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To improve the efficiency and safety of intelligent construction scheduling, this work explores an 

optimization method for construction schedules based on multi-objective optimization (MOO) algorithms. 

This work focuses on the generation and optimization processes of scheduling plans and conducts safety 

assessments and resource efficiency analyses of the generated plans. The proposed optimized model is 

compared with classical MOO algorithms. These algorithms include Multi-Objective Evolutionary 

Algorithm based on Decomposition with Differential Evolution (MOEA/D-DE), Strength Pareto 

Evolutionary Algorithm 2 with Shift-based Density Estimation (SPEA2+SDE), and Non-dominated 

Sorting Genetic Algorithm III (NSGA-III). Based on the experimental results, the proposed optimized 

model outperforms three classic MOO algorithms across multiple key performance indicators. In terms 

of Hypervolume, the value achieved by the proposed model is 0.722, indicating that its solution set covers 

the objective space more effectively, demonstrating stronger diversity and global search capability. 

Furthermore, on the indicators of Generative Distance and Inverse Generative Distance, the proposed 

model attains lower values of 0.008 and 0.061, suggesting that the solution set is closer to the optimal 

front, with higher precision. In addition, the Spacing Metric value of 0.011 further shows that the solution 

set generated by the proposed model is more evenly distributed in the objective space. It avoids excessive 

clustering and enhances the uniformity and adaptability of the solutions. This uniformity is critical in 

practical construction scheduling optimization. This is because, under multiple conflicting objectives, a 

well-distributed solution set provides decision-makers with more options, enabling a better balance 

between safety and resource efficiency. Regarding safety assessment, Plan C has a high score of 4.63, 

indicating that under the optimization of the proposed model, the construction plan can achieve excellent 

performance in resource utilization and provide better safety guarantees. Similarly, Plan D, which 

demonstrates the highest resource efficiency, receives an overall score of 4.72, showcasing its outstanding 

advantages in resource usage and scheduling efficiency. These results validate the proposed model's 

applicability and flexibility under different constraints and objective functions. 

Povzetek: Opisano je inteligentno načrtovanje gradnje z uporabo večkriterijskih optimizacijskih 

algoritmov (MOEA/D-DE, SPEA2+SDE, NSGA-III), ki vključujejo oceno varnosti in učinkovitost virov. 

Eksperimenti potrjujejo izboljšano varnost in učinkovito rabo virov, kar omogoča boljše načrtovanje 

projektov in zmanjšanje tveganj v gradbeništvu. 

 

1 Introduction 
With the rapid advancement of the global 

construction industry, the complexity and scale of 

construction projects are continuously increasing, leading 

to more stringent requirements for construction 

management. Traditional construction scheduling 

methods often face issues such as low resource utilization 

efficiency, inadequate scheduling optimization, and poor 

safety management [1-3]. Intelligent construction 

technology has gradually become a focal point in the 

industry to address these challenges. Based on information 

technology, intelligent construction utilizes the Internet of 

Things (IoT), artificial intelligence (AI), big data, and 

other technological tools to achieve automation and 

intelligence in the construction process, thus improving  

 

construction efficiency and quality [4]. Multi-objective 

optimization (MOO) algorithms, known for their 

advantages in handling complex, nonlinear problems, 

have been extensively applied in intelligent construction 

scheduling. These algorithms can provide optimal 

construction scheduling solutions by balancing different 

objectives under multiple constraints. However, most 

current research focuses on optimizing single objectives 

and lacks comprehensive consideration of safety and 

resource efficiency [5]. In actual construction processes, 

safety issues and resource utilization efficiency are often 

critical factors that cannot be overlooked in decision-

making. Therefore, incorporating safety assessment and 

resource efficiency into construction scheduling 

optimization models holds significant practical and 

theoretical value. 



18 Informatica 49 (2025) 17–28 J. Yu 

Against this backdrop, this work proposes applying 

MOO algorithms to intelligent construction scheduling 

and integrating comprehensive analysis of safety 

assessments and resource efficiency. This method aims to 

provide a more scientific and rational scheduling 

optimization method for construction projects. Adopting 

this method can improve the overall management level of 

construction projects, effectively reduce the occurrence of 

safety incidents, enhance resource utilization efficiency, 

and offer strong support for achieving green construction 

and sustainable development. 

2 Related work 
With the swift development of the global 

construction industry, the complexity and scale of 

construction projects have been increasing. Wang studied 

the design of an intelligent construction system for 

prefabricated buildings based on an improved IoT 

architecture, proposing a system framework capable of 

markedly enhancing construction management efficiency 

and resource utilization. He indicated that integrating IoT 

technology could achieve data collection, transmission, 

and analysis throughout the prefabricated building 

construction process, providing support for real-time 

monitoring and dynamic scheduling on construction sites. 

