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Since the discovery of RNA Interference (RNAi), a cellular phenomenon in which a small double 

stranded RNA induces the degradation of its sequence specific target mRNA,  using a computer-aided 

software tool to help design functional small interfering RNA (siRNA) or small hairpin RNA (shRNA) 

has become a standard procedure in applying RNAi to silence a target gene. A critical consideration in 

siRNA design is to avoid any possible off-target effect, i.e. to avoid sequence homology with untargeted 

genes.  Though BLAST is the most powerful sequence alignment tool, it can overlook some significant 

homologies. Therefore, Smith-Waterman algorithm is the only approach that can guarantee to find all 

possible mismatch alignments that may cause off-target effect. However, Smith-Waterman alignment 

suffers from its inefficiency in searching through a large sequence database. A two-phase search 

algorithm was previously reported in which the first phase is used to identify local regions where the 

second phase, a bona fide Smith-Waterman alignment, is absolutely needed. Though such a two-phase 

homology search can improve the efficiency up to two orders of magnitude over the original Smith-

Waterman alignment algorithm, it is still not efficient enough to be used alone for siRNA off-target 

homology search over a large sequence database. In this paper, we propose several improvements that 

dramatically speed up the reported two-phase algorithm while still guaranteeing the complete 

identification of siRNA off-target homologies.  

Povzetek: V prispevku je predstavljena računalniška metoda za utišanje ciljnega gena. 

1 Introduction
RNA interference (RNAi) is a cellular mechanism in 

which a small double stranded RNA induces the 

degradation of its sequence specific target mRNA, thus 

silencing the function of the target gene. Since its 

discovery, RNAi has become a powerful technique to 

knock out/down the expression of target genes for gene 

function studies in various organisms [3,5,16]. To 

employ this technique, the first step is to design target-

specific small interference RNA (siRNA) or small 

hairpin RNA (shRNA) that is homologous to the target 

mRNA. Because of the predictability of RNAi based on 

its matching target sequence [2, 5, 7, 9–11, 14, 15, 19, 

22, 25, 26], quite a few studies have been devoted to 

computer-guided algorithms to design effective siRNA 

or shRNA (from here on, this article will only refer to 

siRNA for simplicity) [4, 6, 12, 15, 20, 25, 26].  

However, a critical requirement in siRNA design is to 

guarantee that the designed siRNA is free of off-target 

effect. Although the actual mechanism of off-target 

effect is still unknown, it has been demonstrated that a 

partial sequence homology between siRNA and its 

unintended targets is one of the major contributing 

factors [8,18,21]. It has been suggested that if an 

introduced siRNA has less than 3 mismatches with an 

unintended mRNA, it would likely knock down the 

expression of this mRNA in addition to its intended 

target which shares 100% sequence homology with this 

siRNA [11,15]. Unsurprisingly, the Basic Local 

Alignment Search Tool (BLAST) has been used to 

identify possible unintended homologous regions for 

siRNA candidates [1,13,17]. BLAST, although extremely 

fast, is not the best algorithm designed for this type of 

task since it overlooks significant sequence homologies 

[15,24,27]. As an alternative, Smith-Waterman alignment 

algorithm has been employed together with BLAST by 
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some design tools to identify all possible off-target 

sequences [15,27].  

  Smith-Waterman algorithm utilizes a dynamic 

programming approach to identify the local optimal 

alignment between two sequences [23]. It guarantees to 

locate the existing optimal alignment based on a scoring 

system with a set of scores assigned to a match, a 

substitution, a deletion, and an insertion. Given two 

sequences with length of m and n, the computational 

complexity of Smith-Waterman algorithm is O(mn). 

Since the off-target search for siRNA sequences must be 

conducted completely through a given sequence database 

(which is usually large), the Smith-Waterman algorithm 

alone becomes very time-consuming and impractical for 

this task. Thus we once developed a two-phase homology 

search algorithm for siRNA off-target detection [29]. In 

this two-phase algorithm, the phase 1 procedure is used 

to identify the local regions where an off-target 

homology is possible to exist. Upon finding such local 

regions, the phase 2 procedure, a bona fide Smith-

Waterman alignment algorithm, is used to determine if 

this local region has homology with the given siRNA 

sequence to cause off-target effect. This two-phase 

algorithm can be explained as the following.  

