, determining the value range 

of genes is a commonly used method to generate an 

initial population waiting for calculation. If a certain 

number of initial populations are randomly generated 

within this value range, there may be situations where the 

distribution is too random. This result is basically not 

helpful for improving the algorithm efficiency [16]. If 

one wants to obtain a global optimal solution, the 

distribution of the initial population in the solution space 

should be as uniform and dispersed as possible. The 

schematic diagram of random initial population 

generation within the overlapping range of 

communication areas of different anchor nodes is shown 

in Figure 4. 

IGA performs improved optimization in TGA such 

as parameter setting, population initialization, appropriate 

function values, selection operations, and crossover 

operations. The specific key parameter settings are to set 

the number of populations to be 40, the crossover 

probability 1cp  to be 0.6, 2cp  to be 0.4, the mutation 

probability 1mp  to be 0.08, 2mp  to be 0.06, and the 

maximum iterations to be 100. Population initialization 

can determine the initial population range according to 

Formula (4), and generate an initial population randomly 

within this range. 

1,2, ,1,2, ,

1,2, ,1,2, ,

max ( ) min ( )

max ( ) min ( )

i i i i
i ni n

i i i i
i ni n

x d x x d

y d y y d

==

==

−   +



−   +

  (4) 
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Figure 3: The improvement process of genetic algorithms 
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Anchor node

Initial population 

generation region

 

Figure 4: Schematic diagram of initial population generation area 

In Formula (4), id  means the distance between the 

node of unknown i  and the anchor. The fitness function 

value calculation assumes a total of ( )+M N  nodes in 

the wireless sensor network to be located, where the 

number of known nodes is M. The unknown node number 

is N. Through a certain distance measurement method, if 

each unknown node knows the distance between all 

known nodes within the communication radius and itself, 

the calculated node position can be obtained through the 

least square method [17]. Assuming that the coordinate of 

a node at a known location is (x1,y1),(x2,y2),…,(xM,yM), the 

coordinate of an unknown node is ( , )x y , and the 

distance from the node at a known location is 

1 2 3, , , , Md d d d . The equation set shown in Formula (5) 

can be established. 

 

2 2 2

1 1 1

2 2 2

2 2 2

2 2 2

3 3 3

2 2 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )M M M

x x y y d

x x y y d

x x y y d

x x y y d

 − + − =


− + − =


− + − =


 − + − =


    (5) 

From Formula (5), the fitness function for genetic 

algorithms can be defined as Formula (6), and the fitness 

function of the initial population can be calculated by 

using it. 

1

1
( , ) ( )2 ( )2

M

i i i

i

f x y x x y y d
M =

= − + − − (6) 

In Formula (6), ( , )x y  is the unknown location 

node location. ( , )i ix y  represents a known location node 

location. id  refers to the distance from an unknown 

location to a known location ( , )i ix y . The use of 

absolute error instead of squared error in the fitness 

function avoids the calculation of squared error, reduces 

complex multiplication operations, and lowers 

computational load. During the iteration process, absolute 

error is more robust to outliers (i.e. has less impact on 

data with larger deviations) and also enables the 

algorithm to approach the global optimal solution faster, 

accelerating the convergence speed of the algorithm. The 

selection operation is to perform a unified comparison of 

each individual based on the fitness value calculated from 

the fitness function. After the comparison is completed, 

the two individuals with the highest fitness remain 

unchanged and proceed to the next round of operation. 

The individuals with the lowest fitness are directly 

eliminated, and the remaining objects will normally 

undergo crossover and mutation operations. Special 

individuals with high fitness values are set with judgment 

values to distinguish and limit their reproduction. After 

completing the full iterative process, the fitness value of 

each individual should be appropriately amplified 

[18-19]. The crossover probability is used to control the 

probability of individuals (chromosomes) performing 

crossover operations. By calculating an individual's 

fitness value, it can be determined whether the individual 

should participate in crossover operations. The goal of 

crossover operation is to generate offspring with higher 

fitness by recombining the genetic information of the 

parent individual, gradually approaching the optimal 

solution. When performing a crossover operation, if 
g avgF F , the crossover probability is calculated 

according to Formula (7). 

