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The widespread occurrence of fractures in roads globally threaten traffic safety and demand 

substantial annual maintenance costs. Expenses can be substantially reduced by detecting     fractures 

promptly, however manual methods are less rapid and inaccurate. Although automatic crack detection 

offers efficiency, but challenges like low contrast and background noise in pictures can impact its 

accuracy. To address these obstacles, this study proposes a potent Fuzzy C-Means clustering technique 

to enhance automated fracture detection. This approach employs pixel augmentation through a scaling 

factor to improve pixel details by examining the ratios from individual to cumulative values. 

Additionally, it considers the sum of the total ratio value and the minimum-to-maximum intensity within 

a 3x3 window, prior to segmentation. Moreover, the method identifies intrinsic pixel connections 

through absolute intensity differences, supporting crack detection. It also effectively detects cracks 

from unfamiliar images across diverse scenarios, without the need for a training dataset. According to 

experimental results, an enhanced Fuzzy C-Means Clustering approach for road crack detection, 

achieving superior precision, recall, and F1 scores (86.68, 88.53, 87.59) compared to K-Means 

Clustering (76.82,78.05,77.43), Fuzzy C-Means Clustering (79.76,80.72,80.23), and Manhattan 

distance based fuzzy C-Means clustering (84.09, 86.14,85.10). Additionally, it also reduces iteration 

counts, ensuring computational efficiency. These results validate its robustness and effectiveness, 

making it a promising solution for automated road crack detection systems. 

Povzetek: Predlagan je nov okvir gručenja Fuzzy C-Means (FCM) za natančno zaznavanje razpok na 

cestah, ki vključuje povečanje slikovnih pik in značilnosti razlike v intenzivnosti. Ta pristop izboljšuje 

podrobnosti slikovnih pik z uporabo faktorja skaliranja in upošteva razliko v intenzivnosti med 

slikovnimi pikami. Predlagana metoda učinkovito zazna razpoke na različnih cestnih slikah brez 

potrebe po učnem naboru podatkov in dosega boljšo natančnost v primerjavi s tradicionalnimi 

metodami gručenja. 

 

1 Introduction 

Cracks impair the operation of roads and are often 

caused by decades of age, terrain or topographical 

conditions, and excessive traffic. Hence, it becomes 

imperative to acquiring precise statistics on road 

fractures [1], which can be accomplished using either 

hand-executed or automated process. The process of 

manually recognising fractures is tedious and prone to 

errors. It is therefore essential to proliferate automatic 

fracture recognising protocols. These automated 

methods provide crack information more quickly and 

precisely [2][3][4]. In addition, these automated 

methods may also be utilised to find fractures in a range 

of infrastructure such as hills, underground 

passageways, reservoirs, and Viaducts [1].  Therefore, 

to develop an algorithm for automatic road crack 

detection from images, a comprehensive understanding 

of how to identify road fractures in photographs is vital.  

The crack detecting technique is representing 

in Figure 1 (road image taken from self-collected 

dataset). To initiate this approach, take photographs of 

the road portions where fractures are expected to be 

discovered with a camera or similar instrument [2]. Pre-

processing should then be applied to the captured 

photos. The goal of pre-processing is to get rid of any 

unwanted components from the photographs that can 

degrade their quality. These artifacts can be eliminated, 

allowing for speedy and effective further processing of 

the image. The image must be converted to grayscale as 

one of the basic pre-processing stages. After this 

conversion is finished, a variety of filtering methods can 

be used to successfully remove unnecessary pixels. 

After the pre-processing phase, segmentation is applied 

to the images. In order to extract the precise features of 

interest from the raw photos, image segmentation is a 

vital step. There are many picture segmentation methods 

that are effective in separating regions with the same 

pixel characteristics [5]. Thus, clustering is found to be 

the best technique for separating comparable pixels 

from raw images that indicate the existence of specific 

traits of interest [5][6].  
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Therefore, the utilization of clustering 

techniques, such as K-means clustering (KMC) 

approach [7][8], the fuzzy C-means clustering (FCMC) 

method [9][4], Manhattan distance based fuzzy C-

Means clustering (MHFCM) algorithm [10] will enable 

the extraction of road crack patterns from images, as 

further elucidated in Section II. 

Therefore, based on the insights gained from 

these studies, the primary objective of the proposed 

approach is to develop an innovative and robust FCM 

clustering (PIEFCMC) approach that can autonomously 

identify fractures.  

 

 
 

Figure 1. Architecture for road cracks identification 

utilizing the Image processing Techniques 

 

This is accomplished through the pixel 

augmentation in 3×3 window and absolute intensity 

difference between maximum and minimum pixel 

values which enabling the detection of cracks even in 

images with low contrast. The suggested approach has 

been evaluated on a diverse range of road crack photos 

supplied from a self-compiled dataset. This method’s 

key contributions are as follows:  

 

1) The 2-D road pictures data have been processed 

into 3×3 window (�̃�𝑑(3×3)) and it spans on the 

entire picture. 

2) The pixel augmentation (Ҏ𝑎𝑢𝑔) technique has been 

applying on each window.  It utilizes each 

individual pixel by considering the sum of all 

values of its neighboring pixels with in �̃�𝑑(3×3).  

3) In instances where the original pixel values are 

minimal or approaching zero, the utilization of the 

total ratio value (𝜗�̃�𝑑(3×3)
) serves to accentuate 

them against the backdrop of background noise.  

4) Furthermore, the incorporation of the absolute 

difference enables this methodology viable the 

exploration of the inherent correlation between the 

pixels within the road images. 

5) The outcomes of the experiments exhibit that the 

suggested robust FCM segmentation approach 

surpasses KMC, FCMC, and MHFCM in 

recognizing alligator, transverse, longitudinal 

fractures, and potholes in real-world road imagery. 

 

The subsequent sections of this paper follow 

this organization: Section 2 presents a discussion of K-

Means, FCM algorithms, and their respective variations. 

Section 3 elaborates on the proposed algorithm, offering 

detailed insights. Section 4 showcases the experimental 

results and discussions, and Section 5 serves as the 

concluding part of our study and future scope. 