  For a siRNA of length m, an off-target homology is 

defined as a sequence that has less than x mismatches 

(i.e. mismatch cut-off equals x) when aligned against the 

siRNA (a mismatch is defined to be either a substitution, 

a deletion or an insertion hereafter). Thus, after the 

siRNA sequence is divided into x mutually disjointed and 

equal substrings (as equal as possible), at least one 

substring must have a perfect match with the off-target 

region. For the remainder of this paper, let’s assume 

m=21 and x=3 unless stated otherwise. Under this 

condition, an off-target homology can only have a 

maximum of two mismatches, i.e., 0, 1, or 2 mismatches. 

When there are a maximum of two mismatches, no 

matter where the possible two mismatches are, at least 

one third of the siRNA sequence must have an exact 

match with the homological region. This concept is 

shown in Figure 1 which explains the case when the 

middle substring has the exact match. 

Since all the possible off-target homological regions 

bear a substring of length 7 that has an exact match with 

the siRNA sequence, it is reasonable to perform the 

Smith-Waterman alignment only on the regions that have 

an exact match with at least one substring of the siRNA 

sequence. Thus, the first phase in the two-phase 

algorithm is designed to identify the potential regions 

with which at least one of the substrings of the siRNA 

sequence has an exact match. Only when such a potential 

region is identified, the second phase calls for the Smith-

Waterman procedure to evaluate the best alignment 

between the potential region and the siRNA sequence. 

This algorithm does not construct any lookup table from 

the whole genome sequences, though it significantly 

improves the searching efficiency by guiding the most 

time-consuming core Smith-Waterman alignment on the 

local regions that need to be further examined.  

Though the two-phase algorithm was shown to have 

efficiency gain of up to two orders of magnitude 

compared to the original Smith-Waterman algorithm 

alone [29], it is still not efficient enough to be applied 

alone for off-target homology search for a large number 

of siRNA sequences, such as the whole-genome siRNA 

design and off-target detection. For whole-genome 

siRNA design and off-target search, this two-phase 

algorithm must be applied with BLAST being the initial 

screening tool. In this paper, we present several 

significant improvements over both the phase 1 and the 

phase 2 procedures. These improvements dramatically 

speed up the original two-phase algorithm and make it 

able to complete off-target homology detection by itself 

alone for whole genome siRNA design.   

2 Materials  
The computer used in this study is a Dell notebook 

computer with Intel Core(TM) i5-2410M CPU. The 

maximum CPU speed is 2.30GHz. Installed RAM is 8.00 

GB with 7.88 GB usable. The operating system is 

Windows 7 Enterprise (64 bit). The programming 

language used is Java. 

The genome sequence database used in this study is 

NCBI human mRNA RefSeq gene database 

(human.rna.fna) downloaded on December 9, 2013. It 

has 68822 non-redundant sequences for mRNA/protein 

genes with average length of 3452 nucleotides. 

The 1000 sample siRNA sequences used in this 

study were generated as the following: after 100 genes 

were randomly selected from the NCBI human mRNA 

RegSeq database, 10 siRNA were generated randomly 

from each gene using a computer-aided siRNA design 

tool [27]. All the siRNA sequences are of length 21 

nucleotides (21-nt). One reason to select the length 21 is 

 
Figure 1: When there are 2 mismatches between the 

siRNA sequence (S) and the off-target region (R), at 

least one of the three substrings of S has the exact 

match with R. The vertical bars mark the substitutions, 

the arrows mark the deletion and/or insertion in R, and 

the shaded substrings have the exact match. When the 

substring in the middle of S has an exact match, the 

off-target region must be such a region in R that 

extends from the matched substring to both left and 

right enough base pairs to completely cover the siRNA 

sequence. 
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that 21-nt siRNA is the most commonly used siRNA in 

RNAi applications and the naturally occurring endo-

siRNA is of 21-nt [30,31]. 

3 Improvements on phase 1 
In the original two-phase algorithm, the phase 1 is nearly 

as five times time-consuming as the phase 2. This is 

shown in Table 1.  

Table 1: The time cost (in seconds) analysis of the two-

phase algorithm.  

# of siRNA 
Time Cost (seconds) 

Phase-1 Phase-2 

Phase-2 

0.75 

80.51 

1.25 

160.53 

3.09 

404.06 

5.96 

798.10 

100 388.49 80.51 

200 777.04 160.53 

500 1938.97 404.02 

1000 3866.47 798.10 

The result in Table 1 is obtained by conducting off-

target homology search through the whole human mRNA 

RefSeq gene database using the sample set of the 1000 

21-nt siRNA. As the phase 1 is much more inefficient 

than the phase 2, our first improvement is on the phase 1.  