Thus, it could enable optimal resource allocation and 

safety management in a complex and dynamic 

construction environment [6]. Chen proposed an 

economically intelligent decision-making platform based 

on AI technology, which applied machine learning (ML) 

and data mining techniques to analyze and predict 

economic data in construction projects. The platform 

could provide data support for the decision-making 

processes of construction enterprises, helping them make 

more rational investment and resource allocation 

decisions in the face of resource constraints and budget 

limitations. His research offered a new perspective on cost 

management and risk control in intelligent construction 

[7]. Li focused on dynamic cost estimation in 

reconstruction projects, improving the cost estimation 

model using particle swarm optimization (PSO) 

algorithms. The algorithm could quickly find the optimal 

solution and effectively handle uncertainties in the cost 

estimation process. The results indicated that this method 

could significantly improve the accuracy of cost estimates 

and support the rational allocation of resources, especially 

in construction projects with complex environmental 

constraints [8]. Feng et al. applied Building Information 

Modeling (BIM) technology to the intelligent project 

management of prefabricated buildings, proposing a 

management model that facilitated information sharing 

and process optimization. With the introduction of BIM 

technology, construction teams could track project 

progress in real-time, optimize resource allocation, and 

enhance the visualization and transparency of 

management, thereby reducing costs while improving 

construction efficiency and quality [9]. Wang studied the 

multi-objective task scheduling problem for drones under 

limited onboard resource constraints and proposed a 

scheduling strategy based on edge computing. This 

strategy dynamically adjusted resource allocation and 

optimized task execution sequences during the drone's 

performance of multiple tasks, thus improving task 

efficiency and accuracy. His research provided insights 

into task scheduling and resource optimization in 

intelligent construction, particularly for real-time 

monitoring and material delivery on construction sites 

[10]. Vijaya and Srinivasan found that multi-objective 

metaheuristic techniques could achieve efficient energy 

allocation for virtual machines in cloud data centers, 

thereby effectively enhancing resource utilization and 

energy savings in data centers [11]. Bendiaf et al. 

introduced an innovative task scheduling method using a 

knapsack algorithm for task distribution in heterogeneous 

computing systems, achieving efficient resource 

scheduling and optimization, which enhanced the overall 

system performance [12]. The analysis of related studies 

is detailed in Table 1. 

 

Table 1: Summary of related work 

Author Year Research focus Performance 

indicators 
Security 

assessment 
Resource 

efficiency 
Wang 2024 Design of an intelligent 

construction system for 

prefabricated buildings 

based on an improved 

IoT 

Efficiency and 

resource 

utilization 

during 

construction 

Real-time 

monitoring and 

security through 

IoT integration 

Optimal 

resource 

allocation of 

prefabricated 

buildings 
Chen 2024 Construction and 

application of an 

economically intelligent 

decision-making 

platform based on AI  

Cost 

management, 

risk control, and 

resource 

allocation 

Risk control in 

economic 

decision-making 

Efficient 

resource 

allocation under 

budget 

constraints 

Li 2023 Dynamic cost estimation 

in reconstruction 

projects using PSO 

Accuracy of cost 

estimation and 

resource 

allocation 

Not explicitly 

involved 
Improvement of 

resource 

allocation in 

complex 

environments 
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Feng et al. 2022 The BIM technology-

based intelligent project 

management of 

prefabricated buildings 

Visualization of 

construction 

efficiency, 

quality, and 

management 

Improvement of 

management 

transparency 

Implementation 

of optimal 

resource 

allocation 

through BIM 

Wang 2024 The multi-objective task 

scheduling strategy for 

drones based on edge 

computing 

Task efficiency 

and scheduling 

accuracy 

Not explicitly 

involved 
Efficient 

resource 

utilization in 

drone task 

scheduling 
Vijaya and 

Srinivasan 

2024 Efficient energy 

allocation for virtual 

machines in cloud data 

centers based on multi-

objective metaheuristic 

techniques 

Resource 

utilization 

efficiency and 

energy 

conservation 

Not explicitly 

involved 

Implementation 

of resource 

allocation for 

virtual machines 

with high energy 

efficiency 

Bendiaf et 

al. 

2024 A task scheduling 

optimization in 

heterogeneous 

computing systems 

using a knapsack 

algorithm 

System 

performance 

improvement 

and resource 

scheduling 

efficiency 

Not explicitly 

involved 

Implementation 

of efficient 

scheduling and 

utilization of 

resources 

It can be observed that most existing methods have 

limited adaptability in dynamic construction environments. 

