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Authors propose new genetic algorithm for solving the planar p-median location problem and k-means
clustering problem. The ideas of the algorithm are based on the genetic algorithm with greedy heuristic
for the p-median problem on networks and information bottleneck (IB) clustering algorithms. The pro-
posed algorithm uses the standard k-means procedure or any other similar algorithm for local search. The
efficiency of the proposed algorithm in comparison with known algorithms was proved by experiments on
large-scale location and clustering problems.

Povzetek: Razvit je nov algoritem za gručenje in lokalizacijo s hitro požrešno hevristiko.

1 Introduction
The aim of a continuous location problem [18] is to deter-
mine the location of one or more new facilities in a contin-
uum of possible locations. Main parameters of such prob-
lems are the coordinates of the facilities and distances be-
tween them [54, 19, 22]. Examples of the location prob-
lems include the location of warehouses [22], computer
and communication networks, base stations of wireless net-
works [44, 30], statistical estimation problems [41], sig-
nal and image processing and other engineering applica-
tions. In addition, many problems of cluster analysys
[21, 34, 47] can be considered as location problems [37, 32]
with squared Euclidean [21, 26], Euclidean [37, 48] or
other distance functions [23].

The Weber problem [52, 54] is the problem of searching
for such a point that a sum of weighted Euclidean distances
from this point to the given points (existing facilities which
are also called "demand points" or "data vectors" in case of
a clustering problem) is minimal:

arg min
X∈R2

F (X) =

N∑
i=1

wiL(X,Ai). (1)

Here, L(·) is a distance function (norm), Euclidean in case
of Weber Problem.

For solving this problem (serching for its center), we
can use an iterative Weiszfeld procedure [53] or its im-
proved modifications [51, 17]. Analogous problems with
Manhattan and Chebyshev distances are well investigated
[55, 50, 11]. Convergence of this algorithm is proved for
various distance metrics [40].

One of possible generalizations [22, 14] of the Weber
problem is the p-median problem [22] where the aim is to

find optimal locations of p new points (facilities):

argminF (X1, ..., Xp) =

N∑
i=1

wi min
j∈{1,p}

L(Xj , Ai). (2)

Here, {Ai|i = 1, N} is a set of the demand points (data
vectors), {Xj |j = 1, p} is a set of new placed facilities, wi
is a weight coefficient of the ith demand point, L(·) is a dis-
tance function defined on a continuous or discrete set [24].
In this paper, we consider continuous problems in an n-
dimensional space. In the simplest case, L(·) is Euclidean
norm. In this case, the Weiszfeld procedure is implemented
up to p times at aech iteration of the the iterative alternating
location-allocation (ALA) method [13].

If the distance function (metric norm) is squared Eu-
clidean (l22) then the solution of the single-facility problem
(1) is the mean point (centroid) [22]:

xj =

N∑
i=1

wiai/

N∑
i=1

wi. (3)

Here, we assume that X = (x1, ..., xd), Ai =
(ai,1, ..., ai,d) ∀i = 1, N .

The simplest and probably most popular clustering [9,
49] model is k-means [33, 34] which can be formulated as
a p-median problem (2) where wi = 1 ∀i = 1, N and L(·)
is squared Euclidean norm l2:

L(X,Y ) =

d∑
i=1

(x1 − y1)2

where X = (x1, ..., xd) ∈ Rd, Y = (y1, ..., yd) ∈ Rd.
Searching for the centroid takes less computational re-
sourses than searching iteratively for the center in case of
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the Weber problem and the ALA method works faster in
this case.

The p-median problem with Euclidean (l2), squared Eu-
clidean (l22) or other lp distances [16] is a problem of
global optimization: the objective function is not concave
nor convex [13]. The ALA method and analogous algo-
rithms can find one local minimum of the objective func-
tion, their result depends on the initial solution. Moreover,
such global optimization problems are proved to be NP -
hard [20, 2, 35] for both continuous and discrete location
[45, 46, 25] which makes usage of a brute force meth-
ods impossible for large datasets. Therefore, many heuris-
tics [39] are used to improve the obtained results. One of
widely used heuristics for initial seeding is k-means++ [8].
Most popular ALA procedures for the k-means problem
are based on an algorithm proposed by Lloyd [33]. The al-
gorithm known as standard k-means procedure [34] is fast
local search procedure based on Lloyd’s procedure. How-
ever, many authors proposed faster methods based on this
standard procedure [56, 12, 1] for datasets and continuous
supplemented data streams.

Many authors propose approaches based on data sam-
pling [38]: solving reduced problem with randomly se-
lected part of the initial dataset and using this result as the
initial solution of the ALA algorithm on the whole dataset
[15, 29, 43]. Analogous approach was proposed for dis-
crete p-median problems [6].

