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With the rapid development of e-commerce and logistics industry, logistics path optimization has 

gradually become a key bottleneck restricting enterprises from improving service quality and reducing 

operating cost. Therefore, the study introduces an elite swarm strategy, which uses elite individuals to 

guide the honey search in the hiring bee stage, and proposes an intelligent optimization model for 

logistics paths based on an improved artificial swarm algorithm. The study is calculated using Windows 

10, Intel Core i7 CPU, NVIDIA GeForce GPU, 64GB memory, and Matlab simulation software. The 

experimental results show that in the single-mode test function, the Avg and Std of the elite swarm 

algorithm are on average six orders of magnitude lower than the other three algorithms. In the 

multi-mode test function, the Avg and Std of the elite swarm algorithm are on average seven orders of 

magnitude better than the other three algorithms, which is far superior. The area enclosed by the model 

precision-recall curve and the coordinate axis is 0.96, and the F1 value is 97.7%. In the simulation test, 

the model plans the delivery path for 20 customer points with a total path length of 5221.43km, a total 

delivery cost of 83908.38 yuan, a vehicle loading rate of 97.4%, and a solution time of 2.8s. The 

research results indicate that the logistics path intelligent optimization method has good comprehensive 

performance. It can effectively reduce logistics transportation costs, which has important guiding 

significance and application value for actual logistics operations. This model not only provides an 

efficient path optimization tool for logistics enterprises, but also offers new ideas and methods for 

logistics path optimization research. 

Povzetek: Uvedena je izboljšana inteligentna optimizacija poti z elitnim algoritmom umetne čebelje 

kolonije (EABC) za logistiko, kar zmanjša stroške transporta in izboljša učinkovitost. 

 

1 Introduction 
Recently, with the rapid development of global 

economic integration, the logistics industry is 

experiencing significant growth due to the expansion 

of e-commerce [1]. Logistics path optimization, as a 

key issue in logistics management, directly affects the 

operational efficiency and cost control of enterprises. 

How to quickly find the optimal transportation path in 

the complex and ever-changing logistics environment 

has become an urgent problem to solve [2]. The 

development of the logistics industry has undergone a 

transformation from traditional manual management to 

modern and intelligent management [3]. Early logistics 

path optimization relied heavily on experience and 

manual calculations. With the development of 

computer technology and algorithms, optimization 

methods based on mathematical models and 

computational intelligence have gradually been 

introduced [4]. Influenced by artificial intelligence and 

big data technology, the application of intelligent 

optimization algorithms in logistics path optimization 

has become increasingly widespread [5]. Among them, 

the Artificial Bee Colony (ABC) algorithm has been 

extensively applied in function optimization, neural 

network training, and pattern recognition due to its 

simplicity, robustness, and adaptability. In existing 

research on logistics path optimization, ABC, as a swarm 

intelligence optimization algorithm, gradually approaches 

the optimal solution through information sharing and 

cooperation among bees. Farahbakhsh H et al. proposed 

an improved ABC algorithm that combined an acceptance 

rejection method to limit the random search space, 

improve algorithm speed, and reduce iteration times. The 

movement step size of bees was used to determine 

parameters, guiding the algorithm to reach the global 

optimum. The superiority of the algorithm was verified in 

engineering problems related to virtual power plant 

planning and multiple benchmark function tests [6]. Huo 

F et al. built an optimized ABC algorithm on the basis of 

chaos theory Tent mapping for threshold selection in 

image segmentation. This algorithm constructed a 

complementary encoding scheme. The complementary 

properties were utilized to adjust local optimal solutions. 

The experiment demonstrated that the algorithm had 
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strong ability to obtain the optimal solution and 

convergence performance [7]. Zhang L et al. built an 

optimized ABC based on reverse learning to address 

the low convergence accuracy and slow convergence 

speed. This algorithm introduced the bystander bee 

stage to accelerate convergence speed and incorporated 

Cauchy reverse learning in the reconnaissance stage. 

The superiority was verified through experiments on 

13 standard tests [8]. Yilmaz Acar et al. built a binary 

ABC for multi-objective resource allocation problems. 

This algorithm combined advanced local search and 

binary format of transfer functions. Through 

experimental verification, the proposed algorithm 

could effectively solve resource allocation problems in 

large-scale problems and achieve high accuracy with 

fewer evaluation iterations [9]. 

Vehicle Routing Problem (VRP) is a crucial 

problem in logistics and transportation, aimed at 

improving transportation efficiency, reducing cost, and 

decreasing energy consumption by optimizing vehicle 

routes. Bao S et al. proposed two-phase and 

three-phase methods based on the Ising machine. 

Complex problems were divided into sub-problems 

and mapped to a quadratic unconstrained binary 

optimization model to adapt to the structure of the 

Ising machine. The effectiveness of this method was 

validated through performance comparison on datasets 

of standard traveling salesman problem and capacity 

limited VRP [10]. Sun W et al. proposed a joint routing 

scheduling optimization strategy on the basis of 

optimized grey wolf optimization. This strategy combined 

historical experience learning, and cross TS operators. 