For instance, while many studies focus on optimizing 

resource allocation and scheduling efficiency, they lack a 

real-time response to changing working conditions. 

Intelligent construction requires an optimized model 

capable of dynamically adapting to changes in work 

conditions, enhancing robustness in uncertain 

environments. Although some studies have considered 

safety, many methods have not optimized safety under 

complex environments. For example, while real-time 

monitoring helps with risk control, existing methods do 

not achieve a balance between safety and resource 

efficiency. This work aims to construct a MOO model that 

comprehensively considers both safety and resource 

efficiency to ensure the safety and efficiency of 

construction scheduling. While resource efficiency is a 

focus in many studies, there is still room for improvement 

in optimizing resource allocation during the MOO process. 

Most studies achieve resource optimization in a single 

dimension, whereas the proposed model optimizes under 

multi-dimensional constraints, helping to 

comprehensively improve resource efficiency. 

In summary, by combining MOO algorithms with 

dynamic scheduling strategies, this work achieves 

significant improvements in construction schedule 

optimization over current state-of-the-art (SOTA) 

methods. 

3 Intelligent construction scheduling 

model based on MOO algorithms 

3.1 Intelligent construction scheduling 

Intelligent construction scheduling refers to the use 

of modern information technology, automation 

technology, and intelligent algorithms during construction, 

thus optimizing and managing the allocation, utilization, 

and coordination of construction resources. The goal is to 

improve construction efficiency, reduce costs, and ensure 

project quality and safety [13-15]. As the scale and 

complexity of construction projects have increased, 

traditional scheduling methods are no longer sufficient to 

meet the needs of the modern construction industry. Hence, 

intelligent construction scheduling has become a crucial 

means to enhance the competitiveness of the construction 

sector. 

With the advancement of information technology, the 

construction industry is gradually evolving towards 

intelligent operations. As a critical component of 

construction management, construction scheduling is also 

transitioning from traditional manual management to 

intelligent management [16]. The rise of intelligent 

construction scheduling is attributed to advancements and 

applications in various technologies, as exhibited in Table 

2: 

Table 2: Technologies related to intelligent construction scheduling 

Technology Analysis 

BIM The application of BIM allows for collaborative work across different stages of a 

construction project (design, construction, and operation) within a single digital 

model [17]. Through this model, construction scheduling can achieve real-time 

data sharing and dynamic adjustments, improving the accuracy and efficiency of 

scheduling. 
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IoT IoT technology connects key elements of the construction site, such as equipment, 

materials, and personnel, enabling real-time monitoring and data collection 

throughout the construction process.  

Big Data Analytics By analyzing large volumes of construction data, intelligent scheduling can 

predict potential issues such as resource bottlenecks and schedule delays, 

allowing for preemptive optimization measures. 

AI Through ML algorithms, construction scheduling systems can continuously learn 

and optimize scheduling strategies, enhancing overall construction efficiency 

[18]. 

Automation Technology Utilizing automated devices (such as automated construction machinery and 

drones) makes operations on the construction site more precise and efficient, thus 

improving the execution and reliability of scheduling. 

Intelligent construction scheduling involves multiple 

key elements that work together to ensure both the 

intelligence and efficiency of scheduling. First, there is 

construction resource management, including labor, 

equipment, materials, and funds. Intelligent scheduling 

systems dynamically manage and optimize these 

resources to ensure optimal resource usage during 

construction, reduce waste, and improve utilization rates. 

Next, progress control is managed by real-time monitoring 

of construction progress, combined with historical data 

and predictive analysis to develop reasonable construction 

plans and schedules, ensuring timely project completion 

[19-21]. Besides, quality control is addressed by real-time 

monitoring of critical control points during construction to 

promptly identify and correct quality issues, ensuring that 

project quality meets design requirements. Lastly, safety 

management is vital in construction management. The 

intelligent scheduling system uses real-time site 

monitoring and risk analysis to detect potential safety 

hazards and take preventative measures, ensuring 

construction safety. 

Despite the many advantages of intelligent 

construction scheduling in practice, it also faces 

challenges. For instance, the complexity and uncertainty 

of construction sites require scheduling systems to have 

strong adaptability and responsiveness. Additionally, high 

demands for data collection and analysis on construction 

sites mean that the accuracy and timeliness of data directly 

impact the effectiveness of intelligent scheduling [22]. In 

the future, with the further development of information 

technology and advancements in intelligent algorithms, 

intelligent construction scheduling is expected to become 

more widespread and refined. Particularly with the 

advancement of 5G, AI, and IoT technologies, 

construction scheduling could become more intelligent 

and automated, further enhancing the construction project 

management level and efficiency. Through ongoing 

technological innovation and practical experience 

accumulation, intelligent construction scheduling can 

provide stronger support for developing the construction 

industry [23]. 