The original two-phase algorithm used the Java’s 

built-in string match algorithm, which is a character-by-

charter brutal force algorithm. This algorithm has been 

shown to be inefficient in English text match. However, 

our experiment result shows that this brutal force 

algorithm performed equally efficient compared with 

both the Knuth-Morris-Pratt (KMP) algorithm and the 

Boyer-Moore algorithm in the siRNA off-target 

homology search. This is in fact unsurprising. There are 

only four different nucleotides in both DNA and RNA 

sequences, thus repeated sequences can occur frequently. 

The repeating sequences prohibit the skip-distance in 

both KMP and Boyer-Moore algorithms from growing, 

making them unable to achieve the desired efficiency 

gain. 

The fact that there are only four different nucleotides 

in DNA sequences (let’s use DNA as the example as the 

RefSeq database is for DNA) inspired us to develop a 

base-4 integer number system to represent DNA 

sequences. For example, let’s define A=0, C=1, G=2 and 

T=3, then any nucleotide can be represented by a base-4 

digit 0, 1, 2 or 3. Though the original two-phase 

algorithm works with siRNA of different lengths, in this 

study, siRNA of length 21 is used as the working sample. 

The reason is that 21-nt siRNA is the most commonly 

used and the naturally occurring endo-siRNA is of 21-nt 

[30,31]. In the NCBI probe database which contains 

thousands of siRNA sequences submitted by different 

researchers or companies, about 60% of these siRNA 

sequences are of length 21. However, please note that the 

concepts introduced in this study work for siRNA of 

different lengths. A 21-nt siRNA can be divided into 

three substrings each of size 7-nt. With the base-4 

number system, any 7-nt can be represented by 7 digits, 

which is a base-10 integer between 0 and 16383 

inclusively (please observe that 47 = 16384). This means 

that a siRNA sequence can be represented by three base-

4 integers each for a 7-nt subsequence. For example, a 

siRNA sequence of GCUGCAUCAACACAUGGAGCA 

is divided to three mutually disjointed 7-nt substrings 

GCUGCAU, CAACACA, UGGAGCA, which are 

represented as three integers 10131, 4164, and 14884 

respectively. However, a DNA gene sequence of length 

M nucleotides must be represented by M-7+1 integers. 

This is because the homology search against the gene 

sequence is contiguous, shifting a nucleotide at a time. 

For example, AGCTATCCG is represented as an integer 

array of {2509, 10037, 7382}. 

In the next experiment, we pre-processed the mRNA 

RefSeq database to convert every gene sequence into an 

array of integers. With this conversion, the phase 1 string 

match procedure becomes integer equivalence checking. 

It is not surprising to observe that the phase 1 procedure 

is significantly improved by representing the sequences 

as integers. The result is shown in Table 2.  

Table 2: The time cost comparison between the original 

phase 1 and the modified phase 1 in which character by 

character comparison is transformed into integer 

comparison. (o): original Phase 1. (n): the new Phase 1 

using integer comparison. 

# of siRNA 
Time Cost (seconds) 

Phase1 (o) Phase1 (n) Phase2 

100 388.49 164.20 80.51 

200 777.04 345.81 160.53 

500 1938.97 842.18 404.02 

1000 3866.47 1760.54 798.10 

Table 2 demonstrates that by using a base-4 integer 

system to represent the DNA nucleotides and thus 

transforming the string match process into an integer 

comparison process, the time cost of the original phase 1 

can be cut down by more than 50%. The overall 

efficiency gain of the whole process is about 45%. 

Though the above experimental result is positive, the 

improvement is not significant enough. It is clear that 

dynamically searching for the exact match of a substring 

is always time-consuming. This motivated us to build a 

database to index the locations where each siRNA 7-nt 

substring has an exact match with the DNA gene 

sequences.   

In the RefSeq database, there are 68822 non-

redundant gene sequences with an average length of 

3452 nucleotides. If we assume that all the four 

nucleotides have an equal chance to appear through the 

whole sequence database, then any a 7-nt subsequence 

has 1/16384 chance to appear, i.e. can show up about 

14500 times in the whole gene database. To build the 

location-indexed database, we generated all the 

permutations (total 16384) of 7-nt, found the locations of 

each 7-nt in the RefSeq database and stored their location 

information in the location-indexed database. By using 

this location-indexed database, the phase 1 search 

process is no longer dynamic. Whenever a siRNA 7-nt 

substring needs to locate its exact matched regions inside 

the RefSeq gene database, using the integer 
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representation of the 7-nt substring as the primary key, 

such needed information is directly provided through this 

database. Via using such a database, the efficiency of the 

phase 1 is greatly improved. The result is shown in 

Table 3. 