Simulation experiments displayed that this strategy could 

quickly solve large-scale vehicle network scheduling 

problems, generate scheduling results with excellent 

latency performance, and effectively reduce interference 

between streams, further reducing end-to-end latency [11]. 

Lin Y et al. proposed a multi automatic guided vehicle 

route planning method on the ground of deep 

reinforcement learning. This method utilized near end 

strategy optimization and long short-term memory to 

improve adaptability in handling temporary changes and 

sudden failures in tasks, which considered time step 

information. The designed method outperformed 

traditional methods in terms of convergence speed, 

demonstrating its potential for application in dynamic 

environments [12]. Chen Y et al. proposed an efficient 

multi-layer search algorithm that considered both 

customer service order and vehicle charging schedule 

simultaneously. This algorithm quickly obtained 

high-quality solutions through iterative threshold search 

and heuristic decoupling enumeration method. Numerous 

computational results indicated that this algorithm 

outperformed the most advanced methods in solution 

quality and computation time [13]. 

 

Table 1: Summary of relevant information of relevant studies. 

Author Research theme Improved method Main indicators Shortcoming 

Farahbakhsh 

et al. [6] 

Power plant path 

planning 

Limiting the random 

search space 
Traffic efficiency 

Poor performance in 

complex 

environments 

Huo et al. [7] 
ABC algorithm 

optimization 
Complementary coding 

Convergence 

performance 

The algorithm has a 

long running time 

Zhang et al. [8] 

ABC algorithm 

reverse learning 

optimization 

Introduction of the 

bystander view phase 

Convergence 

accuracy and speed 

It takes a lot of data 

to train 

Yilmaz Acar et 

al. [9] 

Multi-target resource 

allocation 

Combined with the 

transfer function binary 

format 

Convergence 

performance 

The parameter 

requirements are 

relatively high 

Bao et al. [10] 
Vehicle routing 

problem 

Two-stage approach based 

on the Ising machine 
Transportation cost 

The vehicle loading 

rate is relatively low 

Sun et al. [11] 

Joint routing and 

scheduling 

optimization 

Cross TS operator End-to-end delay Poor flexibility 

Lin et al. [12] 
Multi-automatic guide 

vehicle path planning 

Proximal strategy 

optimization and long-and 

short-term memory 

Convergence speed 

and robustness 

The model 

complexity is 

relatively high 

Chen et al. [13] 

High-level 

multi-efficiency 

search 

Heuristic decoupling 

enumeration method 

Computational 

efficiency 

The calculation 

accuracy is 

insufficient 

Current study 
Logistics path 

optimization 
Elite swarm strategy 

Loading rate and 

distribution 

efficiency 

/ 
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In summary, although numerous scholars have 

conducted extensive research on ABC algorithm and 

path optimization, most algorithms still exhibit 

problems like slow convergence speed, susceptibility 

to local optima, and low computational efficiency 

while improving path optimization capabilities. 

Therefore, an innovative ABC algorithm based on elite 

bees (EABC) is proposed to reduce the probability 

getting stuck in local optima and improve 

computational efficiency by enhancing its global and 

local search capabilities. It is expected to optimize 

logistics routes to reduce transportation cost and time, 

and achieve efficient operation of logistics enterprises 

in complex and changing practical environments. 

Based on the above relevant studies, Table 1 is 

summarized, in which the research theme, main index 

methods and shortcomings of relevant studies are 

summarized. 

2 Methods and materials 

2.1 Construction of multi-factor logistics 

vehicle path optimization model 
VRP is one of the classic combinatorial optimization 

problems in combinatorial optimization and operations 

research, mainly involving how to design the optimal path 

for a group of vehicles under limited vehicle resources to 

meet the needs of dispersed customers while minimizing 

the total cost. This usually includes vehicle running time, 

fuel consumption, distance, etc. [14]. Firstly, the 

schematic diagram of logistics vehicle path planning 

problem is shown in Figure 1. 

 

Logistics center

Customer Point

Delivery Route

 
Figure 1: Flow vehicle path planning problem diagram. 

 

● Ignore force 

majeure

● Single closed-

loop path

● Damage to goods

● Each service point is 

managed by a single 

vehicle

● Multi point 

dispersion

● One on one service

● Delivery time

● The earliest and 

latest start times

● Meet all delivery 

needs along the route.

 

Figure 2: Optimized logistics vehicle routing model. 

 

In Figure 1, the distribution center is located in 

the center, and customer points are distributed around. 