3.2 The use of MOO algorithms in 

construction scheduling 

MOO algorithms have significant application value 

in construction scheduling, effectively addressing the 

conflicts among multiple objectives, such as cost, duration, 

quality, and safety. As the complexity of construction 

projects increases, traditional single-objective 

optimization methods are no longer sufficient to meet 

practical needs. MOO algorithms are increasingly 

becoming effective tools for solving complex scheduling 

problems [24-26]. Table 3 illustrates their application 

scenarios. 

Table 3: Application scenarios of MOO algorithms 

Scenario Analysis 

Resource Allocation 

Optimization 

In construction, the efficient allocation of various resources (such as labor, 

equipment, and materials) is key to ensuring the smooth progress of the project. 

MOO algorithms can balance cost, project duration, and resource utilization to 

find the optimal allocation plan. For instance, in a large construction project, 

genetic algorithms can be used to optimize the scheduling and distribution of 

construction equipment, minimizing idle time and rental costs.  

Construction Schedule 

Optimization 

The efficient scheduling of construction progress directly affects the overall 

project duration and cost. MOO algorithms can create the optimal construction 

schedule by simultaneously considering various factors, such as task priorities, 

resource availability, and changes in construction conditions. Particle swarm 

optimization algorithms perform exceptionally well in such scenarios, quickly 

identifying scheduling solutions that meet multiple objectives. 

Balancing Cost and Duration In construction, shortening the project duration often increases costs, while 

reducing costs frequently extends the timeline. MOO algorithms can help 

decision-makers find the optimal balance between cost and duration. For 

example, using Pareto optimal solutions, project managers can obtain a set of 
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different cost and duration combinations and select the one that best fits the 

project's requirements. 

Quality and Safety 

Management 

Quality and safety are two crucial objectives in construction management, often 

requiring optimization within the constraints of cost and schedule. MOO 

algorithms can help develop a construction plan that meets quality and safety 

requirements while controlling costs and timelines. For example, differential 

evolution algorithms can optimize the configuration of construction quality 

control measures, maximizing quality and safety within limited resources. 

Risk Management and 

Emergency Scheduling 

During construction, unforeseen risks and emergencies often impact the original 

schedule. MOO algorithms can be used to develop emergency scheduling plans 

by considering multiple potential risk scenarios, optimizing resource allocation, 

and scheduling to minimize the impact of risks on the project. Ant colony 

optimization algorithms excel in these situations, quickly adapting to changes 

and finding the optimal emergency scheduling solutions. 

As AI technology advances, the application of MOO 

algorithms in construction scheduling becomes more 

extensive and in-depth. With the advancement of big data 

and ML, intelligent algorithms can better understand and 

address complex construction scheduling issues, offering 

more accurate and efficient solutions [27]. 

3.3 Construction of MOO algorithms 

combined with models 

Constructing a MOO model for intelligent 

construction scheduling is crucial for achieving intelligent 

scheduling and optimized management [28]. This model 

integrates multiple key objectives in the construction 

process, such as project duration, cost, quality, and safety, 

to balance these objectives and find the optimal 

scheduling plan. Implementing an efficient MOO model 

requires detailed design and analysis of various aspects, 

including this model's objective functions, constraints, and 

solution algorithms. Figure 1 illustrates the model 

proposed here. 
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Figure 1: The MOO model ((a): The data input and processing layer; (b): The objective function constraint layer; (c): 

The data output layer) 

First, the objective of the model is to minimize the 

construction duration, as shown in equation (1): 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑎𝑥
𝑖∈{1,2,…,𝑁}

 (𝑇𝑖 + 𝐷𝑖)                  (1) 

𝑇𝑡𝑜𝑡𝑎𝑙  represents the minimized construction duration, 

𝑇𝑖  refers to the start time, and 𝐷𝑖  is the duration. 