1

argg

c c

gb avg

F F
P p

F F

−
=

−
       (7) 

In Formula (7), 1 (0,1)pc . gF  is the value of the 

individual's fitness function. gbF  represents the optimal 

individual adaptation function value. avgF  is the average 

of the adaptive function. The calculation process includes 

normalizing the fitness difference and converting the 

normalized fitness difference into actual cross 

probability. If ag vgF F＜ , the crossover probability is 

calculated according to Formula (8). 

2c cP P=               (8) 

In Formula (8), 2 (0,1)cP . After pairing the 

chromosomes in the population, the crossover operation 

is performed based on the calculated crossover 

probability. A random number between [0-1] is randomly 
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generated for each chromosome. The objective of the 

treatment of poorly adapted individuals is to provide 

those with lower fitness a certain opportunity to 

participate in crossover, increase population diversity, 

and circumvent premature convergence to local optimal 

solutions. If the corresponding value is less than the 

crossover probability, the chromosome is ready to 

perform the next operation. The chromosomes for the 

next step are sequentially crossed in pairs. For each pair 

of crossed chromosomes, the location of the crossing is 

determined by random numbers and the crossover 

operation is performed. During the mutation operation, if 
g avgF F , the mutation probability is calculated by 

Formula (9). 

1

g avg

m m

gb avg

F F
P p

F F

−
=

−
       (9) 

In Formula (9),  represents 

the adaptive degree function value of individual  

is the value of the optimal individual adaptation function.  

refers to the average value of the adaptive function. 

If ag vgF F＜ , the probability of variation is calculated by 

Formula (10). 

2m mp P=             (10) 

In Formula (10), 2mP (0.01,0.10) . The first step is 

to randomly generate a number between 0 and 1 for each 

chromosome in the population. If the generated value is 

less than the mutation probability, it will undergo 

mutation operation. The position corresponding to the 

required mutation is determined by generating a random 

number value, and the next step is to invert the value to 

complete the relevant mutation operation. Monotonic 

gene locus detection analyzes the whole population and 

identifies any monotonic gene loci present. If these are 

detected, targeted adjustments can be made by generating 

random numbers. The termination operation should be 

determined and the loop termination should be evaluated 

based on the number of iterations. The final step is to 

output the optimal solution and test the average 

positioning error of the algorithm as a performance 

parameter, as shown in Formula (11). 

2 2

1 2 1 2

1

100
( ) ( ) %

N

i i i i

i

error x x y y
N R =

= − + −

                      (11) 

N  in Formula (11) is the sum of nodes. 1 1( , )i ix y  

and 2 2( , )i ix y i = (1, 2,3, , )M  represent the actual and 

calculated coordinates of the unknown node i . R  is 

the maximum communication distance of the node. In the 

process of transforming IGA theory into practical 

applications, the rigor of mathematical analysis is 

reflected in the precise modeling and dynamic adjustment 

of fitness functions, crossover probabilities, and mutation 

probabilities. The dynamic allocation of crossover 

probability is achieved by comparing individual fitness 

with group average fitness and optimal fitness. This 

allows individuals with higher fitness to have a higher 

probability of crossover, thereby accelerating the spread 

of excellent genes, while preserving a small number of 

crossover opportunities for individuals with lower fitness 

and maintaining population diversity. This normalization 

mechanism based on fitness differences effectively 

balances local search and global search, avoids premature 

convergence of the algorithm, and improves solution 

accuracy and efficiency. Furthermore, the implementation 

of random number generation techniques and probability 

judgment processes enables the transformation of 

theoretical models into practical operations, thereby 

ensuring the randomness and controllability of crossover 

and mutation. This approach facilitates the robustness and 

convergence of the algorithm in complex optimization 

problems, thus achieving efficient integration of theory 

and practice. When using IGA for computer network 

optimization design, the network optimization problem is 

first modeled as a fitness function to measure network 

performance indicators. Then, through iterative evolution 

through selection, crossover, and mutation operations, the 

crossover and mutation probabilities are dynamically 

adjusted to optimize the network structure and parameter 

configuration, thereby achieving efficient and accurate 

network optimization design. 