Table 3: By using a database to store the locations where 

each 7-nt substring has an exact match in the RefSeq 

gene sequence database, the phase 1 process is 

dramatically accelerated. Time-cost values are in 

seconds. (o): original Phase 1. (n): the new Phase 1 

through the location-indexed database. 

# of siRNA 
Time Cost (seconds) 

Phase-1 (o) Phase-1 (n) Phase-2 

100 388.49 0.75 80.51 

200 777.04 1.25 160.53 

500 1938.97 3.09 404.06 

1000 3866.47 5.96 798.10 

Table 3 demonstrates that removing the dynamic 

searching process via a pre-built location-indexed 

database, the phase 1 process is speeded up by about 600 

fold. Table 3 also shows that the phase 2 becomes now 

the bottleneck in the two-phase algorithm. 

Because the phase 2 is now much slower than the 

phase 1 after using the pre-built database, the overall 

efficiency gain of the modified two-phase algorithm is 

only about 5 fold. The challenge becomes now, how to 

improve the phase 2. 

4 Improvements on phase 2   
The original phase 2 is a bona fide Smith-Waterman 

alignment algorithm. As the phase 1 is used to reduce the 

probability of using Smith-Waterman alignment in phase 

2, we then tried to further reduce the use of the phase two 

operation by adding a pre-phase right before the original 

phase 2. This pre-phase serves as a filter to further 

remove unnecessary Smith-Waterman alignment.  

The pre-phase dictates that only when the following 

two conditions are both met, Smith-Waterman alignment 

is needed. 

Precondition: A 21-nt siRNA sequence (S) is 

equally divided into three mutually disjointed 7-nt 

substrings, S0, S1, and S3. When S0 finds an exact 

match with a substring R0 in region (R), the two other 

substrings of R would be R1 and R2, each corresponding 

to S1 and S2 separately.  

Condition 1: Divide S1 from the middle to generate 

two sub-substrings. One is 3-nt, and the other is 4-nt. 

Repeat the dividing for S2. For each of the two 

corresponding substrings R1 and R2, extend one 

nucleotide to the direction away from R0 so that both R1 

and R2 are of 8-nt. Check if R1 contains (the position 

does not need to match) either of the two sub-substrings 

of S1. Repeat the checking for R2. It must be true that 

the total number of sub-substrings contained in R1 and 

R2 is no less than 2. 

Condition 2: Divide S1 as equally as possible to 

generate three mutually disjointed sub-substrings. One is 

2-nt, one is 3-nt, and the last is 2-nt. Repeat the dividing 

with S2. For R1 and R2, extend two nucleotides to the 

direction away from R0 so that both R1 and R2 are of 9-

nt. Check if R1 contains (the position does not need to 

match) any of the sub-substrings of S1, and repeat the 

checking for R2. It must be true that the total number of 

sub-substrings contained in R1 and R2 is no less than 4. 

Figure 2 illustrates the condition 1. 

 
Figure 2: The Condition 1 in the case when the middle 

substring of siRNA finds an exact match in a region. In 

condition 1, there are always at least two sub-substrings 

of S that are contained inside R. Gray-shaded regions 

have the exact match. Arrows without a letter aside mark 

the insertion in R, and arrows with a letter aside mark the 

deletion (the letter indicates the deleted nucleotide in R). 

Yellow-shaded regions mark the sub-substrings of S 

contained in R. 

  

The Condition 2 is depicted in Figure 3. 

The first critical understanding of both Condition 1 

and 2 is that when either S1 or S2 is divided into multiple 

sub-substrings, one mismatch, no matter what type it is, 

can only occur inside one sub-substring. Thus, in 

Condition 1, when there are four sub-substrings, at most 

two sub-substrings can be changed while at least two 

others are intact. Though a deletion or insertion can 

switch the positions of the sub-substrings, their content 

are not changed if the insertion/deletion are not inside the 

sub-substrings. A similar idea applies to Condition 2. 

The second critical understanding of Condition 1 is 

that we need only to extend one nucleotide to the 

direction away from R0 so that both R1 and R2 are of 8-

nt. The question raised here is that when R1 has two 

insertions, theoretically we need to extend two 

nucleotides so that R1 can fully cover S1. However, if 

R1 bears two insertions, given a homology between R 

and S, then S2 and R2 must be an exact match. Thus, 

there must be two sub-substrings of S2 that are contained 
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inside R2. It is then unnecessary to extend two 

nucleotides for R1 anymore. The similar idea can explain 

why it is necessary to extend only two nucleotides for 

both R1 and R2 in Condition 2. 