Subsequently, the minimized total construction cost is 

calculated as equation (2): 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑  𝑁
𝑖=1 (𝐶𝑙𝑎𝑏𝑜𝑟,𝑖 + 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,𝑖 + 𝐶𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡,𝑖)        

(2) 

𝐶𝑡𝑜𝑡𝑎𝑙  represents the minimized total construction 

cost; 𝐶𝑙𝑎𝑏𝑜𝑟,𝑖, 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙,𝑖, and 𝐶𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡,𝑖 denote the labor, 

material, and equipment costs for each operation, 

respectively. 𝑁 means the total quantity of the project. To 

ensure high-quality construction, the model is designed to 

maximize construction quality: 

𝑄𝑡𝑜𝑡𝑎𝑙 = ∑  𝑁
𝑖=1 𝑤𝑖 ⋅ 𝑄𝑖                       (3) 

𝑄𝑡𝑜𝑡𝑎𝑙  represents the maximized construction quality, 

𝑤𝑖  is the weight coefficient, and 𝑄𝑖  refers to the quality 

score. Similarly, maximizing construction safety is also an 

important objective of the model: 

𝑆𝑡𝑜𝑡𝑎𝑙 = ∑  𝑁
𝑖=1 𝑣𝑖 ⋅ 𝑆𝑖                        (4) 

𝑆𝑡𝑜𝑡𝑎𝑙  refers to the maximized construction safety, 𝑣𝑖 
denotes the weight coefficient, and 𝑆𝑖 represents the safety 

score.  

The proposed optimized model architecture consists 

of three layers: the data input and processing layer, the 

objective function constraint layer, and the data output 

layer. These layers work collaboratively to achieve MOO 

in construction scheduling. Firstly, the data input and 

processing layer includes modules for project data 

collection, resource information, construction processes, 

and quality and safety standards. This layer is responsible 

for gathering real-time data and resource information from 

the construction process and performing preprocessing 

through data standardization, data cleaning and 

organization, and feature extraction. These steps ensure 

the accuracy and consistency of the data, providing 

reliable inputs for the subsequent optimization process. 

Secondly, the objective function constraint layer focuses 

on MOO. It optimizes the construction schedule, total cost, 

quality, safety, and resource utilization through the 
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duration objective function, cost objective function, 

quality objective function, safety objective function, and 

resource utilization objective function. This layer also 

includes modules for resource constraints, process priority 

constraints, time window constraints, budget constraints, 

and quality and safety standard constraints, ensuring that 

the generated scheduling solutions meet the project's 

practical needs and construction standards. Finally, the 

data output layer is responsible for executing the 

optimization algorithm and outputting the results. This 

layer encompasses modules for algorithm selection, 

algorithm implementation, hybrid optimization, initial 

solution generation, iterative optimization, and solution 

evaluation and selection. By choosing the appropriate 

optimization algorithms and combining them with hybrid 

optimization methods, this layer continuously generates 

and refines the scheduling solutions. Ultimately, it selects 

the best scheduling plan based on indicators such as safety, 

resource efficiency, and scheduling time. Overall, the 

proposed model achieves efficient, safe, and resource-

optimized construction scheduling through a multi-

layered modular design, offering effective support for 

intelligent construction management projects. 

This framework design ensures that the MOO model 

for intelligent construction scheduling has flexibility, 

scalability, and efficiency, enabling it to handle complex 

scheduling requirements and provide optimized decision 

support. 

4 Performance comparison and 

scheduling results analysis of 

intelligent construction scheduling 

models  

4.1 Experimental results of performance 

comparison for intelligent construction 

scheduling model 

The dataset used for the experiment is the 

Construction Project Management dataset from Kaggle. 

This dataset includes detailed information on various 

construction projects, such as project schedules, resource 

allocation, and cost estimates, and is suitable for analyzing 

resource optimization issues in construction scheduling. 

The dataset can be downloaded from Kaggle's official 

website (https://www.kaggle.com/). The experiments are 

conducted in a high-performance computing environment 

to ensure the MOO algorithm's effectiveness and 

efficiency in intelligent construction scheduling. The 

experiments utilize an Intel Xeon Gold 6248R processor, 

which features 24 physical cores and 48 threads with a 

clock speed of 3.0 GHz, enabling efficient parallel 

computation. To meet the memory demands of the 

algorithm's computations, the system is equipped with 128 

GB of DDR4 RAM, ensuring ample memory resources for 

data processing and algorithm training. For storage, a 2 TB 

NVMe solid-state drive is used to provide fast data read 

and write speeds, further accelerating the overall 

execution efficiency of the experiments. The operating 

system version of the experiment is Ubuntu 20.04 LTS, 

and the programming language and version are Python 3.8. 