Arrows indicate possible delivery routes, connecting 

distribution centers and customer points, or connecting 

different customer points. The delivery vehicle departs 

from the distribution center, follows the planned route for 

delivery, and goes back to the center. The goal of delivery 

path planning is to find the optimal route that minimizes 
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the total distance or optimizes delivery efficiency 

under other constraints [15]. In the operation process 

of logistics services, efficiency and cost-effectiveness 

are the core considerations, and timeliness directly 

affects customer satisfaction. Delivery cost is also the 

key factor in customer decision-making. Therefore, the 

study constructs an optimized logistics vehicle path 

planning model, which will reduce transportation cost 

and shorten delivery cycles through innovative 

strategies, thereby improving customer satisfaction. 

The main architecture and assumptions are shown in 

Figure 2. 

In Figure 2, the basic hypothesis system is 

constructed for the model to enhance its applicability 

and logicality. Firstly, the impact of external non 

dominant factors such as force majeure on the 

transportation process is ignored. The second is to 

focus on optimizing a single closed-loop path. Thirdly, 

there may be freight loss. Fourthly, the vehicle type is 

consistent and there is no overloading situation, and 

each service point is only managed by a single vehicle. 

Fifthly, a flexible delivery strategy with multi-point 

dispersion is adopted. The sixth is to implement the 

principle of one-on-one service. Seventhly, the 

delivery time is considered. The eighth is to set the 

earliest and latest start time for the service. Ninth, each 

truck needs to choose the optimal path among 

numerous potential paths when performing tasks, and 

meet the delivery needs of all demand points on that 

path. The core goal is to reduce the total delivery cost 

and improve customer satisfaction. In the total 

distribution costs, it is divided into three major 

categories: fixed cost, transportation cost, and fuel 

consumption cost. In addition, considering that the cost 

of freight loss is directly related to the customer 

satisfaction, it is included in the customer satisfaction. 

Firstly, the fixed cost expression is shown in Equation 

(1). 

1

m

C k k

k

F F Z
=

=              (1) 

In Equation (1), 
CF  represents the fixed total 

cost. m  signifies the number of vehicles. 
kF  

signifies the fixed cost of delivering once. 
kZ  is the 

parameter, and a value of 1 indicates the execution of 

this delivery. Otherwise, it is not executed. Secondly, 

the expression for transportation cost is shown in 

Equation (2). 

1 1 1

m n n

C C ijk ijk

k i j

T D D X
= = =

=       (2) 

 

In Equation (2), 
CT  represents the total 

transportation cost. 
CD  signifies the transportation 

cost per unit distance. 
ijD  represents the distance 

metric between adjacent customers i  and j  on the 

path. 
ijkX  is the decision variable that identifies 

whether the identification vehicle chooses the path 

directly from i  to node j . Finally, the fuel 

consumption cost is shown in Equation (3). 

1 1 1 1 0 1

m n n m n n
k k

C ijk c ij ijk c rj

k i j k i j

E X E T Y E T
= = = = = =

= +     (3) 

In Equation (3), 
cE  and 

cE 
 respectively 

represent the fuel consumption per unit time during 

driving and the fuel consumption when the vehicle is 

parked at the customer point but the engine is not turned 

off. k

ijT  signifies the time from i  to j . k

rjT  signifies 

the loading and unloading time of the vehicle at node j . 

ijkY  indicates whether the vehicle is parked at customer 

points i  and j . In addition, in customer satisfaction 

analysis, the cost of freight loss is linked with the time 

window penalty cost to comprehensively consider the 

overall satisfaction of customers with delivery services. 

Firstly, the freight loss during the driving process and 

loading and unloading process is shown in Equation (4). 

 

1 2

1 2

1 0 1

( ) (2 )
k k

ij rl

m n n
T Tk k

C j j

k i j

L v v Y Q e e
 − −

= = =

= − − −   (4) 

 

In Equation (4), k

jY  represents whether to load or 

unload at j . k

jQ  represents the remaining quantity of 

goods after the vehicle arrives at customer point i . 
1  

and 
2  respectively represent the unit time freight loss 

coefficients during vehicle operation and unloading. 
1v  

and 
2v  respectively represent the unit price and insured 

unit price of the product. Secondly, in the construction of 

time window penalty cost, the relationship between 

vehicle arrival time, time window penalty cost, and 

customer satisfaction will be quantified. In large-scale 

distribution, the vehicle's load gradually decreases as the 

distribution distance grows, and fuel consumption 

decreases. Delivering within the time window agreed 

upon with the customer results in the highest customer 

satisfaction and no time penalty cost. Whereas delivering 

both before and after the time window affects customer 

satisfaction, which triggers a penalty cost, the closer the 

time window the higher the customer satisfaction and the 

lower the penalty cost. The customer satisfaction and 

penalty cost curves at different arrival times are shown in 

Figure 3. 