Many authors propose various genetic algorithms (GA)
for improving the results of the local search [28, 36, 31,
42]. Most of such algorithms use evolutionary approach for
recombination of the initial solution of the ALA algorithm.

Hosage and Goodchild [27] proposed the first genetic
algorithm for the p-median problem. Genetic algurithms
are based on the idea of recombination of elements of a
set ("population") of candidate solutions called "individu-
als" coded by special alphabet. In [10], authors propose
a genetic algorithm providing rather precise results but its
convergence is slow. Alp et al. [3] proposed a quick and
precise genetic algorithm with special "greedy" heuristic
for solving discrete p-median problems on networks which
was improved by Antamoshkin and Kazakovtsev [4]. This
algorithm can be used for generating the initial solutions
for the ALA algorithm [42]. The idea of the "greedy heuris-
tic" is as follows. After selecting two "parent" solutions,
new infeasible solution (a candidate solution) is composed
as the union of the facility sets of the "parent" solutions.
From new solution, the facilities are eliminated until the
solution becomes feasible. At each step, algorithm elimi-
nates such facility that its elimination gives minimal addi-
tion to the objective function. If this algorithm is used for
the continuous p-median problem, it generates the initial
solution for the ALA algorithm [42] which must be imple-
mented at each step to estimate the result of eliminating of
each facility from the candidate solution.

In this paper, we present a new genetic algorithm with
floating point alphabet based on the ideas of algorithm pro-
posed by Alp et al. [3]. Original Alp’s algorithm uses inte-

ger alphabet (number of vertices of the network) in "chro-
mosomes" (interim solutions) of the GA. Its version for pla-
nar location problems [42] uses integer alphabet for coding
numbers of data vectors used as initial solutions of the ALA
algorithm. In our algorithm, we use floating point alpha-
bet. Elements of "chromosomes" of our genetic algorithm
are coordinates of centers or centroids of the interim solu-
tion which are altered by steps of the ALA algorthm and
eliminated until a feasible solution is obtained. Such com-
bination of the greedy heuristic and ALA procedure allows
the algorithm to get more precise results.

In case of continuous locating problems, the greedy
heuristic is a computationally intensive procedure. We
propose new procedure which allows eliminating sets of
the centers or centroids from the candidate solution which
gives multiple reduce of the running time.

2 Known algorithms
The basic idea of the alternating location-allocation ALA
is recalculating the centers or centroids of the clusters and
reallocating of the data vectors to the closest center or cen-
troid:

Algorithm 1. ALA method [28].

Require: Set V = (A1, ..., AN ) of N data vectors
in d-dimensional space, A1 = (a1,1, ..., a1,d), ..., AN =
(aN,1, ..., aN,d), initial solution: a set of centers or cen-
troid of p clusters X1 = (x1,1, ..., x1,d), ..., Xp =
(xp,1, ..., xp,d).

1: For each data vector, find the closest centroid:

Ci = arg min
j=1,p

, L(Ai, Xj) ∀i = 1, N.

2: For each cluster Cclustj = {i ∈ {1, N}|Ci = j}, re-
calculate its center or centroidXj . In the case of Euclidean
(l2) metric, Weiszfeld procedure or its advanced modifi-
cation can be used. In the case of squared Euclidean (l22)
metric, equation (3) is used to obtain each of d coordinates.

3: If any center or centroid was altered at Step 2 then go
to Step 1.

4: Otherwise, STOP. X1, ..., Xp are local minima.

To improve the performance of Algorithm 1, recalcula-
tion of the centers or centroids are performed for the altered
clusters only. In the case of Euclidean metric l2, this allows
to avoid running Weiszfeld procedure for each of the clus-
ters at each iteration.

In case of the squared Euclidean metric l22, this algorithm
is called Standard k-means procedure.

The ALA methods is a local search procedure, its result
depends on proper selection of the initial solution. In the
simplest case, p data vectors can be randomly selected as
the initial centers or centroids. A popular procedure called
k-means++ for initial seeding [8] guaranteesO(log(p)) ac-
curacy by proper choosing initial centers. The idea of this
method is based on probability change of choosing data
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vectors as the initial centers depending on distances to the
closest previously chosen vectors. Analogous method for
discrete location problems was proposed in [4]. The k-
means++ algorithm is as follows:

Algorithm 2. k-means++ [8].

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters.

1: Initialize the probabilitiy distributions vector P =
(p1, ..., pN ) with equal values (e.g. 1). Initialize the set
of centroids χ = ∅.

2: Chose one data vector X from the set of data vec-
tors V at random using weighted probability distribu-

tions P : calculate S =
N∑
i=1

pi, generate a random value

r ∈ [0;S) with the uniform distribution and use imin =
argmini∈{1,N}:

∑i
j=1 pi<r

i. Set χ = χ ∪ {Aimin}.
3: For each i ∈ {1, N} set pi = minX∈χ L(X,Ai).