4 Performance analysis of computer 

network optimization design model 

based on genetic algorithms 

4.1 Performance analysis of node location 

based on centroid location algorithm 

and APIT algorithm 

To verify the actual positioning effects of the centroid 

algorithm, APIT, and IGA, simulation experiments are 

conducted on three algorithms in MATLAB. The reason 

for choosing APIT and centroid algorithm as benchmarks 

for research is their effectiveness and wide application in 

network optimization. The APIT algorithm performs well 

in localization problems and is suitable for evaluating the 

accuracy and reliability of network nodes, serving as a 

benchmark for network performance optimization in 

research. The centroid algorithm is known for its 

simplicity, ease of use, and fast convergence, making it 

suitable for solving optimization problems in basic 

network structures. The selection of these two algorithms 

perfectly covers different types of network optimization 

requirements. Through comparison, the advantages of 

IGA in solving complex optimization problems can be 

clearly demonstrated. Using MATLAB version R2021a, 

the hardware specifications are as follows: Intel Core 

i7-9700K processor, 32 GB DDR4 RAM, 512 GB 

solid-state drive, and Windows 10 Professional 64 bit 

operating system. The algorithm sets the population size 
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to 100, the number of iterations to 500, the crossover 

probability to 0.8, and the mutation probability to 0.05. 

The elite strategy is to retain the top 10% of excellent 

individuals. To ensure the statistical validity of the test 

scenario, multiple sets of experiments are designed and 

optimized for network topologies of different sizes and 

complexities. Each experiment should be repeated at least 

30 times to obtain stable average performance indicators 

and standard deviations, ensuring the reliability of the 

results. In the collected performance indicators, statistical 

analysis is used to evaluate the significant differences in 

algorithms under different configurations, thereby 

determining the efficacy of the optimization effects. 

When comparing, a null hypothesis and an alternative 

hypothesis are set. When calculating the P-value, it 

represents the probability of obtaining the current or more 

extreme result under the null hypothesis. The t-test is 

used to compare the results of IGA and benchmark 

algorithms. If the P-value is less than 0.05, the difference 

is considered statistically significant. The experiment 

generates 20 anchor nodes and 80 unknown nodes in the 

100×100 area. After generating this region, the node is 

predicted by running the corresponding algorithm. Figure 

5 shows the original node distribution diagram. 

The green circle in Figure 5 represents an anchor 

node, while the blue pentagon represents an unknown 

node. Figure 6 shows the positioning results of three 

algorithms. The positioning results of centroid algorithm, 

APIT, and IGA are shown in Figure 6(a), Figure 6(b) and 

Figure 6(c), respectively. 

In Figure 6, the predicted value of IGA has a higher 

coincidence rate with unknown nodes, reaching 94.36% 

(P<0.05). The predicted value of the centroid algorithm 

has the lowest coincidence rate with unknown nodes, 

which is 86.25%. The coincidence rate between the 

predicted value of APIT and the unknown node is 

89.67%. The coincidence rate of the IGA is 8.16% higher 

than that of the centroid algorithm and 4.69% higher than 

that of the APIT algorithm (P<0.05). This means IGA has 

a high positioning computing ability. The positioning 

errors of the centroid algorithm, APIT, and IGA are listed 

in Figure 7. 
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Figure 5: Original node distribution diagram 
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Figure 6: Location results of three algorithms 
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Figure 7: Positioning error of three algorithms 