 

2  Related work 
 

A brief overview of conventional and 

sophisticated FCMC, as well as associated current 

techniques for road crack identification, are provided in 

this section 

 

2.1 Fuzzy-C-Means clustering (FCMC) 
 

The FCMC algorithm, devised by Bezdek et al., 

[9][4] stands as a prominent approach in photo 

segmentation, leveraging an iterative unsupervised 

learning approach reminiscent of K-means clustering 

[12]. In settings devoid of noise, FCM outperforms by 

endowing every data point with a membership degree 

across clusters, ultimately determining final cluster 

values through a combination of centroid proximity and 

membership strength, ensuring a normalized distribution 

of memberships [12]. Hence the fundamental functions 

of the conventional FCMC algorithm can be 

encapsulated as below [12][23][24]: 

1. The objective function of FCM as follows [10]: 

Ʈ𝑓(𝜙, 𝐺) = ∑ ∑ 𝜙𝑙𝑔
𝑏 ‖Ӽ𝑙 − 𝐺𝑔‖

2𝑝
𝑙=1

𝑡
𝑔=1                 (1) 

 

      Where Ӽ𝑙 is finite dataset, 𝑝,𝑡 is total pixels, 

clusters, b is fuzzification parameter and 𝐺 is 

cluster centers. 

2. At the outset the membership matrix (𝜙𝑙𝑔) 

undergoes random initialization via:∑ 𝜙𝑙𝑔(=𝑡
𝑔=1

1 ); where 𝜙 = [𝜙𝑙𝑔]
𝑡×𝑝

 with 0 ≤ 𝜙 ≤ 1.  

 

3. Utilize the following equation ascertain 𝐺𝑔 

 𝐺𝑔 =
∑ 𝜙𝑙𝑔

𝑏 ∗Ӽ𝑙
𝑝
𝑙=1

∑ 𝜙𝑙𝑔
𝑏𝑝

𝑙=1

;  g=1,23,….t  and 𝑏> 1 

                                                                                    (2) 

4. Enhance the 𝜙𝑙𝑔& compute the updated 𝜙𝑙𝑔 using: 

𝜙𝑙𝑔 =
[

1

𝐸𝑙 𝑔
]

1
𝑏−1

∑ [
1

𝐸𝑙𝑐
]

1
𝑏−1𝑡

𝑐=1

                                                  (3) 
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 Where 𝐸𝑙𝑔 is Euclidean distance (𝐸𝑙𝑔 = ‖Ӽ𝑙 − 𝐺𝑔‖) 

5. The iterative procedure terminates once the  

‖𝜙(𝑗+1) − 𝜙(𝑗)‖ become smaller than the positive 

threshold, denoted as Ω. Here, j is iteration index. 

FCMC algorithms perform admirably in 

segmenting noise-free photographs but grapple with 

challenges when confronted with pictures noise and 

artifacts [12]. This is primarily due to their oversight of 

nearby pixel relationships, leading to difficulties in 

managing enumeration time costs [12]. 

 

2.2 Utilize in road crack reorganization 

The manual road crack detection proves tedious and 

error-prone, emphasizing the necessity for an algorithm 

capable of precisely identifying fractures in unseen 

images amidst varying environmental conditions. 

FCMC's rise in popularity as an unsupervised clustering 

technique is evident in its widespread use across diverse 

image segmentation tasks, demonstrating superior 

fracture detection in newly captured photos across 

various environments. Nonetheless, the scarcity of 

FCMC-based algorithms for automated road fracture 

detection through photograph segmentation persists. A 

technique for recognizing cracks in concrete images has 

been demonstrated by Noh et al. [11]. It involved the 

utilization of FCMC and multiple noise 

scarcity strategies for segmentation. However, when 

considerable noise is present in cluster containing 

fractures, the accomplishment rate of fracture diagnosis 

drop significantly. Bhardwaj et al. [12] proposes an 

advanced FCMC algorithm that automatically detects 

fractures by incorporating optimal edge pixels using 

second-order differences and intensity-based fuzzy 

factors. By utilizing edge and non-edge pixel intensities, 

the method reliably identifies edges in low-contrast 

images without the need for training datasets or 

complex parameter tuning. It effectively detects 

fractures and surpasses existing methods.  

Oumaa et al. [13] apply a multi-scale wavelet 

transform filtering method to reduce background noise 

and enhance image smoothness. Subsequently, they 

implement an improved process for identifying and 

segmenting potholes, utilizing unsupervised FCMC and 

morphological refinement techniques. Additionally, 

their methodology showcases precision in predicting the 

dimensions and forms of potholes. 

Bhar. et al. [10] utilize the MHFCM approach, 

as elucidated in reference [10], integrating Manhattan 

distance (𝑑𝑀ℎ𝑡)  and histogram equalization (ℎ𝑒𝑞𝑛)  

within the FCMC framework. The incorporation of 

𝑑𝑀ℎ𝑡  facilitates enhanced precision by evaluating 

dissimilarity between the dataset and cluster centroids, 

particularly enhancing cluster differentiation. Moreover, 

the inclusion of ℎ𝑒𝑞𝑛 contributes to enhancing overall 

photograph contrast. Consequently, this refined FCMC 

methodology demonstrates efficacy in detecting various 

types of road fractures in images. The representation of 

𝑑𝑀ℎ𝑡and ℎ𝑒𝑞𝑛is denoted as: 

(𝑑𝑀ℎ𝑡)𝑙𝑔  = |𝑥𝑙 − 𝐺𝑔|                                                 (4) 

Whereas g =1,2, 3,..., t and l = 1,2,3,..., p 

ℎ𝑒𝑞𝑛(𝑆) = 𝑃(𝑥𝑆) =
𝑇𝑆

𝑝
  ; 0 ≤ S ≥ m-1                    (5) 

Whereas m and p are the total number of gray levels 

and total number of pixels. The 𝑇𝑆 is the total number of 

pixels with the same intensity level S. 

             While the MHFCM demonstrates adeptness 

in detecting fractures, it is encumbered by several 

limitations. Notably, the ℎ𝑒𝑞𝑛procedure operates on the 

entire image, augmenting overall contrast but 

potentially sacrificing local information near edges and 

boundaries. Additionally, both FCM and ℎ𝑒𝑞𝑛require 

parameter fine-tuning for optimal outcomes, thereby 

introducing processing challenges within the MHFCM 

framework. The amalgamation of these processes could 

exacerbate complexity and prolong processing times, 

particularly when dealing with large-scale images. 

 

2.3 Other techniques 

KMC necessitates a predetermined number of 

clusters, a task that can be challenging when dealing 

with intricate or high-dimensional data, as outlined by 

Bhard et al. [8]. The author Sadia et al. [14] present the 

road surface cracks are an early sign of pavement 

deterioration, leading to costly repairs. An automated 

method using color histogram analysis, K-means 

clustering, and Otsu thresholding segment 2D road 

images to detect cracks. The approach effectively 

reduces noise, preserves edges, and ensures accurate 

crack detection. Amita at al. [15] the study enhances 

image quality under overexposed and underexposed 

conditions by optimizing pixel intensity, entropy, noise, 

and edge details using a fuzzy approach. Images are 

mapped to fuzzy sets, and pixel intensity plays a key 

role in determining membership during fuzzification. 