Here, L(·) is the distance metric.
4: If |χ| < p then go to Step 2.
5: Otherwise, STOP. χ is the initial set of centers or cen-

troids.

The idea of sampling k-means [38, 15] is very simple:

Algorithm 3. Sampling k-means.

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters, parameter s ∈ (0; 1).

1: Choose randomly s data vectors from V and form
new set Vs.

2: Initialize the set of initial centers or centroids χ. To
improve the results, k-means++ procedure (Algorithm al-
gkplus) can be performed.

3: Run Algorithm 1 with the initial set χ and set of data
vectors Vs. After this procedure, we have the modified set
χ.

4: Run Algorithm 1 with the initial set χ for the whole
set of data vectors V .

5: STOP.

In [15], authors propose a method of choosing an optimal
value of the parameter s.

Sampling k-means approach, k-means++ initial seeding
and other techniques improve the results of the k-means
procedure, however, they do not eliminate its most impor-
tant flaw: all of them perform local search. The simplest
approach used for global optimization is random multistart
[5]. In this case, the local search procedure runs with var-
ious randomly generated initial data. For the p-median or
k-means problem, this algorithm is as follows.

Algorithm 4. Random multistart.

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters.

1: Set F ∗∗ = +∞.
2: Initialize the sets of data vectors indexes χ : χ ⊂

{1, N}, |χk| = p. Uniform random generation or k-
means++ procedure can be used.

3: Perform the ALA procedure with the initial solution
χ and obtain a local minimum F ∗ of the objective function
(2) and a set of corresponding centers or centroids χ∗. In-
stead of the "pure" ALA procedure, sampling k-means can
be used in case of a large dataset.

4: If F ∗∗ > F ∗ then set F ∗∗ = F ∗;χ∗∗ = χ∗.
5: Check the stop conditions. If they are not reached

then go to Step 2.
6: Otherwise, STOP. The solution is χ∗∗.

The scheme of the genetic algorithm with greedy heuris-
tic proposed by Alp et al. for continuous location problems
is as follows [3, 42].

Algorithm 5. GA with greedy heuristic.

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters, popultion size Np.

1: Initialize Np sets of data vectors indexes χ1, ...χNp :

χi ⊂ {1, N}, |χk| = p ∀k = 1, Np. For each k ∈ {1, Np},
calculate the fitness function. In case of the continuous p-
median problem, to obtain the fitness function value for χk,
algorithm performs the ALA procedure with initial solution
χk and calculate

Fk = F (χ∗k) =

N∑
i=1

wi min
X∈χ∗

k

L(X,Ai). (4)

Here, χ∗k is the result of running the ALA procedure with
the initial solution χk.

2: If the stop conditions are reached then go to Step 7.
3: Choose randomly two "parent" sets χk1 and χk2 ,

k1, k2 ∈ {1, Np}, k1 6= k2. Running special crossover pro-
cedure with greedy heuristic, obtain "child" set of indexes
χc. Calculate the fitness function value Fc in accordance
with (4).

4: If ∃k ∈ {1, Np} : χk = χc then go to Step 2.
5: Choose index kworst = argmaxk=1,Np

Fk. If
Fwotst < Fc then go to Step 2.

6: Replace χkworst with χc, set Fkworst = Fc and go to
Step 2.

7: STOP. The result is a set χ∗k, k∗ = argmink=1,Np
Fk.

In the above version of this algorithm, at Steps 5 and 6,
the worst solution χworst is replaced by new solution. In
our experiments, we used other procedure at Step 5 (sim-
plest tournament selection): choose randomly two indexes
k1 and k2, k1 6= k2; set kworst = argmaxk∈{k1,k2} Fk.
This version of Step 5 gives better results.

In both random multistart and genetic algorithms, vari-
ous stop conditions can be used. We used maximum run-
ning time limit.

Unlike most genetic algorithms, this method does not
use any mutation procedure. However, the crossover pro-
cedure uses a special heuristic:

Algorithm 6. Greedy crossover heuristic.

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters, two "parent" sets of centers or centroids χk1 and
χk2 .
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1: Set χc = χk1 ∪ χk2 . Note that p ≤ |χc| ≤ 2p, i.e.,
the candidate solution χc is not feasible.

2: If |χc| = p then STOP and return the solution χc.
3: Calculate j∗ = argminj∈χc F (χc \ {j}).
4: Set χc = χc \ {j∗}.
5: Go to Step 2.

At each iteration, one index of the center or centroid is
eliminated (Step 4). At Step 3, Algorithm 6 chooses the
index of a center or centroid which can be eliminated with
minimum change of the fitness function. To estimate the
fitness function, ALA procedure must be performed. Thus,
Step 3 of Algorithm 6 is computationally intensive. In case
of Euclidean metric, iteratice Weiszfeld procedure must run
at each iteration of the iterative ALA procedure performed
|χc| times.