The centroid algorithm in Figure 7 achieves a 

maximum error rate of 32% during positioning, and the 

overall node positioning average error rate is 14% 

(P<0.05). The maximum error rate of APIT in positioning 

is 20%, but the average value of the overall error has 

decreased to 9% (P<0.05). This indicates that compared 

to the centroid positioning algorithm, the predicted 

coordinates error calculated by the APIT positioning 

algorithm is significantly reduced, with better positioning 

results. The maximum error rate of IGA during 

positioning is 13%, and the average value of its overall 

error is 5.2% (P<0.05). The maximum error of IGA is 

19% lower than the centroid algorithm, and the overall 

average error is 8.8% lower (P<0.05). Compared to 

APIT, the maximum error of IGA is 7% lower, and the 

average overall error is 3.8% lower (P<0.05). APIT 

improves positioning accuracy through random triangle 

coverage, but relies on high-density anchor nodes and is 

prone to misidentifying external points of the triangle as 

internal points. The centroid algorithm is computationally 

simple and suitable for scenarios that do not require high 

accuracy. However, its accuracy is low and it is easily 

affected by uneven distribution of node density, resulting 

in positioning bias towards areas with dense anchor nodes 

and significant errors. IGA introduces a method of 

dynamically adjusting crossover probability and mutation 

probability during the evolution process. It dynamically 

adjusts based on individual fitness and population 

average fitness, avoiding premature convergence of the 

algorithm and ensuring the search for the global optimal 

solution. IGA performs local fine optimization, 

improving the accuracy and stability of the algorithm. 

The comparison of the three shows that IGA has excellent 

node positioning capabilities in wireless sensor networks. 
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4.2 IGA-based application analysis of 

computer network optimization design 

There are differences in the performance of IGA and 

other node localization algorithms for wireless sensor 

networks under different iterations. Hence, under the 

same parameter conditions, this study gradually changes 

the iterations and simulates them using TGA, centroid 

positioning algorithms, APIT, and IGA, respectively. 

Thus, the iteration number 
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Figure 8: Changes in fitness values of the four methods 
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Figure 9: Relationship between the number of anchor nodes and average error 

and its corresponding fitness value are obtained. As the 

number of iterations gradually increases, Figure 8 

illustrates the corresponding changes in fitness between 

the IGA and other algorithms for positioning wireless 

sensor network nodes. 

Figure 8 shows that the fitness values of the four 

localization algorithms are all less than 10. The fitness 

values of IGA, TGA, centroid algorithm, and APIT are 

4.26, 8.15, 6.42, and 5.31, respectively. The iteration 

numbers are 69, 86, 83, and 79, respectively. The IGA’s 

fitness value is the lowest, 3.89 lower than that of TGA, 
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2.03 lower than centroid algorithm, and 1.05 lower than 

APIT. This shows that IGA has better adaptability in 

node localization, and verifies the superiority of this 

algorithm. The anchor node numbers and the average 

error value’s relationship of the four algorithms is shown 

in Figure 9. 

In Figure 9, as the anchor node amount increases, 

the average error of the four positioning algorithms is 

gradually decreasing. The average errors of TGA, 

centroid algorithm, APIT, and IGA are 1.12, 1.03, 0.95, 

and 0.68, respectively (P<0.05). The average error of 

IGA is significantly lower than that of TGA. Meanwhile, 

as the number of anchor nodes increases gradually in 

proportion to all nodes, the average error of various 

algorithms undergoes slight changes over time, as shown 

by the curve. As the anchor node amount keeps the same, 

the average error of IGA is the lowest among all four 

algorithms. This fully demonstrates the advantages of 

IGA. Figure 10 displays the chart that pertains to the 

communication radius of a particular node and the 

average error value of the four algorithms. 

In Figure 10, the communication radius of nodes is 

increasing, while the average error of the four node 

positioning algorithms is gradually decreasing. The 

average errors of TGA, centroid algorithm, APIT, and 

IGA are 5.75%, 4.52%, 3.87%, and 2.46%, respectively 

(P<0.05). When the communication radius is the same, 

the IGA’s average error is always at the lowest value. 