The method preserves details, manages uncertainties, 

and controls sharpness to balance enhancement and 

noise reduction, ensuring improved visual quality. 

Cubero et al. [16] introduce novel approaches for 

swiftly extracting road fractures and illustrate the 

utilization of this technique to extract essential attributes 

required for highlighting the fractures. Ultimately, an 

image is classified employing a decision tree heuristic 

method. 

By comprehending the basic structural 

characteristics of cracks, Shi et al.'s automated method 

[17] effectively reduces noise when identifying road 

fractures. The author Abdulrahman et al. [18] represent 

the system employs advanced image pre-processing, 

precise feature extraction, and a robust fuzzy inference 

mechanism to detect and classify cracks with 

exceptional accuracy and reliability across key 

performance metrics. For fracture detection, Wang et al. 

[19] state that pavement image quality is critical. But 

these photos frequently have shadows or noises that 

mimic shadows, which can be from telegraph poles,  
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Table 1: Summarized the relevant studies related to road crack detection 

  

Sr. 

No. 

Author Technique Methodology Dataset Used Performance 

matrix 

Key Findings 

1. Wang et 

al. [4] 

Clustering 

Algorithms 

This study 

evaluates clustering 

algorithms for 

pavement crack 

segmentation, 

finding mean-shift 

excels in de-noising 

under Gaussian 

noise based on 

NMI values. 

From Internet 

Sources 

RI-Mean 

:0.6030, 

NMI- Mean: 

0.1529 

Algorithms 

evaluated are 

sensitive to noise, 

leading to over-

segmentation and 

misclassification. 

2. Bhard. et 

al. 

[10][5] 

MHFCMC The approach 

incorporates the 

integration of 

Manhattan distance 

and histogram 

equalization into 

FCMC. 

From online 

sources 

PSNR: 14.26, 

Execution 

Time:2.3 

Lose local data 

close to borders and 

computational 

complexity 

 

3. Noh et al. 

[11] 

Fuzzy C-means 

Clustering 

This method 

employs 

segmentation, 

filtering, and 

morphological 

operations to 

remove noise and 

clutter using masks. 

Self-

Collected 

data set 

Precision:0.9, 

Recall:0.8 

Accurate 

identification is 

hampered by noise-

rich fracture 

clusters. 

 

4. Oumaa et 

al. [13] 

Fuzzy C-

Means 

clustering and 

morphological 

reconstruction 

It integrates 

multiscale texture-

based wavelet 

filtering with 

superpixel 

clustering using 

FCMC and 

morphological 

reconstruction for 

pothole detection 

Self-collected 

data set 

Dice 

coefficient: 

87.5%, 

Jaccard 

Index: 77.7%, 

Sensitivity: 

97.6% 

It depends on 

lighting conditions 

and visual 

obstructions, which 

may affect 

detection accuracy. 

 

5. Shi et al. 

[17][5] 

Crack Forest This method 

combines integral 

channel features, 

random structured 

forests, and a novel 

crack descriptor for 

improved detection 

and noise 

differentiation. 

CFD dataset Precision:0.8

228, 

Recall: 

0.8944, 

F1 Score: 

0.8571 

Incapable of 

precisely extracting 

complex 

background 

fractures. 

 

6. Chen et 

al. 

[21][5] 

MANet MANet uses 

MobileNet, depth 

wise convolutions, 

and hybrid 

attention to 

enhance feature 

importance. 

Crack500 and 

CFD 

Precision:0.7

634, 

Recall:0.890, 

F1 Score: 

0.8221 

Longer computing 

times correspond to 

more complexity. 
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edifice, foliage, lights/ lamps, and other objects. An 

image processing technique is presented to overcome 

this difficulty and extract pavement fractures from 

shaded picture. Jie et al. [20] enhance the Canny 

algorithm with a bilateral filter, Sobel operator, and 

adaptive thresholds. Detection maps are refined 

morphologically and fused with DeepLabV3+ features 

to produce the final map. The Table 1 summarized the 

relevant studies discussed related to road cracks 

detection. 

     In order to overcome the limitations of existing 

methods, a methodology is required that employs a 3×3 

window, along with scaling factor for pixel 

augmentation. This enhances pixel details and visibility 

prior to segmentation. Additionally, the local 

neighborhood relationship is used into the segmentation 

enhances feature extraction, reduces noise, improves 

clustering and boundary precision. These advanced 

aforementioned features are incorporated into the 

proposed algorithm, as detailed in Section 3. 

 

3 Proposed method  

In this section, we present a novel and useful method for 

spotting road fractures. In order to detect the road 

cracks, we have presented the innovative cracks 

identification method using Fuzzy C-Means Clustering 

i.e., PIEFCMC approach. The purpose of this approach 

is to address the limitations and issues with the existing 

methods covered in Section II. The Proposed method 

uses pixel augmentation (Ҏ𝑎𝑢𝑔) and absolute intensity 

difference  (Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)). The Ҏ𝑎𝑢𝑔is crucial for 

preparing image data for analysis as it enhances finer 

details, making features more discernible. Therefore, in 

this approach a 3 × 3 window (�̃�𝑑(3×3))is utilize that 

spans the whole picture (represent in figure 2) along 

with scaling factor for pixel augmentation (Ҏ𝑎𝑢𝑔) which 

effectively emphasize pixels details. Additionally, the 

 Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠) make this approach possible to observe 

the intrinsic connection between the picture pixels. As a 

result, it improves contrast between various region or 

objects in the picture, thereby enhancing clustering and 

boundary delineation, leading to improved outcomes. 

Hence, this process has been subtly represented in 

algorithm 1 & 2. The detail of the Ҏ𝑎𝑢𝑔of image using 

�̃�𝑑(3×3) for PIEFCMC approach is discussed below: 

3.1 𝟑 × 𝟑 Window 

The 3×3 window plays a key role in examines the 

pixels within its frame and utilize them for pixel 

enhancement. As it slides across the image, it 

consistently utilized in the enhancement of each pixel, 

helping to highlight important features, and make cracks 

more pronounced. This process results in a clearer and 

more refined image, which is beneficial for tasks such 

as crack detection and segmentation. Therefore, it is 

imperative to ensure accuracy when creating this 

window. The relevant mathematical expression for the 

3×3 window is as follows [22]: 

�̃�𝑑(3×3) = [Ẋᾶ+ϊ,ά+ḯ]                                                 (6) 

 𝑓𝑜𝑟 ϊ = 𝑔 𝑡𝑜 𝑔 + 2 & ḯ =  𝑑 𝑡𝑜 𝑑 + 2 

𝑓𝑜𝑟 𝑔 = 0,1,2,3, … . . , 𝑙 − 2 & 

𝑑 = 0,1,2,3, … . , 𝑡 − 2 

where as Ẋᾶ+ϊ,ά+ḯ represents the individual pixels 

in 3×3 window  (𝐼𝑃𝑖𝑥𝑒𝑙(�̃�𝑑(3×3))), ϊ & ḯ denote the row & 

column of the �̃�𝑑(3×3), ᾶ&ά establish the beginning 

indices or offsets (i.e., ᾶ & ά = 1) and 𝑙 & 𝑡 is total 

number of rows & columns of the image. In particular, ḯ 
stands for the columns to the right of ά and ϊ for the 

rows down from ᾶ. Together, ᾶ and ά, ϊ and ḯ identify 

an element's precise placement within the window. 
 