Figure 3 (a) shows the relationship between 

customer satisfaction and vehicle arrival time. Figure 3 (b) 

shows the relationship between penalty cost curve and 

vehicle arrival time. In Figure 3 (a), [ , ]E ET  and 

[ , ]LT L  respectively represent the earliest arrival time 

range and latest arrival limit that the customer can accept. 

[ ]ET,LT  represents the expected arrival time range of 

the customer, which is the core time period agreed upon 

by both parties. In Figure 3 (b), customer satisfaction 

reaches its peak at point [ ]ET,LT , while the cost of 

violation penalties is the lowest. As the arrival time of the 
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vehicle gradually approaches ET  within [ , ]E ET , 

although satisfaction remains at a high level, the cost 

of violation penalties tends to decrease. On the 

contrary, within the [ , ]LT L  interval, as the arrival 

time of vehicles is delayed, customer satisfaction 

gradually decreases and the cost of violation penalties 

increases. The two extreme ranges of [ , )E−  and 

( , ]L +  are far from the customer acceptance range, 

so they are set to trigger infinite penalty cost. The 

customer satisfaction is zero. Therefore, based on the 

above calculations, taking into account cost, freight 

loss, customer satisfaction, and time cost, the minimum 

transportation cost is the ultimate goal of the model, as 

shown in Equation (5). 

1 2 3 4 5C C C C C CMINA w F w T w E w L w P= + + + +    (5) 

In Equation (5), CF , CT , CE , CL , and CP  

respectively represent fixed cost, transportation cost, fuel 

consumption cost, cargo freight loss, and penalty cost 

incurred due to exceeding the time window. 
1w , 

2w , 

3w , 
4w  and 

5w  represent the weight coefficients of the 

above five factors, respectively. 
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(a) Relationship between customer satisfaction 

and vehicle arrival time

(b) Relationship between penalty curve and 

vehicle arrival time  
Figure 3: Relationship between customer satisfaction, penalty cost and arrival time. 
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Figure 4: Bee collecting honey process. 

 

2.2 Design of path planning model based 

on improved ABC 
After constructing the objective function and constraint 

conditions of the multi-factor logistics path planning 

model, further optimization solutions for logistics 

paths will be designed. The ABC is to simulate the 

swarm intelligence behavior of bees in searching for 

nectar. The optimal solution is searched by simulating the 

foraging and information exchange process of bees. The 

optimization problem is solved by the cooperation of 

three bees: worker bees, observation bees, and 

reconnaissance bees [16]. The honey harvesting process is 
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shown in Figure 4. 

As shown in Figure 4, after completing the honey 

collection task of honey source B, the worker bees will 

go to the honey unloading area B to unload the 

obtained nectar. At this moment, worker bees face 

three choices. Firstly, if it is assessed that the resources 

of honey source B have been depleted, the worker bees 

will transform into reconnaissance bees and 

immediately explore new honey source locations, 

namely the route UF to S. Secondly, worker bees go 

directly to the swing dance area and perform a specific 

"swing dance" to convey information about honey source 

B to surrounding observation bees, aiming to attract them 

to the honey source, namely, the route EF1. Thirdly, the 

worker bees return to honey source B to continue their 

honey harvesting operation, i.e. route EF2. Under the 

ABC algorithm framework, each nectar source point in 

the solution space is mapped to a potential optimized 

solution, and the abundance of nectar contained within it 

is used as an indicator of fitness, reflecting the quality of 

the corresponding solution. Furthermore, the 

implementation process of ABC is shown in Figure 5. 
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Figure 5: ABC algorithm implementation flow chart. 

 

As shown in Figure 5, the first is to generate an 

initial population and evaluate the fitness values of 

each initial solution. Secondly, in the worker bee stage, 

there are three steps: searching for new solutions, 

evaluating new solutions, and selecting new solutions. 

If the fitness value outperforms the current solution, 

the current solution will be updated to the new solution. 

Otherwise, it will remain unchanged. During the bee 

observation phase, the probability of each solution 

being selected is calculated and a local search is 

carried out on the solution to generate a new solution 

and calculate its fitness. If the fitness value 

outperforms the current solution, it will be updated. 

Otherwise, it will remain unchanged. In the 

reconnaissance bee stage, if a solution does not 

improve after multiple updates, it is considered to be in 

a stagnant state, and the reconnaissance bee will 

randomly produce a new solution to replace the 

stagnant solution. In each iteration, the currently found 

global optimal solution is updated and recorded. If the 

maximum iteration is satisfied at this point, the 

iteration is stopped and the result is output. The initial 

solution is shown in Equation (6) [17]. 

 

( )ijx lb rand ub lb= +  −          (6) 

 

In Equation (6), ijx  represents the solution of the 

current worker bee. i  is the honey source. j  is the 

dimension. rand  represents a random number. ub  

and lb  respectively represent the upper and lower limits 

of the honey source search range. Subsequently, during 

the worker bee stage, the calculation for searching for 

new honey sources is shown in Equation (7) [18]. 