The main libraries and versions are as follows: 

1. TensorFlow: 2.5.0 

2. PyTorch: 1.9.0 

3. NumPy: 1.21.0 

4. Pandas: 1.3.0 

5. Matplotlib: 3.4.2 

The model selects Non-dominated Sorting Genetic 

Algorithm II (NSGA-II) as the benchmark algorithm. It 

has a population size of 200, 100 generations, a crossover 

probability of 0.9, a mutation probability of 0.1, and an 

objective function weight of 0.5. The comparison models 

include Multi-Objective Evolutionary Algorithm based on 

Decomposition with Differential Evolution (MOEA/D-

DE), Strength Pareto Evolutionary Algorithm 2 with 

Shift-based Density Estimation (SPEA2+SDE), and Non-

dominated Sorting Genetic Algorithm III (NSGA-III). 

Performance comparison metrics are Hypervolume (HV), 

Generational Distance (GD), Inverted Generational 

Distance (IGD), and Spacing. The experimental results are 

presented in Figure 2. 

https://www.kaggle.com/
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Figure 2: Performance comparison results ((a): HV; (b): GD; (c): IGD; (d): Spacing) 

 

Figure 2 shows that for the HV metric, with a dataset 

size of 1000, the optimized model's HV value is 0.791, 

significantly exceeding the other three models. This 

indicates that the optimized model better covers the 

objective space in smaller datasets. MOEA/D-DE and 

NSGA-III have HV values of 0.637 and 0.686, 

respectively, showing relatively weaker performance, 

while SPEA2+SDE performs slightly better with an HV 

value of 0.710, surpassing MOEA/D-DE. With a dataset 

size of 2000, the HV value of the optimized model is 0.722, 

maintaining a leading position, though its performance 

slightly decreases compared to other dataset sizes. NSGA-

III performs better with an HV value of 0.767, illustrating 

strong adaptability to medium-sized datasets. MOEA/D-

DE's HV value rises to 0.695, while SPEA2+SDE 

decreases to 0.666. When the dataset size reaches 3000, 

the optimized model's HV value reaches 0.817, 

showcasing its advantage with large datasets. NSGA-III 

also performs relatively well with a value of 0.740, while 

MOEA/D-DE and SPEA2+SDE have HV values of 0.666, 

showing no significant advantage. Regarding GD, the 

optimized model performs exceptionally well across 

diverse dataset sizes, particularly with a dataset size of 

2000, where it achieves the smallest GD value of 0.008, 

demonstrating strong convergence. This indicates that the 

solution set generated by the proposed model is very close 

to the true Pareto front across all dataset sizes, exhibiting 

excellent optimization capability. NSGA-III performs best 

when the dataset size is 1000, but its convergence 

decreases with increasing dataset size, particularly with a 

GD value rising to 0.032 when the dataset size reaches 

2000. However, NSGA-III's performance with a dataset 

size of 3000 is similar to the proposed model, indicating 

adaptability to large-scale datasets. MOEA/D-DE's GD 

values are consistently high across all dataset sizes, 

especially reaching 0.049 with a dataset size of 2000, 

demonstrating insufficient convergence performance for 

large-scale data. In contrast, SPEA2+SDE shows stable 

performance, but its GD values are generally higher than 

those of NSGA-III and the optimized model, reflecting 

less favorable convergence compared to both. For IGD, 

with a dataset size of 1000, NSGA-III achieves the best 

IGD value of 0.086, indicating its excellent coverage of 

the true Pareto front. The optimized model's IGD value is 

0.102, slightly higher than NSGA-III, but still shows 

strong coverage capability. SPEA2+SDE has an IGD 

value of 0.160, showing moderate performance, while 

MOEA/D-DE has a relatively high IGD value of 0.187, 

indicating slightly weaker coverage capability. With a 

dataset size of 2000, the optimized model's IGD value 

drops to 0.061, demonstrating outstanding coverage of the 

solution set and significantly surpassing other models. 

SPEA2+SDE's IGD value is 0.116, showing relatively 

good performance, while NSGA-III's IGD value is 0.167, 

indicating a notable decrease in coverage performance. 

MOEA/D-DE's IGD value is 0.245, reflecting the weakest 

coverage capability at this dataset size. For a dataset size 

of 3000, the optimized model's IGD value is 0.118, 

slightly increasing the value for the 2000 dataset, but still 

maintaining strong coverage performance. NSGA-III's 
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IGD value increases to 0.140, showing relatively good 

solution set coverage. SPEA2+SDE's IGD value remains 

at 0.116, consistent with the 2000 dataset size, showing 

stable performance. MOEA/D-DE's IGD value is 0.223, 

still the weakest among all models. In terms of the Spacing 

metric, the optimized model performs the best. In 

particular, with a dataset size of 2000, the Spacing value 

is only 0.011, indicating an extremely uniform distribution 

of solutions in the objective space. This means the 

optimized model generates solutions close to the optimal 

and ensures a good distribution of these solutions in the 

objective space. NSGA-III performs excellently with a 

dataset size of 1000, with a Spacing value of 0.022. 