 

Figure 2: Representation of the 3 × 3  windows and its 

coverage of surrounding pixels 

 

In Figure 2, the 3×3 window slides across the 

entire image 𝑙 × 𝑡 (𝑙 and 𝑡 ranging from 0 to 3 for 

Figure 2), mentioned in table 2. It is also important to 

understand that the smaller windows (like 2×2), lack 

sufficient contextual information, making clustering 

sensitive to noise and ineffective at detecting continuous 

edges. Conversely, larger windows (4×4 or 5×5 etc.), 

tend to over-smooth the image, obscuring essential 

boundaries and fine details. Therefore, a 3×3 window 

strikes the right balance by reducing noise while 

preserving critical details, ensuring accurate 

segmentation and computational efficiency. 

 

3.2 Pixel augmentation of the image using 

𝟑 × 𝟑 Window 

The Pixel augmentation approach is utilized to 

enhance the individual pixel values once the �̃�𝑑(3×3) has 

been generated. The Figure 2 and Table 2 ensures that all 

pixels are covered by this window for pixel 

augmentation. However, the size of 𝑙 × 𝑡 may vary 

depending on the dimensions of the image being 

considered. 
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Table 2:  Movement and coverage of the window based 

on  𝑔 and 𝑑 values 

 

 

Step 

Values 

of 𝑔 and 

𝑑 for 

row (ϊ) 
and 

column 

(ḯ) 

Position 

of row (ϊ) 
and 

column 

(ḯ) 

 

Window 

Coverag

e 

Initial 

Position 

If 𝑔 = 0 

and 𝑑 =
0 

ϊ
= 0 𝑡𝑜 2 & ḯ
=  0 𝑡𝑜 2 

The 

Window 

covers 

the first 

9 pixels 

Horizontal 

Movement 

If 𝑔 = 0 

and 𝑑 =
1 

ϊ
= 0 𝑡𝑜 2 & ḯ
=  1 𝑡𝑜 3 

The 

window 

shifts to 

the next 

column 

      

Vertical 

Movement 

If 𝑔 = 1 

and 𝑑 =
0 

ϊ
= 1 𝑡𝑜 3 & ḯ
=  0 𝑡𝑜 2 

The 

window 

moves to 

the next 

row 

Complete 

Coverage 

If 𝑔 = 1 

and 𝑑 =
1 

ϊ
= 1 𝑡𝑜 3 & ḯ
=  1 𝑡𝑜 3 

Window 

move to 

the next 

column 

and 

covering 

all pixels 

 
However, necessary attention is required when 

determining the augmented scaling factor. Therefore, if 

the augmented scaling factor (ÃŜʄ𝑎) is set excessively 

large, the picture may exhibit irregular or distorted 

appearances. While if setting excessively small can lose 

their precision and sharpness, resulting in a faded or 

obscured appearance. Therefore, adopting an optimal 

strategy is essential to maintaining edge quality and 

improves finer details, making features more visible. 

Thus, the mathematical expression for augmented 

image pixels (𝒳𝑠) are obtained by considering the 

values of augmented scaling factor (ÃŜʄ𝑎) and 

individual image pixels [Ẋᾶ+ϊ,ά+ḯ], may be articulated in 

the following manner: 

 

𝒳𝑠 = [ÃŜʄ𝑎] × [Ẋᾶ+ϊ,ά+ḯ]                                          (7) 

 

The ÃŜʄ𝑎 for �̃�𝑑(3×3) is achieved by utilizing the 

following mathematical expression: 

ÃŜʄ𝑎=Ẍᾶ+ϊ,ά+ḯ = [Ř�̃�𝑑(3×3)
+ 𝜗�̃�𝑑(3×3)

]                   (8) 

Whereas Ř�̃�𝑑(3×3)
(=

𝐼𝑃𝑖𝑥𝑒𝑙(�̃�𝑑(3×3))

𝑆𝑢𝑚(�̃�𝑑(3×3))

) is the ratio of 

individual pixel (𝐼𝑃𝑖𝑥𝑒𝑙(�̃�𝑑(3×3))) value to the sum of all 

pixels with in 3 × 3 window (𝑆𝑢𝑚(�̃�𝑑(3×3))). The 

𝑆𝑢𝑚(�̃�𝑑(3×3)) is given as: 

𝑆𝑢𝑚(�̃�𝑑(3×3))

= ∑ ∑ Ẋᾶ+ϊ,ά+ḯ

𝑑+2

 ḯ=𝑑

𝑔+2

ϊ=𝑔

                                                      (9)   

𝑓𝑜𝑟 𝑔 = 0,1,2,3, … . . , 𝑙 − 2 &𝑑 = 0,1,2,3, … . , 𝑡 − 2 

Furthermore, the 𝜗�̃�𝑑(3×3)
 is the sum of Ŧ𝑟𝑣 and 

Ȉ𝑚𝑖𝑛.,𝑚𝑎𝑥.. Whereas the Ŧ𝑟𝑣 is the addition of total ratio 

value of Ř�̃�𝑑(3×3)
 in �̃�𝑑(3×3) and Ȉ𝑚𝑖𝑛.,𝑚𝑎𝑥. is the ratio 

of minimum to maximum intensity with in �̃�𝑑(3×3). 

When 𝒳𝑠 are obtained, then the use  𝜗�̃�𝑑(3×3)
 enhances 

their visibility, also helping them to stand out more from 

background or noise. Without applying 𝜗�̃�𝑑(3×3)
, the 

pixel values may reduce significantly or may tiny or 

almost zero. Therefore, algorithm 1 illustrates the 

process of pixel augmentation of an image using a 3 × 3 

window.  