 
Figure 3: The Condition 2 in the case when the middle 

substring of siRNA finds an exact match in a region. In 

condition 2, there are always at least four sub-substrings 

of S that are contained inside R. Gray-shaded regions 

have the exact match. Arrows without a letter aside mark 

the insertion in R, and arrows with a letter aside mark the 

deletion (the letter indicates the deleted nucleotide in R). 

Yellow-shaded regions mark the sub-substrings of S 

contained in R. 

 

With the pre-phase, the use of Smith-Waterman 

alignment is largely reduced and therefore the phase 2 is 

dramatically speeded up. The result is presented in 

Table 4.  

Table 4: The pre-phase helps improve the efficiency of 

the phase 2 by more than 30 fold. (o) the old phase; (n) 

the new phase. 

# of siRNA 
Time Cost (seconds) 

Phase1 (n) Phase2 (o) Phase2 (n) 

100 0.75 80.51 2.60 

200 1.25 160.53 49.46 

500 3.09 404.06 12.68 

1000 5.96 798.10 24.81 

5 Discussion 
The drawback of the phase 1 improvement is the 

necessity of building a database. Roughly speaking, for 

the 16384 different 7-nt substrings, there would be about 

16384 x 14500 = 239018000 integers to store in the 

database, with each integer marking a position inside a 

gene for a 7-nt subsequence. In addition, there is other 

necessary information to store, such as the information of 

each gene. Depending on the implementation, the 

database size can be greater than or less than 1 Gb.   

The pre-phase for phase 2 further reduces the use of 

Smith-Waterman alignment by mandating the 

satisfaction to both Condition 1 and Condition 2. Overall, 

the modified two-phase algorithm is 150 times more 

efficient than the original one. However, if only 

enforcing the satisfaction of one of the two conditions in 

the pre-phase, the improvement on efficiency is much 

less. By enforcing Condition 1 alone, the efficiency 

improvement on phase 2 is about 27 fold, while the 

efficiency improvement over the original phase 2 is only 

11 fold if enforcing Condition 2 alone.  

With the 1000 siRNA samples, there are 56402965 

match hits in phase 1, indicating 56402965 alignment 

checking using Smith-Waterman algorithm in the 

original two-phase algorithm. However, there are only 

399962 hits for the pre-phase. This shows that the pre-

phase reduces the uses of Smith-Waterman alignment for 

about 140 fold. Among the 399962 hits, only 21444 of 

them were found to have true homology by Smith-

Waterman alignment. This suggests that there might be 

additional approaches that can further improve the phase 

2 efficiency. 

Without considering the insertions or deletions, i.e. 

when only considering the case of substitutions, Smith-

Waterman alignment is not necessary for the off-target 

homology detection. After the phase 1, for a homology 

with a maximum of two substitutions, the other two sub-

strings in both siRNA and the searching region must 

have nearly exact matches with less than 3 substitutions. 

This is shown in Figure 4. 

 
Figure 4: The case when only consider the substitutions 

in homology check. Gray-shaded regions indicate the 

exact match. Vertical bars mark the substitutions.  

 

Since the substitutions do not change the positions of 

nucleotides, a check for the string matching on the two 

pairs of substrings can be quickly performed. The 
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experiment results show that it took only 4.00 seconds to 

complete the phase 2 for 1000 siRNA sequences. In 

addition, the experiment results disclose that there are 

only 21364 homologies found with only substitutions. 

Therefore, only 80 homologies identified for the 1000 

siRNA sequences involve either deletions or insertions, a 

very small portion of the total number of off-target 

homologies (0.373%).  

6 Conclusion 
In the siRNA design, designing functional siRNA 

sequences is a relatively fast process, while the off-target 

evaluation is much more time consuming. Using the 

siRNA design tool [27], the time cost to design 

functional siRNA for all the 68822 human mRNA 

RefSeq non-redundant genes (an average of 33 siRNA 

for each gene) is about 400 seconds. With the improved 

two-phase algorithm (considering deletions and 

insertions), the time cost to completely check the off-

target homology for all the designed siRNA sequences is 

estimated to be about 19.41 hours, which is acceptable 

for a process on the whole genome. Thus, after the 

improvements presented in this paper, the modified two-

phase homology search algorithm can complete any off-

target checking for functional siRNA design, without the 

initial use of BLAST. 
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