 

( )ij ij ij kjv x x x= +  −             (7) 

 

In Equation (7), kjx  represents a randomly selected 

neighbor solution of ijx .   is a random number. After 

evaluating the adaptability of the new honey source, 

according to the principle of greedy selection, the newly 

discovered one is compared with the current honey source. 

If the adaptability of the new outperforms the existing 

honey source, it is updated and replaced. The probability 

calculation of hiring bees being selected is shown in 

Equation (8). 

1

i

i SN

nn

fit
P

fit
=

=


              (8) 

 

In Equation (8), SN  signifies the honey sources. 
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iP  represents the probability of hiring bees being 

selected. ifit  represents the fitness where the hired 

bees are located. However, in traditional ABC 

algorithms, there are drawbacks such as slow 

convergence speed and insufficient local search ability. 

At the same time, in response to the constraints of 

logistics vehicle path planning, the elite individual 

search and parameter set strategies are introduced to 

enhance the search efficiency. In the process of 

selecting elite bees, it is necessary to ensure that there 

is a moderate gap between them to avoid redundancy. 

Secondly, the fitness of elite bees needs to be closely 

aligned with the currently calculated optimal solution, 

in order to effectively expand the range of high-quality 

candidates. Firstly, the number of elite bee individuals 

is shown in Equation (9). 

100

pr
rn N=                 (9) 

 

In Equation (9), rn  signifies the elite bee. pr  

signifies the ratio of elite individuals to all individuals 

in the population. N  represents the total number of 

individuals in the population. The separation distance 

between elite bees depends on the specific setting of 

the radius parameter, which has a direct impact on the 

size of the elite bee population. If the set radius value 

is too large, it will lead to a reduction in the number of 

members in the elite bee set, which may miss many 

potential local optimal solutions. Therefore, the radius 

parameter calculation for the distance between elite 

bees is shown in Equation (10). 

 

( )u l

j jraduis x x r= −             (10) 

 

In Equation (10), u

jx  signifies the upper limit of 

the search space, and l

jx  signifies its lower limit. 

[0,1]r  is a proportional parameter. The population 

size of the elite bees is selected through adaptive 

parameters, and in the early stage of the algorithm 

operation, the number of elite bees is high, focusing on 

a wide range of search and determining the 

approximate range of the nectar source. As the number 

of iterations increases, the number of elite bees is 

scaled down, focusing on improving the search 

accuracy of the optimal solution. This can help to conduct 

a fast search in the early stage, and reduce the 

consumption of resources and improve the search 

accuracy in the later stage. The next step is the hiring bee 

stage. As the research has established an elite bee colony, 

two random elite bees are used for search to accelerate 

the convergence speed, as displayed in Equation (11). 

 

, , , ,( , )( )i j r j i j r jx s rand a a x x = + − −     (11) 

 

In Equation (11), 
,r js  and 

,r jx  respectively 

represent the coordinates of the elite bees randomly 

selected from the elite bee list in the j -th dimension, 

and the corresponding value of variable a  in that 

dimension. ( , )rand a a−  is a random parameter. A 

specific probability selection mechanism is introduced in 

elite bees, where individuals are assigned probability 

values to dominate the selection process. The probability 

calculation is shown in Equation (12). 

 

1 1

1 ( ) 1 ( )

sizeS

i

ii n

P
f S f S

=
+ +

           (12) 

 

In Equation (12), 
sizeS  represents the size of the 

elite bee population. ( )if S  and ( )nf S  represent the 

fitness of the first and n -th elite bees, respectively. 

Subsequently, each scout bee follows the probability 

selection criterion to select a specific solution from the 

elite bee list for exploration, and generates a series of new 

candidate solutions around each selected elite bee 

individual. The expression is shown in Equation (13). 

 

1 2, , , ,( , )( )i j r j r j r js s rand a a x x = + − −      (13) 

 

In Equation (13), 
1 ,r jx  and 

2 ,r jx  represent the 

corresponding values of two different solutions. 
,i js  

represents the generated new value. Therefore, based on 

the above calculations, the EABC process is shown in 

Figure 6. 
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Figure 6: The process of EABC. 

 

 

EABC first randomly generates an initial 

population and sets an elite bee list S. A local search 

strategy is applied to optimize the initial population, 

and then enter the loop iteration stage. Based on fitness 

values, the population is sorted. Then the elite bee list 

is constructed and updated. In the hiring bee step, the 

dimension is randomly selected for search, and new 

fitness values are calculated to update the elite bee list. 

The reconnaissance bee step randomly searches for 

stagnant food sources to prevent falling into local 

optima. Subsequently, the elite bee probability model 

is used to select reference scholars and apply search 

equations. The food sources are selected and updated 

in the bee observation step, and useless elite bees are 

deleted. When the maximum iteration is satisfied, the 

iteration is terminated and the optimal solution is 

output. 