 

 Algorithm 1: Pixel augmentation using 3 × 3 window   

 

1. Input: Image of size 𝑙 × 𝑡 

2. Output:  Augmented pixels 𝒳𝑠using �̃�𝑑(3×3) 

3. Initialization Parameters: 

a. Size of window is 3, row and column are 

represented with ϊ&ḯrespectively 

4. Procedure:   

• Start iteration: 

a. Outer Loop: Iterate over row (ϊ):  
   ϊ = 𝑔 𝑡𝑜 𝑔 + 2                %% 𝑔 = 0,1,2, . . . . , 𝑙 − 2  
b. Inner Loop: Iterate over columns (ḯ):  

ḯ =  𝑑 𝑡𝑜 𝑑 + 2 %% 𝑑 = 0,1,2, … . , 𝑡 − 2 

c. Extract the current  3 × 3 window: 

�̃�𝑑(3×3) = [Ẋᾶ+ϊ,ά+ḯ] %% 𝑈𝑠𝑖𝑛𝑔 𝑒𝑞𝑛. (6) 

d. Compute: Ř�̃�𝑑(3×3)
 , 𝑆𝑢𝑚(�̃�𝑑(3×3)) 𝑎𝑛𝑑 𝜗�̃�𝑑(3×3)

 

e. Compute the augmented scaling factor:     

ÃŜʄ𝑎=Ẍᾶ+ϊ,ά+ḯ = [𝜗�̃�𝑑(3×3)
+ Ř�̃�𝑑(3×3)

] 

f. Compute the final augmented pixel’s values: 

𝒳𝑠 = [ÃŜʄ𝑎] × [Ẋᾶ+ϊ,ά+ḯ]       %% 𝑈𝑠𝑖𝑛𝑔 𝑒𝑞𝑛. (7) 

• Complete iteration:  

a. The window automatically shifts by 

incrementing ḯ within the inner loop 

b. After completing a row, increment ϊ to move to 

next row   

c. The algorithm terminates when last column (ḯ =
 𝑑 𝑡𝑜 𝑑 + 2) and last row (ϊ = 𝑔 𝑡𝑜 𝑔 + 2) are 

reached or processed 

5. The result represents the augmented pixels (𝒳𝑠) 

for complete image 𝑙 × 𝑡 . Further these pixels 

applied in segmentation process. 
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     The Pixel augmentation enhances the visual quality 

of road images, improving their clarity and detail. By 

boosting contrast, emphasizing edges, and preserving 

essential features, it makes road cracks more 

distinguishable. This pre-processed image is 

subsequently input into PIEFCMC, facilitating a more 

precise distinction between crack and non-crack 

regions. This process reduces false positives and 

ensures consistent segmentation accuracy, even in the 

presence of noise, uneven lighting, and surface 

irregularities.  

 

3.3 Exhaustive description of the PIEFCMC 

The objective function (Ƞ) of the reliable & 

effective PIEFCMC approach for the successful 

identification of road fractures can be articulated as 

follows: 

Ƞ(𝜓, Ɣ) = ∑ ∑ 𝜓𝑒𝑠
𝑐 × ‖𝒳𝑠 − Ɣ𝑒‖2

𝑚

𝑠=1

ὓ

𝑒=1

× Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)                                 (10) 

where ὓ&m stand for the number of clusters for 

partitioning the data and pixels in a picture, 𝒳𝑠 represent 

the augmented image pixels,  Ɣ𝑒 is cluster center, 𝑐 is 

fuzzification parameter ((𝑐 > 1) and controls the degree 

of cluster overlap), 𝜓𝑒𝑠  is the fuzzy membership matrix 

quantify the degree to which each data point belongs to 

each cluster. The  Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)(= |𝒳𝑚𝑎𝑥. − 𝒳𝑠|) stands 

for absolute intensity difference between maximum 

pixel intensity and all the other pixels.  

The utilization of the Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)function 

enables the proposed algorithm possible to observe the 

intrinsic connection between the pixels in  𝑙 × 𝑡picture. 

It measures how each pixel deviates from the most 

prominent intensity, establishing a relative scale of 

connection. This process help in grouping similar pixels, 

while isolating dissimilar ones, thereby reducing noise, 

enhances clarity, ultimately improving segmentation 

accuracy. 

After that employing Lagrange multiplier 

method to reducing the objective function Ƞ(𝜓, Ɣ), that 

may ascertain the revised membership degrees and 

cluster centers in PIEFCMC, as follows:  

           𝜁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =  ∑ ∑ 𝜓𝑒𝑠
𝑐 × ‖𝒳𝑠 − Ɣ𝑒‖2  

𝑚

𝑠=1

ὓ

𝑒=1

× Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)

+ ∑ 𝛻 (1 − ∑ 𝜓𝑒𝑠 

ὓ

𝑒=1

)

𝑚

𝑠=1

              (11) 

Utilizing partial derivative on 𝜁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  with 

regards to 𝜓𝑠𝑒
𝑐  & subsequently setting it to zero, we 

arrive:  

𝜓𝑒𝑠 = (
𝛻

𝑐(‖𝒳𝑠 − Ɣ𝑒‖2 × Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠))
)

1

𝑐−1

         (12) 

Utilizing the 𝜁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  derivative in relation to the 

𝛻 (Lagrange multipliers), the following results are 

obtained: 

𝜕𝜁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝜕𝛻
= ∑ 𝜓𝑒𝑠 − 1

ὓ

𝑒=1

= 0                          (13) 

 

To ascertain the membership function, solve the 

eqn. no. 12-13 and yield the following result: 

𝜓𝑒𝑠 =
[

1

𝜕𝑒𝑠
]

1

𝑐−1

∑ [
1

𝜕𝒻𝑠
]

1

𝑐−1ὓ
𝒻=1

                                           (14)             

Likewise, obtaining the cluster centroid's the partial 

derivative of  𝜁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟  with regard to Ɣ𝑒 is provides 

as: 

 
𝜕𝜁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝜕Ɣ𝑒

= 0                                                      (15)          

 

After the aforementioned equation is extricate, the 

centroid is eventually obtained as follows: 

 

Ɣ𝑒 =
∑ 𝜓𝑒𝑠

𝑐 × 𝒳𝑠 × Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)𝑚
𝑠=1

∑ 𝜓𝑒𝑠
𝑐𝑚

𝑠=1

                     (16) 

The algorithm 2 is on PIEFCM clustering are given 

below: 

 

Algorithm 2:  PIEFCM clustering algorithm 

 

1. Input: Size of image 𝑙 × 𝑡 

2. Output: %% Identification of the cracks on road 

3. Initialization Parameters: 

a. ὓ is number of clusters, 𝒳𝑠 represent the 

augmented image pixels, m is the total 

number of pixels in picture,Ɣ𝑒 is cluster 

center, 𝑐 is fuzzification parameter, 𝜓𝑒𝑠  the 

fuzzy membership matrix 

4. Procedure:                                   

4.1. Outer Loop (𝑒): Iterate for ὓ %% Start 

iteration over cluster 

4.2. Inner Loop (𝑠): Iterate for m            %% 

Start iteration over pixels                                  

4.3. Membership matrix is randomly 

initialization in the beginning: 𝜓𝑒𝑠 = 1 

%%𝝍 = [𝜓𝑒𝑠 ]ὓ×𝑚 with 0 ≤ 𝜓𝑒𝑠 ≤ 1 

4.4. Exit inner loop: When s=m; %% Stop 

iterating over pixels 

4.5. Exit outer loop: When e=ὓ; %% Stop 

iterating over clusters 

4.6. Initialize: ӳ=0         %% ӳ=iteration index 

4.7. Outer Loop (𝑒): Iterate for ὓ %% Start 

iteration over clusters 

4.8. Inner Loop (𝑠): Iterate for m   %% Start 

iteration over pixels 
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4.9. Compute Ɣ𝑒: Ɣ𝑒 =