However, the uniformity of the solution set decreases with 

increasing dataset size, especially with a Spacing value 

rising to 0.055 for a dataset size of 2000, signaling 

instability in distribution uniformity. SPEA2+SDE shows 

stable performance across different dataset sizes, with 

Spacing values between 0.036 and 0.054. Although it does 

not reach the level of NSGA-III or the optimized model, 

its stability demonstrates adaptability across various 

dataset sizes. MOEA/D-DE performs relatively weakly in 

the Spacing metric, particularly with a dataset size of 2000, 

where the Spacing value is 0.078. It displays an uneven 

distribution of solutions, indicating that MOEA/D-DE 

lacks uniformity in the solution set when handling large-

scale data. 

4.2 Safety assessment and resource efficiency 

analysis 

In optimizing intelligent construction scheduling, safety 

assessment and resource efficiency analysis are crucial for 

assessing the quality of scheduling plans. By evaluating 

the safety and resource utilization efficiency of the 

generated scheduling plans, it is possible to ensure that 

construction projects operate efficiently under safety 

regulations, maximize resource utilization, and reduce 

potential risks. Safety assessment is a key step in 

construction scheduling, aimed at effectively preventing 

and controlling various potential safety risks during 

execution. To this end, this work employs a 

comprehensive evaluation system that integrates multiple 

safety indicators for a thorough assessment. Table 4 

presents the details. 

Table 4: The safety indicator system 

Indicator Description 

Accident Rate It evaluates the frequency of safety 

incidents occurring during 

construction, typically calculated 

per 1,000 work hours. 

Safety Distance It measures the minimum distance 

between construction site 

personnel and hazard sources. 

Personnel 

Protective 

Measures 

It checks whether all construction 

personnel are equipped with 

necessary protective gear (such as 

helmets and safety belts). 

Equipment 

Operation 

Safety 

It assesses the stability of 

construction equipment under 

different operating conditions to 

prevent equipment failure or 

accidents. 

 

A safety risk analysis model based on the fuzzy 

comprehensive evaluation method is established to assess 

the scheduling plans quantitatively. By scoring each safety 

indicator (from 1 to 5) and combining expert weight 

analysis, a comprehensive safety score is calculated for 

each scheduling plan. The fuzzy comprehensive 

evaluation method-based safety risk analysis model 

quantitatively evaluates the scheduling plans. Figure 3 

presents the experimental results. 
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Figure 3: Safety assessment and resource efficiency analysis ((a): Safety assessment; (b): Resource efficiency) 

According to the safety assessment scores, Plan C has 

the highest overall safety score of 4.63, indicating that it 

performs best in safety. Its safety indicators are all rated 

highly, particularly in personnel protective measures and 

equipment operation safety. This suggests that Plan C can 

effectively reduce safety risks on the construction site and 
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ensure smooth project implementation. In contrast, Plan D 

has the lowest safety score of 4.38, illustrating 

deficiencies in some critical safety indicators. Moreover, 

Plan D has the highest overall resource efficiency score of 

4.72, demonstrating high resource utilization, low conflict 

rate, and reasonable resource consumption. Plan D excels 

particularly in the key indicators of resource utilization 

and conflict rate, implying that it achieves optimal 

configuration and maximizes construction efficiency 

under limited resources. Plan B follows closely with a 

resource efficiency score of 4.67, while Plans A and C 

score slightly lower at 4.53 and 4.46, respectively. 

The analysis indicates that while Plan C excels in 

safety, it is slightly inferior to Plan D in resource 

efficiency. This suggests that a balance between safety and 

resource efficiency may be necessary in practical 

construction scheduling, and the most suitable scheduling 

plan should be chosen based on the specific project needs. 

The final scheduling decision should integrate safety 

assessment with resource efficiency to ensure smooth 

project progress and effective resource utilization. 

5 Discussion 
This work primarily analyzes the performance 

differences of the optimized model under varying dataset 

sizes. First, NSGA-III performs quite well on large 

datasets but shows weaker adaptability on smaller datasets. 