 

 

 

 

 

 

 

3 Results 
To exhibit the performance of the designed model based 

on the EABC model, a series of tests were conducted on 

EABC first. In the second section, simulation tests were 

conducted on the logistics vehicle path planning model 

based on EABC to verify the practical application effect 

of the model. 

 

3.1 Performance testing of improved EABC 

algorithm 
The study used Windows 10 as the operating system, 

Intel Core i7 CPU, NVIDIA GeForce GPU, 64GB of 

memory, and Matlab. Firstly, the EABC algorithm was 

tested on several benchmark functions to assess the 

effectiveness of the improved ABC. ABC, Particle 

Swarm Optimization (PSO), and Ant Colony 

Optimization (ACO) were used as comparative 

algorithms. In the experiment, the maximum iteration was 

1000, the number of bee colonies was 30, and the 

dimension was 20. In both unimodal and multimodal 

function tests, each set of tests was repeated 10 times and 

averaged. In the results of both test functions, there was a 

significant difference (P<0.05). 
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Figure 7: Convergence curves of each algorithm. 

 

Table 2: Mean and standard deviation results. 

Function Index ABC PSO ACO EABC 

Unimodal 

function 

Sphere 1F  
Avg 8.17e-12 7.75e-14 2.75e-15 2.75e-20 

Std 2.78e-12 3.61e-14 4.85e-15 6.51e-20 

Rosenbrock 2F  
Avg 8.22e-14 7.34e-17 2.84e-18 2.64e-21 

Std 2.52e-14 3.23e-18 6.54e-18 6.41e-21 

Multimodal 

function 

Rastrigin 3F  
Avg 6.55e-11 6.41e-10 2.57e-13 2.45e-16 

Std 2.93e-11 2.95e-10 4.28e-13 5.49e-16 

Griewank 4F  
Avg 8.79e-12 6.84e-12 5.74e-15 3.61e-19 

Std 7.55e-12 5.22e-12 3.87e-15 9.45e-19 

 

Table 2 shows the optimized mean and standard 

deviation of ABC, PSO, ACO, and EABC algorithms 

running 100 times on the uni-modal functions Sphere 

and Rosenbrock, as well as on the multimodal 

functions Rastrigin and Griebank. The EABC 

algorithm achieved optimal optimization mean and 

standard deviation on both unimodal and multimodal 

benchmark functions. Compared with the traditional 

ABC algorithm, it had made progress. To further 

quantify the impact of the introduced elite bee colony 

strategy on convergence speed, the convergence curves 

of the four models on different benchmark test 

functions are shown in Figure 7. 

Figures 7 (a), 7 (b), 7 (c), and 7 (d) show the 

convergence curves of four algorithms tested on 
1F , 

2F , 
3F , and 

4F , respectively. In Figure 7 (a) and 

Figure 7 (b), the EABC had the optimal convergence 

speed and fitness values on the two uni-modal benchmark 

test functions 
1F  and 

2F , reaching convergence after 

425 and 381 iterations, respectively. On the benchmark 

functions 
3F  and 

4F  in Figure 7 (c) and Figure 7 (d), 

the EABC algorithm achieved convergence at the 409th 

and 361st iterations, respectively, confirming the 

feasibility of introducing elite bee colonies to improve 

convergence speed. Finally, the study introduced the 

VRPTW dataset, which was used to address the time 

window constraints added in vehicle path optimization 

problems. It was commonly used to test the performance 

of various vehicle path optimization algorithms. The 

Precision Recall (PR) curves and F1 values of each 

algorithm on the dataset are shown in Figure 8. 
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Figure 8: PR curve and F1 value results. 

 

(a) ABC (b) PSO

(c) ACO (d) EABC  
Figure 9: Paths of various algorithms in simple environment. 

 

Figures 8 (a) and 8 (b) display the PR curves and 

F1 value test results of four algorithms on the dataset, 

respectively. In Figure 8 (a), the area enclosed by the 

PR curve and coordinate axis of ABC, PSO, ACO, and 

EABC algorithms was 0.84, 0.68, 0.87, and 0.96, 

respectively. In Figure 8 (b), as the number of 

iterations increased, the F1 values of each algorithm 

showed a gradual upward trend in the early stages and 

tended to stabilize in the later stages. When the number 

of iterations was 600, the F1 values of each algorithm 

were 82.4%, 78.2%, 86.5%, and 97.7%, respectively. 

The EABC had good comprehensive performance. 

 

3.2 Simulation testing of logistics path 

planning based on EABC 

On the basis of verifying the performance of EABC 

algorithm, the research further tested the practical 

application effect of logistics vehicle path planning based 

on EABC. Firstly, the path search simulation experiments 

of ABC, PSO, ACO, and EABC algorithms in a simple 

planar environment are displayed in Figure 9. 