∑ 𝜓𝑒𝑠
𝑐 ×𝒳𝑠 ×Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)𝑚

𝑠=1

∑ 𝜓𝑒𝑠
𝑐𝑚

𝑠=1
%% Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠)(=

|𝒳𝑚𝑎𝑥. − 𝒳𝑠|) 

4.9.1. Condition: For  Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠) %% 

Absolute intensity difference 

4.9.1.1. If Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠) ≠ 0; then  

Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠) = |𝒳𝑚𝑎𝑥. − 𝒳𝑠| 

else (Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠) = 0) 

Å𝑑(𝑚𝑎𝑥.,𝑠)(𝑠) = 𝐴𝑣(𝒳𝑚𝑎𝑥., 𝒳𝑠) %% Average (𝐴𝑣) 

between𝒳𝑚𝑎𝑥. and  𝒳𝑠 

4.10. Calculate and update  𝜓𝑒𝑠 : 

𝜓𝑒𝑠 =
[

1

𝜕𝑒𝑠
]

1
𝑐−1

∑ [
1

𝜕𝒻𝑒
]

1
𝑐−1

ὓ
𝒻=1

 

                              %%  𝜕𝑒𝑠 = ‖𝒳𝑠 − Ɣ𝑒‖ 

4.11. Exit inner loop: When s=m; %% stop 

iterating over pixels 

4.12. Exit outer loop: When e=ὓ; %% stop 

iterating over clusters                         

4.13. Repetation or convergence criteria: 

Increment ӳ = ӳ + 1 or revisit steps 4.7 

until an identical Ɣ𝑒emerges, or Max. 

‖𝝍(ӳ+1) − 𝝍(ӳ)‖ < 𝛼, where 𝛼 is positive 

threshold termination criteria.  

5. Output: Cracks identification from complete 

𝑙 × 𝑡image 

4 Experimental result and analysis 

This section analyses and juxtaposes /compares the 

outcomes of the PIEFCMC method with a number of 

other methods that are implemented in Matlab, such as 

KMC, FCMC, MHFCMC. A central processing unit 

(CPU) of Intel Core i7, 1.80 GHz of clock speed, 

Random-access memory (RAM) of 8.00 GB, and 

Microsoft Windows 11 Pro are the specifications of the 

personal computer (PC) used for this assessment. The 

performance of the suggested approach is primarily 

influenced by the parameters 𝑐 and ὓ, which have been 

assigned values of 2 each. Therefore, by using these 

parameters, fractures may be clearly distinguished 

among their adjacent regions during the detecting 

procedure. This facilitates a clear division into two 

clusters: one for crack areas and the other for non-crack 

regions. Consequently, all variations of the fuzzy 

algorithms in our simulation operate under these similar 

conditions. 

In this simulation a numerous number of road 

photos exhibiting numerous varieties of flaws and 

fractures, including transverse crack (Ť𝑐𝑟𝑘), longitudinal 

crack (Ł𝑐𝑟𝑘), alligator fractures (Ă𝑐𝑟𝑘) and pathole (Ṕōł). 

Excessive exhaustion and insufficient articulation cause 

the Ł𝑐𝑟𝑘 to emerge longitudinally along the road [16]. 

When an articulation is positioned within a vicinity 

wherein the road endures to intense stress, a Ť𝑐𝑟𝑘may 

emerge. Ă𝑐𝑟𝑘 may appear mainly due to inadequate 

strength in the asphalt substrate. When precipitation 

penetrates the earth underlying the roadway's exterior 

and expands and contracts, it impacts substantial 

structural degradation in the form of Ṕōł [13]. Hence for 

crack types, we personally gathered the dataset from 

National Highway (NH)-154 in Himachal Pradesh, 

India, from whence these pictures are taken. Samsung's 

64-megapixel camera was used to take these photos.  

The suggested procedure has been contrasted to 

anterior methods, specifically KMC [7][8], FCMC 

[9][4], and MHFCMC [10]. Utilising self-gathered 

datasets consists of non-tainted and tainted road photos, 

PIEFCMC performs more effectively in terms of 

number of iterations, precision, recall, and F1 Score.The 

superior performance of this can be attributed to its 

innovative use of pixel enhancement and absolute 

intensity difference in segmentation process, as 

discussed in Section 3. This unique approach effectively 

reduces noise and improves the clarity and visibility of 

detected road cracks, offering a significant advantage 

over K-Means, FCMC, and MHFCMC, whose 

limitations are outlined in Section 2. 

Additionally, we recognize that no method is 

flawless. Hence, PIEFCMC may also faces performance 

limitations in the situations where road cracks are 

extremely faint or image quality is highly compromised 

or instances of severe occlusion. Therefore, the 

experimental analysis is explained in detail in 

subsections 4.1 and 4.2, respectively, offering a 

description of the empirical outcomes for the two 

aforementioned photo genres. 

4.1 Non-Tainted images of road  

A non-contaminated road crack image is free 

from oil stains, paint, mud, and other obstructions for 

analysis. The analysis contrasts the KMC, FCMC, 

MHFCMC, and PIEFCMC for the various visual 

formats shown in Figures 3(a), 4(a), 5(a), and 6(a). In 

juxtaposition with MHFCMC, KMC and FCMC yield 

inferior results for road fracture identification as shown 

in Fig. 3-6: (b-d). However, the MHFCMC displays 

relatively little disturbance and has trouble diagnosing 

fractures, shown in Fig. 3-6: (d)). Regarding noise, 

reliability, and iterations, the PIEFCMC approach's 

output (Fig. 3(e)–6(e)) offers superior and valuable 

results in lieu of   the other methods. In addition, the 

PIEFCMC can distinguish between cracked and non-

crack pixels with ease.  