This phenomenon may be related to NSGA-III's strategy 

for managing the diversity of the solution set, as the 

algorithm relies on reference points to ensure the uniform 

distribution of solutions. However, on smaller datasets, 

the reference point configuration may cause sparse 

solution distributions, thereby affecting the optimization 

results. As the dataset size increases, the increased number 

of reference points helps the algorithm better capture the 

multi-dimensional objective space, resulting in stronger 

adaptability on large datasets. Nevertheless, the 

suboptimal performance on smaller datasets highlights its 

sensitivity to dataset size, particularly in scenarios 

requiring finer granularity control. In contrast, the 

proposed optimization model demonstrates strong 

robustness across all dataset sizes, especially showing an 

advantage in the Spacing metric. The Spacing metric 

reflects the uniformity of the solution set's distribution in 

the objective space; The proposed model ensures a 

balanced distribution of solutions across different 

dimensions through the design of the objective function 

and iterative strategies. This uniformity enhances solution 

diversity and enables decision-makers to select solutions 

suited to various contexts from a multi-dimensional 

solution set, further showcasing the model's robustness. 

Regarding safety assessment, although this work 

provides a detailed analysis of safety scores, these scores 

should be understood in terms of their practical impact on 

construction. Higher safety scores indicate that the 

solutions are more effective at reducing safety incidents 

during construction and meeting the high standards for 

personnel and equipment protection in construction 

projects. This satisfies industry safety standards and helps 

reduce the risk of project delays due to accidents, ensuring 

timely project delivery. Furthermore, solutions with high 

resource efficiency are of significant practical value in 

construction projects. High resource efficiency means that 

the project has been more rationally planned in terms of 

resource allocation, reducing material and equipment 

waste. Hence, it directly contributes to lowering the total 

cost of the project and improving construction progress. 

This efficient use of resources is critical in projects with 

tight budgets or limited resources, as it ensures 

compliance with project deadlines while minimizing 

environmental impact, and aligning with sustainable 

development goals.  

Overall, through its high scores in safety and resource 

efficiency, the proposed model's practical application 

value in real-world construction scenarios has been further 

validated. The model's robustness and multi-scenario 

applicability highlight its potential in the intelligent 

construction field, particularly in complex construction 

projects that require a balance between safety and resource 

optimization, demonstrating its strong practical utility. 

6 Conclusion 
This work systematically investigates intelligent 

construction scheduling using MOO algorithms, to 

generate optimal scheduling plans that balance safety and 

resource efficiency. A new optimization model is 

proposed, validated, and compared with classical MOO 

algorithms such as NSGA-III, MOEA/D-DE, and 

SPEA2+SDE. The proposed model demonstrates 

significant advantages in MOO problems. Comparative 

analysis of experimental data reveals that the model 

consistently outperforms the comparison models on key 

indicators such as HV, GD, IGD, and S, particularly when 

dealing with larger datasets. This indicates that the 

proposed model can better balance the conflicts between 

various objective functions and generate higher-quality 

solution sets while ensuring the scheduling plan meets 

MOO requirements. This work confirms that safety and 

resource efficiency are interdependent yet indispensable 

factors in practical construction scheduling through safety 

assessment and resource efficiency analysis of the 

generated scheduling plans. The assessment methods and 

the proposed models effectively balance these factors, 

providing a scientific basis for construction management. 

This comprehensive approach not only enhances the 

feasibility and rationality of the scheduling plans but also 

offers valuable insights for future intelligent construction 

management practices. 

The optimized model proposed in this work performs 

excellently under specific data volumes and static 

construction environments but still exhibits certain 

limitations in dynamic adaptability. Specifically, the 

model's applicability may be limited in dynamic scenarios, 

such as fluctuations in resource availability or 

construction delays. This work does not test the model in 

dynamic construction environments. However, future 

research could validate its real-time adaptability through 

case studies or hypothetical scenarios, such as how it 

handles scheduling adjustments due to resource shortages 

or unexpected events. The model's ability to respond in 
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real-time to changes in the construction environment 

remains an area for further research. Additionally, the 

model faces high computational complexity when 

handling large-scale datasets or high-dimensional multi-

objective problems, potentially resulting in slower 

convergence and impacting real-time performance in 

practical applications. This limitation suggests that in 

high-computation-demand scenarios, the model may 

encounter computational constraints. It indicates that 

future research should focus on simplifying the 

computational steps without compromising the quality of 

the solution set to enhance the model's practical usability. 

To address these limitations, future research could focus 

on enhancing the model's dynamic adaptability and 

computational efficiency. For example, dynamic 

scheduling algorithms or adaptive optimization 

mechanisms could be introduced to improve the model's 

responsiveness to resource changes and unexpected events. 

Furthermore, integrating other optimization techniques, 

such as metaheuristic algorithms, distributed computing, 

and parallel computing, could help reduce computational 

time and accelerate convergence. Additionally, future 

work could explore applying the model to more complex, 

large-scale construction scenarios to test its applicability 

and robustness in different environments, thus enhancing 

its practical value in the intelligent construction field. 
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