Figures 9 (a), 9 (b), 9 (c), and 9 (d) display the path 

search results of ABC, PSO, ACO, and EABC algorithms 

in a simple two-dimensional environment, respectively. In 

Figure 9 (a), the ABC algorithm generated 27 inflection 

points and showed 3 local optima. Because in the honey 

source update stage of the ABC algorithm, the variation 

in location between the current honey source and other 

randomly selected honey sources can easily lead to 

getting stuck in local optima, resulting in the inability to 
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exit the current search area. In Figure 9 (b), the PSO 

algorithm generated 18 turning nodes and fell into 

local optima 3 times. In Figure 9 (c), the ACO 

algorithm generated 16 turning nodes, which were 

trapped in local optima twice. In Figure 9 (d), EABC 

only had 11 inflection points and not trapped into a 

local optimal solution. From this, the improved EABC 

had good convergence accuracy and speed, which 

could achieve excellent optimization efficiency in path 

optimization simulation testing. Subsequently, Matlab 

was used to simulate and model the logistics distribution 

points, namely customer locations, including 1 

distribution center and 20 customer points to be delivered, 

with a total of 6 vehicles. All four models underwent 10 

simulation experiments, and the optimal delivery path 

obtained is shown in Figure 10. 
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Figure 10: Optimal path planning diagrams for different algorithms. 

 

Figures 10 (a), 10 (b), 10 (c), and 10 (d) display 

the optimal path planning diagrams obtained from 10 

simulation experiments for the ABC, PSO, ACO, and 

EABC models, respectively. The red flag represents 

the logistics distribution center, and the user icon 

represents the delivery point. There were many invalid 

turns and repeated paths in Figures 10 (a), 10 (b), and 10 

(c). The EABC had the least number of invalid turns and 

short repeated paths, resulting in the best path planning 

results. To further quantify the results, the various costs 

of each model in the above path planning are displayed in 

Table 3. 

 

Table 3: Multi indicator test results. 

Model 

Index 

Total route 

length/km 

Average 

load rate/% 
Fuel cost/¥ 

Freight loss 

cost/¥ 

Time delay 

cost/¥ 

Total 

delivery 

cost/¥ 

Calculation 

time/s 

ABC 5512.93 84.5 2483.30 22051.72 1339.64 88146.24 20.2 

ACO 5381.56 85.3 2424.13 22423.17 1318.48 90141.13 18.9 

PSO 5624.35 92.8 2533.49 20908.36 1282.35 85377.63 22.4 

EABC 5221.43 97.4 2341.45 20719.96 1268.81 83908.38 2.8 



92   Informatica 49 (2025) 81–94                                                                      Q. Yuan 

 

Table 4: Compares the time complexity of the three algorithms. 

Sample size Model type 
Average processing 

time (ms) 

Standard deviation 

(ms) 

Time complexity 

O(n2) evaluation 

1000 

EABC 21.4 2.0 Lower 

ABC 20.8 2.6 Lower 

ACO 31.5 3.4 Normal 

2000 

EABC 78.5 5.2 Lower 

ABC 75.6 7.8 Lower 

ACO 107.4 10.2 Normal 

3000 

EABC 177.8 8.3 Lower 

ABC 176.2 9.1 Lower 

ACO 357.6 12.5 Higher 

 

Table 5: Sensitivity of different algorithms for analysis. 

Number of 

distribution 

points 

Arithmetic Load factor/% Total cost/¥ 
Route planning 

time/s 

20 

EABC 97.4 83908.38 2.8 

ABC 84.5 88146.24 20.2 

ACO 85.3 90141.13 18.9 

40 

EABC 95.3 146503.21 3.1 

ABC 80.2 185724.18 35.3 

ACO 81.5 209516.54 22.5 

60 

EABC 94.6 197892.15 5.2 

ABC 79.2 253815.96 60.3 

ACO 80.1 286575.56 51.6 

 

Table 3 displays the path length, loading rate, fuel 

consumption cost, freight loss cost, time window 

penalty cost, delivery cost, and solution time of each 

optimal path. As shown in the table, compared with 

traditional ABC and other comparative models, the 

logistics vehicle path planning based on EABC had 

significant advantages in path length, loading rate, and 

various costs. The vehicle loading rates for the optimal 

paths of ABC, PSO, ACO, and EABC models were 

84.5%, 85.3%, 92.8%, and 97.4%, respectively. In 

terms of running time, the solution time for the four 

models was 20.2s, 18.9s, 22.4s, and 2.8s, respectively. 

In order to analyze the computational complexity of 

the EABC algorithm and the comparison algorithm, 

the time required by the two algorithms to process the 

same amount of data under the same hardware 

conditions was measured experimentally. The results 

of the time complexity comparison of the three 

algorithms are shown in Table 4. 