 

 
    (a)              (b)              (c)              (d)            (e) 
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Figure 3. Detection results of Ť𝑐𝑟𝑘: (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

 

      
(a)             (b)              (c)              (d)             (e) 

Figure 4. Detection results of Ă𝑐𝑟𝑘:  (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

 
       (a)              (b)              (c)             (d)             (e) 

Figure 5. Detection results of Ṕōł: (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC  

 

 
      (a)              (b)              (c)              (d)            (e) 

Figure 6: Detection results of Ł𝑐𝑟𝑘:  (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

    Consequently, we used precision (þő𝑛), recall (Ȑć𝑎𝑙), 

F1 score (ℱ1ȓê) & number of iterations (Ɲĩ)to 

quantitatively describe the fracture reliability of the 

different strategies for multiple kinds of fracture 

pictures. With regard to Table 3, the following values of 

þő𝑛, Ȑć𝑎𝑙, ℱ1ȓêmay be determined in accordance with 

true positive (ŧƿ), false positive (ḟƿ), and false negative 

(ḟῆ) data [12]: 

 

þő𝑛 =
ŧƿ

ŧƿ + ḟƿ

                                                                  (17) 

 Ȑć𝑎𝑙 =
ŧƿ

ŧƿ + ḟῆ

                                                                (18) 

 

ℱ1ȓê =
2𝘟þő𝑛𝘟 Ȑć𝑎𝑙

þő𝑛 +  Ȑć𝑎𝑙

                                                      (19) 

 

 
 

Figure 7:  Number of iterations across multiple 

algorithms for detecting various kind of cracks in non-

tainted images 

 

The PIEFCMC contain an efficient pixel 

augmentation with neighborhood 

relationshipoutperforms various other algorithm in 

terms of þő𝑛,  Ȑć𝑎𝑙, &ℱ1 ȓêfor all sorts of fractures, 

hence offering effective information on fracture 

recognition. The KMC method boasts a shorter Ɲĩ in 

comparison to its counterparts. However, the simulation 

results reveal its underperformance in terms of þő𝑛, 

 Ȑć𝑎𝑙, ℱ1 ȓê. Hence, based on the comprehensive findings 

presented in Table 3 and Figure 7, it is apparent that 

PIEFCMC demonstrates superior efficiency for Ɲĩwhen 

compared with other’s. 

 

4.2 Tainted images of road 

This section delves into the discussion of various 

categories of imperfections and fissures observed in 

photos of tainted roadways, including paint marks, mud 

and shadows, etc. The findings entail a comparison of 

several algorithms across varied visuals, as depicted in 

Figures 8(a), 9(a), 10(a), and 11(a). The findings 

indicate that MHFCMC outperforms the KMC and 

FCMC algorithms in terms of efficacy, as is evident in 

Figures 8–11 (b–d). As seen in Figures 8(d)–11(d), 

MHFCMC, however, exhibits significant shortcomings, 

including poor responsiveness, noise, shadow traces, 

and blurring, especially in comparison to PIEFCMC. 

The PIEFCMC approach surpasses comparable 

algorithms in regard of noise reduction, precision and 

execution time and identifies boundaries from the 

vicinity with efficacy. 
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Table 3: Comparative analysis of crack identification 

performance between KMC, FCMC, MHFCMC and 

PIEFCMC for non-tainted images 
 

Crack 

Types 

Parameters 
KMC FCMC MHFCM PIEFCMC  

 

Ť𝑐𝑟𝑘 

þő𝑛 74.07 

 

78.57 

 

83.90 

 

85.95 

 

 Ȑć𝑎𝑙 
75.94 

 

80.48 

 

84.88 

 

88.43 

 

ℱ1ȓê 74.99 79.51 84.38 87.17 

Ɲĩ 20 41 45 37 

 

Ă𝑐𝑟𝑘 

þő𝑛 76.82 
 

79.76 
 

84.09 
 

86.68 
 

 Ȑć𝑎𝑙 
78.05 

 

80.72 

 

86.14 

 

88.53 

 

ℱ1ȓê 77.43 80.23 85.10 87.59 

Ɲĩ 22 44 47 39 

 

Ṕōł 

þő𝑛 76.96 
 

77.64 
 

83.33 
 

82.95 
 

 Ȑć𝑎𝑙 
78.39 

 
75.86 

 
81.39 

 
85.88 

 

ℱ1ȓê 77.66 76.73 82.34 84.38 

Ɲĩ 23 48 50 40 

 

Ł𝑐𝑟𝑘 

þő𝑛 72.83 

 

78.57 

 
83.48 84.44 

 

 Ȑć𝑎𝑙 
75.64 

 
80.48 85.97 86.36 

 

ℱ1ȓê 74.20 79.51 84.70 85.38 

Ɲĩ 21 43 44 36 

 

 
      (a)             (b)              (c)             (d)              (e)               

Figure 8: Detection results of Ť𝑐𝑟𝑘:  (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

 
      (a)              (b)              (c)              (d)               (e) 

Figure 9: Detection results of Ă𝑐𝑟𝑘 :  (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

 

 
      (a)             (b)              (c)             (d)               (e) 

Figure 10: Detection results ofṔōł: (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

 

(a)              (b)               (c)             (d)              (e)  

Figure 11: Detection results ofŁ𝑐𝑟𝑘 :  (a) Original image, 

(b) KMC, (c) FCMC, (d) MHFCMC, (e) PIEFCMC 

 

Table 4:  Comparative analysis of crack identification 

performance between KMC, FCMC, MHFCMC and 

PIEFCMC for tainted images 

Crack 

Types  

Parameters KMC FCMC MHFCM PIEFCMC  

 

Ť𝑐𝑟𝑘 
þő𝑛 71.12 

 

76.84 

 

80.40 

 

82.51 

 

 Ȑć𝑎𝑙 
72.98 

77.37 

 

83.02 

 

84.95 

 

ℱ1ȓê 72.03 77.10 81.68 83.71 

Ɲĩ 22 42 46 38 

 

Ă𝑐𝑟𝑘 
þő𝑛 72.67 

 
76.05 

 
81.76 

 
83.32 

 

 Ȑć𝑎𝑙 
74.98 

 

78.67 

 

83.24 

 

85.35 

 

ℱ1ȓê 73.80 77.33 82.49 84.32 

Ɲĩ 24 46 49 40 

 

Ṕōł 
þő𝑛 70.06 

 
74.93 

 
77.83 
 

80.47 
 

 Ȑć𝑎𝑙 
68.35 

 
72.49 

 
79.18 

 
82.93 

 

ℱ1ȓê 69.19 73.68 78.49 81.68 

Ɲĩ 23 44 47 37 

 

Ł𝑐𝑟𝑘 þő𝑛 72.98 

 

75.64 

 79.98 

81.83 

 

 Ȑć𝑎𝑙 
73.57 

 77.59 81.48 
83.47 

 

ℱ1ȓê 73.27 76.60 80.72 82.64 

Ɲĩ 21 45 48 39 
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Figure 12: Number of iterations across multiple 

algorithms for detecting various kind of cracks in 

tainted images 

     The Equations 17-19 have been utilised in the current 

model for determining the þő𝑛,  Ȑć𝑎𝑙 and ℱ1ȓê for crack 

accuracy; the outcomes are depicted in Table 4. The 

Table 4 indicates that PIEFCMC trumps all variants, 

allowing effective recognition of fractures in spite of 

tainted photos. 