This verifies the superiority of IGA when the 

communication radius of nodes changes. Figure 11 is the 

relevant of the specific network connectivity and the 

average error value of the four algorithms. 
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Figure 10: Relationship between node communication radius and average error 

Traditional genetic algorithm

Centroid positioning algorithm

ATIP location algorithm

Improved genetic algorithm

0 10010 20 30 40 50 60 70 80 90
0

1%

4%

7%

10%

A
v
er

ag
e 

er
ro

r

Node network connectivity

2%

5%

6%

8%

9%

3%

 

Figure 11: Relationship between network connectivity and average error value 
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The average errors of TGA, centroid algorithm, 

APIT, and IGA in Figure 11 are 5.41%, 4.49%, 3.71%, 

and 2.41%, respectively (P<0.05). This indicates that 

regardless of changes in network connectivity, IGA's 

positioning ability is always higher than the other three 

algorithms. Figure 12 is the graph about connection 

between node coverage, evolutionary algebra, and 

completion time of TGA and IGA. 

The node coverage of the two algorithms in Figure 

12(a) shows: in the same node density, the IGA has a 

higher regional coverage. Figure 12(b) displays the 

relationship between the number of evolutions and 

completion time of both algorithms over 
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successive iterations of the genetic algorithm. As the 

iterations progress, the number of evolutions gradually 

increases while the time required to complete all 

iterations decreases. However, with the same 

evolutionary algebra, IGA takes less time. This shows the 

superiority and stability of the IGA. To further analyze 

the adaptability and superiority of the research method, 

further application analysis is conducted in a large-scale 

wireless sensor network node positioning scenario with a 

side length of 500m in a region. The total number of 

sensor nodes in the region is 500, including 100 anchor 

nodes and 400 unknown nodes. The results of the 

large-scale application analysis are shown in Table 2. 

Table 2: Results of application analysis in major scenarios 

Metrics IGA APIT Algorithm Centroid Algorithm 

Average Positioning Error 

(%) 
2.45 5.62 7.89 

Positioning Time (s) 12.3 18.4 9.6 

Number of Iterations 75 120 60 

Convergence Speed 
Fast (0.5 fitness 

variation) 

Medium (0.8 fitness 

variation) 

Slow (1.2 fitness 

variation) 

Node Coverage Rate (%) 98.6 90.5 85.3 

 

As shown in Table 2, the average positioning error 

of IGA is 2.45%, significantly lower than the 5.62% of 

APIT algorithm and the 7.89% of centroid algorithm 

(P<0.05). This indicates that IGA can effectively improve 

the accuracy of node localization in large-scale scenarios 

and is suitable for complex and high-precision network 

environments. The positioning time of IGA is 12.3 

seconds, which is between 18.4 seconds of APIT and 9.6 

seconds of centroid algorithm (P<0.05). Although the 

computational complexity is slightly higher than that of 

the centroid algorithm, IGA improves efficiency by 

optimizing the evolution process, enabling it to maintain 

fast computational speed while achieving high-precision 

positioning. After 75 iterations, IGA achieves 

convergence, which is faster than the APIT algorithm's 

120 iterations (P<0.05), demonstrating the advantages of 

IGA's dynamic parameter adjustment and elite strategy in 

the search process. Although the centroid algorithm has 

fewer iterations, its accuracy is significantly insufficient 

(P<0.05). The node coverage rate of IGA reaches 98.6%, 

which is much higher than the 90.5% of APIT algorithm 

and the 85.3% of centroid algorithm (P<0.05). This 

indicates that IGA has better coverage performance in 

large-scale networks and can optimize node positioning 

layout more comprehensively. 