In Table 4, when the sample size was 1000, 2000 

and 3000, the average processing time of the EABC 

algorithm was 21.4ms, 78.5ms and 177.8ms 

respectively, which was only slightly higher than that 

of the benchmark algorithm ABC, and much lower than 

that of the ACO algorithm. The standard deviation of 

EABC algorithm was the minimum value, and the 

processing time of the algorithm was the most stable. The 

results showed that the EABC algorithm had lower 

computational complexity and higher computational 

efficiency, and with the increase of the number of samples, 

the growth rate of time complexity O(n2) was much lower 

than that of the ACO algorithm. For the complexity and 

variability of the logistics and distribution environment, 

the study analyzed the sensitivity of different algorithms, 

and a comparison of the results is shown in Table 5. 

In Table 5, as the number of distribution points 

increased, the vehicle load factor of each algorithm was 

gradually decreasing, and the total distribution cost and 

route planning time were gradually increasing. However, 

the load factor of the EABC algorithm decreased more 

slowly than the ABC and ACO algorithms, and the load 

factor of the three algorithms decreased by 2.8%, 5.3%, 

and 5.2%, respectively, when the number of distribution 

points was 60. The total cost of the three algorithms 

increased by ¥113,983.77, ¥165,669.72, and ¥196,434.43, 

and the path planning time improved by 2.4s, 40.1s, and 
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32.7s, respectively. 

4 Discussion 
Aiming at the existing logistics distribution path 

optimization methods, the problems of long 

distribution path, high distribution cost and insufficient 

vehicle loading rate, the study proposed an elite bee 

colony algorithm to optimize the logistics distribution 

path. The experimental results showed that the EABC 

algorithm reached convergence at 400 iterations in 

both single-mode and multi-mode benchmark test 

functions, and the convergence speeds were better than 

other algorithms, and the optimal fitness values 

obtained were around 10-15.In the test functions, the 

ABC, PSO and ACO algorithms reached convergence 

at 500, 600 and 800 iterations, respectively.The EABC 

algorithm achieved the convergence at 500, 600 and 

800 iterations, respectively.The EABC algorithm, 

through the hiring bees stage in the The EABC 

algorithm had fewer inflection points as it used two 

different searches to obtain different solutions, and the 

higher value of adaptation was used as a candidate 

solution to reduce the generation of local optimal 

solutions. The population size of the elite bees was 

selected through adaptive parameters, and in the early 

stages of the algorithm's operation, the number of elite 

bees was higher, focusing on extensive search and 

determining the approximate range of nectar sources. 

As the number of iterations increased, the number of 

elite bees decreased and the focus was on improving 

the search accuracy of the optimal solution. This 

helped to perform fast search at early stages and 

reduce resource consumption and improve search 

accuracy at later stages. The proposed EABC 

algorithm was not only used for path optimization in 

logistics and distribution, but also in the field of 

takeaway delivery with similar attributes, urban 

services such as street cleaning and garbage collection, 

and in traffic management and emergency rescue, etc., 

which could improve the efficiency and reduce the cost 

of work.The EABC algorithm could still fall into local 

optimal solutions when the performance of the test set 

was poor, and subsequently, it could be added to the 

algorithm with a forbidden search strategy could be 

added to the algorithm to store the local extremes in 

the taboo table to further avoid local optimal solutions. 

5 Conclusion 
Traditional logistics path optimization methods 

typically only consider fixed transportation needs and 

paths, without taking into account other potential 

transportation cost. The study introduced the elite bee 

colony mechanism to enhance the global and local 

search capabilities of ABC. A logistics vehicle path 

optimization model was constructed based on EABC. 

The performance test results showed that EABC 

achieved the optimal optimized mean and standard 

deviation on both uni-modal and multi-modal 

benchmark functions. On the convergence curve, 

EABC had lower fitness than other algorithms, with the 

best convergence speed and accuracy. The area enclosed 

by its PR curve and coordinate axis was 0.96, and the F1 

value at 600 iterations was 97.7%. In a simple 

two-dimensional environment experiment, the inflection 

point generated by the EABC optimal path was only 11, 

and the number of times it fell into a local optimal 

solution was 0. In the optimal path test of 20 customer 

points, the total path length of EABC was 5221.43km, the 

total delivery cost was 83908.38 yuan, the vehicle loading 

rate was 97.4%, and the solution time was 2.8s. From this, 

he logistics path intelligent optimization model based on 

EABC has shown significant advantages in improving 

logistics efficiency and reducing transportation cost, 

which has broad application prospects. EABC algorithms 

are not only applied to logistics and distribution, but also 

in the field of takeaway delivery with similar attributes, 

and can be applied to urban services, such as street 

cleaning and garbage collection, etc., as well as in traffic 

management to reduce congestion and improve the 

efficiency of road use. In the future, more influencing 

factors still need to be considered. Further in-depth 

research is necessary in large-scale practical applications 

and algorithm optimization to achieve more efficient and 

practical logistics path optimization solutions. 
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