    Additionally, the KMC approach executes more 

quickly than the others—including PIEFCMC—it 

performs noticeably worse overall. On the other hand, 

as Figure 12 illustrates, PIEFCMC provides an accurate, 

efficient and effective Ɲĩ for the entire operation then 

other. 

4.3 Comparison between proposed 

PIEFCMC and Deep Learning based 

approaches  

 The proposed PIEFCMC algorithm offers 

several benefits over deep learning-based approaches 

such as Convolutional Neural Networks (CNNs). Unlike 

CNNs, which require large labeled datasets and high-

performance hardware, PIEFCMC operates efficiently 

with smaller datasets [25] and standard hardware, such 

as a CPU. It has a substantially lower computational cost 

than CNNs. Additionally, CNNs require intensive and 

time-consuming training process, but PIEFCMC does 

not require a training phase. Additionally, CNNs are 

frequently limited in their interpretability [25], whereas 

PIEFCMC is extremely interpretable. However, CNNs 

can achieve higher accuracy and adaptability for 

complex patterns, especially when trained on diverse 

datasets, making them suitable for highly precise tasks 

[25][26]. Thus, PIEFCMC serves as a cost-effective and 

efficient alternative, especially in scenarios with limited 

resources or data. 

 

4.4 Discussions 

The experimental findings unequivocally 

demonstrate the efficacy of the proposed PIEFCMC 

algorithm in accurately detecting road cracks from both 

tainted and non-tainted images. This innovative 

approach employs a 3×3 window with a scaling factor 

for pixel enhancement, effectively utilizing absolute 

intensity differences to emphasize finer details while 

significantly mitigating noise. These features address 

critical limitations evident in previously reviewed 

methods, establishing PIEFCMC as a robust and 

effective solution.  

      In comparison, existing methods such as KMC, 

FCMC, and MHFCMC exhibit notable shortcomings 

that limit their effectiveness. KMC's reliance on pre-

defined clusters hinders its adaptability to intricate data, 

compromising precision. FCMC, is highly susceptible to 

noise due to its disregard for spatial pixel connectivity, 

resulting in reduced reliability. MHFCM faces 

processing challenges, due to complexities associated 

with FCM and histogram equalization. 

      The superiority of PIEFCMC is particularly evident 

in its performance metrics. For tainted images, 

PIEFCMC achieves precision, recall, and F1 scores of 

86.68, 88.53, and 87.59, respectively, outperforming 

KMC (76.82, 78.05, 77.43), FCMC (79.76, 80.72, 

80.23), and MHFCMC (84.09, 86.14, 85.10). Similarly, 

for non-tainted images, PIEFCMC achieves precision, 

recall, and F1 scores of 83.32, 85.35, and 84.32, 

surpassing KMC (72.67, 74.98, 73.80), FCMC (76.05, 

78.67, 77.33), and MHFCMC (81.76, 83.24, 82.49). 

These results highlight PIEFCMC's consistent accuracy 

and reliability across diverse image conditions. 

      Another significant advantage of PIEFCMC lies in 

its optimized iteration count. While KMC demonstrates 

the fewest iterations for tainted (21) and non-tainted (20) 

images, this efficiency comes at the cost of reduced 

segmentation accuracy. In contrast, PIEFCMC achieves 

a balance between iteration count and performance, 

requiring 37 iterations for tainted images and 36 for non-

tainted images while delivering superior precision and 

reliability. FCMC and MHFCMC, on the other hand, 

require 41–46 iterations, further underscoring the 

computational efficiency of PIEFCMC. 

       In conclusion, PIEFCMC significantly advances the 

field of road crack detection by delivering higher 

precision, recall, and F1 scores while effectively 

addressing noise and computational challenges. 

Although it slightly lags behind KMC in iteration count, 

its superior segmentation accuracy, robustness, and 

consistency across varying image types validate its 

potential as a transformative approach in this domain. 

5 Conclusion and future research 

directions 

     This study presents a novel and innovative method 

for road fracture identification based on FCM clustering. 

Despite the dearth of research on the application of the 

FCM algorithm to road crack identification. Still, this 

approach reduces the effect of noise and finds road 

fractures in images better than FCM and its variants. To 

achieve this, a 3×3 window is spans across the entire 

image. This approach enables the enhancement of pixel 

technique within each window, effectively emphasizing 

the finer details of cracks. By this method, each pixel in 

the 3×3 window is considered based on the sum of the 
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values of its neighboring pixels prior to segmentation. In 

situation, when initial pixel values are little or almost 

zero, 𝜗�̃�𝑑(3×3)
 helps draw attention to them by making 

them stand out contrary to noise or the backdrop, which 

improves contrast among various areas or entities in the 

picture. Furthermore, this strategy allows the observation 

of the intrinsic connection among the photograph's 

pixels because of the absolute difference. Consequently, 

the innovative methodology markedly enhances 

clustering, precision meticulously delineates boundaries, 

and effectively eradicates blurring, culminating in 

substantially superior outcomes. Even in images 

characterized by low contrast, it adeptly identifies cracks 

and edges. Unlike many FCM variations, the novel 

strategy eradicates the need for determining the crucial 

tuning parameters, and experimental results confirm that 

it consistently produces better results. Moreover, without 

the exigency to training dataset, the novel algorithm can 

accurately recognize fractures in novel, unseen images 

of diverse types. The comprehensive test findings 

demonstrate the effectiveness of the novel algorithm in 

terms of þő𝑛, Ȑć𝑎𝑙, ℱ1ȓêand iteration count. As a result, 

PIEFCMC exhibits exceptional effectiveness in 

identifying different types of road cracks, saving a 

substantial sum of money and effort.  

The upcoming task entails installing a state-of-

the-art online embedded device with premium webcams 

in cars. The gathering and accumulation of immediate 

video streams will be made possible by this upgrade. 

Furthermore, utilising real-time data streams, a 

customised methodology will be developed to determine 

the width and depth of road fractures. Also, the proposed 

method's performance under rainy conditions has not 

been considered in the current work due to the 

unavailability of datasets. Consequently, we have not 

utilized such images in any experiments. However, we 

intend to thoroughly explore this aspect in our future 

research. Moving forward, integrating PIEFCMC (an 

unsupervised machine learning approach) with other 

machine learning techniques could further improve the 

accuracy and robustness of road crack detection. 
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