4.3 Discussion 

This study has designed an IGA that effectively improves 

the accuracy and stability of node localization in wireless 

sensor networks through techniques such as dynamic 

parameter adjustment, fitness function optimization, and 

elite strategy. Compared with traditional centroid 

algorithms and APIT algorithms, IGA exhibits significant 

advantages in key performance indicators. Specifically, 

the average positioning error of IGA was 2.45%, which 

was much lower than APIT's 5.62% and centroid 

algorithm's 7.89%, indicating that IGA has significant 

advantages in node positioning accuracy. At the same 

time, IGA had a faster convergence speed, requiring only 

75 iterations to reach the optimal solution, with a stable 

fitness value change (0.5). APIT and centroid algorithms 

required 120 and 60 iterations, respectively, and had 

slower convergence speeds. In addition, IGA achieved a 

node coverage rate of 98.6%, significantly higher than 

APIT (90.5%) and centroid algorithm (85.3%), 

demonstrating its applicability and advantages in 

large-scale complex network environments. The reason 

why IGA outperforms traditional methods in terms of 

positioning error and fitness values is mainly due to 

several key technological innovations. Firstly, the 

dynamic parameter adjustment mechanism can 

dynamically adjust the crossover probability and 

mutation probability based on the fitness value, thereby 

balancing global and local search and preventing the 

algorithm from getting stuck in local optimal solutions. 

This is consistent with the ideas of Yu et al. [20]. 

Secondly, fitness function optimization reduces 

computational complexity and enhances robustness to 

outliers by introducing absolute error instead of 

traditional square error, enabling the algorithm to 

approach the global optimal solution more quickly. In 

addition, the elite strategy ensures the retention of high 

fitness individuals and reduces the loss of high-quality 

solutions. The uniform distribution of the initial 

population within the communication area improves 

search efficiency and reduces ineffective calculations 

caused by random initialization. The results obtained are 

consistent with Singh et al.'s study [21]. These 

improvements effectively address common pitfalls of 

TGAs, such as local optima and premature convergence, 

enabling IGA to exhibit higher stability and accuracy in 

complex dynamic network environments. The core 

innovation of IGA lies in combining the local 

improvement of TGAs with global search, which is 

suitable for non-standard situations such as uneven node  
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distribution, limited number of anchor nodes, and 

complex conditions such as changes in communication 

radius. In practical applications, IGA demonstrates good 

stability and adaptability by flexibly adjusting parameters 

and optimizing search space. In previous studies, TGAs 

often faced local optimal traps, leading to premature 

convergence of the algorithm. The study aims to enhance 

population diversity, reduce the interference of outliers 

on the search process, and accelerate the convergence of 

the global optimal solution by providing low fitness 

individuals with moderate opportunities for crossover and 

mutation. The research provides a more stable, accurate, 

and efficient solution for node localization and 

optimization in complex network environments. 

5 Conclusion 

The high-speed development of computer network 

technology has caused tremendous changes in people's 

production and life. Currently, computer network 

optimization still has the problem of low positioning 

accuracy of network nodes. To solve the related 

problems, this study constructed an IGA model and 

applied it to computer network optimization. 

Experimental results showed that IGA has significantly 

improved location coverage and average location error 

compared to centroid algorithm and APIT. The 

coincidence rate of the improved algorithm was 8.16% 

higher than centroid algorithm’s and 4.69% higher than 

that of the APIT algorithm. The maximum error of IGA 

was 19% lower than the centroid algorithm, and the 

overall average error was 8.8% lower. Compared to 

APIT, the maximum error of IGA was 7% lower, and the 

average overall error was 3.8% lower. Under the same 

parameters, TGA, centroid algorithms, APIT algorithms, 

and IGA were used to compare the performance of 

network nodes in computer networks. Experimental data 

were obtained: the fitness value of IGA, the amount of 

anchor nodes and the average error, the communication 

radius and the average error, and the network 

connectivity and the average error were 4.26, 0.68, 2.46, 

and 2.41, respectively. IGA had a significant 

improvement over the calculated values corresponding to 

the three algorithms, which proves the accuracy and 

stability of the improved genetic positioning algorithm. 

 

6  Abbreviated List 

NT: Network Topology 

PSOGA: Particle swarm optimization and genetic 

algorithm 

RLN: Random linear network 

IGA: Genetic Algorithm 

TGA: Traditional Genetic Algorithm 

APIT: Approximate Point In Triangulation Test 
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