Therefore, Algorithm 6 is a computationally intensive
procedure, slow for very large datasets in case of k-means
problem and almost inapplicable in case of large-scale con-
tinuous p-median problems with Euclidean metric. Idea of
this heuristics correlates to ideas of the information bottle-
neck (IB) clustering method [48]. In the IB algorithms, at
the start, all data vectors form individual clusters. At each
step, one cluster is eliminated, its members join other clus-
ters. To choose such cluster, for each of them, algorithm
calculates the "information loss". In the case of "geomet-
ric" clustering based on distance metrics, this loss can be
estimated as the distance function increase. The compu-
tational load in case of the IB clustering allows to imple-
ment this method to small datasets only (N < 1000). This
form of the method proposed by Alp et al. for continuous
location problems is a compromise between the IB cluster-
ing simpler heuristics like traditional genetic algorithms or
random multistart.

This algorithm can be used for solving a discrete p-
median problem (2) with an additional condition:

Xj ∈ V ∀j ∈ {1, p} (5)

which can be used as an initial solution of the ALA method.

Algorithm 7. Greedy crossover heuristic for initial seed-
ing.

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters, two "parent" sets of centers or centroids χk1 and
χk2 .

1: Set χc = χk1 ∪ χk2 .
2: If |χc| = p then STOP and return the solution χc.
3: Calculate j∗ =

argmink∈χc
N∑
i=1

(minj∈(χc\{k}) wiL(Ai, Aj)).

4: Set χc = χc \ {j∗}.
5: Go to Step 2.

In this case, the ALA method always starts from a lo-
cal minimum of the discrete problem (2) with an addi-
tional constraint (5). This version of the algorithm is much

faster, it gives better results than the random multistart (Al-
gorithm 4) for most popular test datasets (see Section 4).
However, such results can be improved.

We propose two modifications. One of them decreases
the computational intensiveness of the algorithm, the sec-
ond one improves its accuracy. Their combination makes
new algorithm faster and more precise in case of large
datasets.

3 Our contribution
Let us consider Steps 3 and 4 of Algorithms 6 and 7. At
each iteration, Step 3 selects one index of data vectors and
eliminates it from the candidate solution. Let us assume
that at some kth iteration, j∗th index is eliminated and at
(k + 1)th iteration, algorithm eliminates j∗∗th index. Our
first modification is based on the supposition that if Aj∗
is distant from Aj∗∗ (i. e. L(Aj∗ , Aj∗∗) > Lmin, Lmin is
some constant) then the fact of eliminating or keeping j∗∗th
index "almost" does not depend on the fact of elimination
or keeping of j∗th index at previous iteration.

If the facts of choosing of indexes of two distant data
vectors at Step 3 in two successive iterations are indepen-
dent then the decisions on their eliminating (or keeping)
can be made simultaneously. We propose the following
modification of Steps 3 and 4.

Algorithm 8. Fast greedy heuristic crossover: modified
steps of the greedy heuristic procedure (Algorithm 6).

3: For each j ∈ χc, calculate δj = F (χc \ {k}).
4.1: Sort δi and select a subset χelim = {e1, ..., enδ} ⊂

χc of nδ indexes with minimal values of δi. Value nδ ∈
{1, |χc| − p} must be calculated in each iteration. Maxi-
mum number of the extra data elements of set χc must be
eliminated in the first iterations and only one element in the
final iterations (final iterations coincide with Algorithm 6
or 7):

nδ = max{[(|χc| − p) ∗ σe], 1}. (6)

We ran Algorithm 8 with σe = 0.2. Smaller values (σe <
0.0) convert it into Algorithm 6 and make it work slower.
Big values (σe > 0.3) change the order of eliminating the
clusters and reduce the accuracy.

4.2: From χelim, remove close data vectors. For each
j ∈ {2, |χelim|}, if ∃k ∈ {1, j − 1} : L(Aej , Aek) <
Lmin then remove ej from χelim.

4.3: Set χc = χc \ χelim.

Algorithm 6 performs up to p iterations. For real large
datasets, computational experiments demonstrate that p or
p−1 iterations are performed in most cases (data vectors of
the "parent" solutions at Step 3 of Algorithm 5 do not co-
incide). In each iteration, ALA algorithm runs |χc| times.
Thus, ALA algorithm runs up to 2p+ (2p− 1) + ...+ 1 =
2p2 − p + 1 times. Popular test datasets, BIRCH 1–3 are
generated for testing algorithms on problems with 100 clus-
ters. Thus, the ALA algorithm must run up to 19901 times.
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Depending on parameter Lmin, in each iteration of Al-
gorithm 8 eliminates up to σe · p members from χc. If
Lmin is big and σe = 0.2, in the first iteration, ALA runs
2p times, in the second iteration [1.8p] times, then [1.64p],
[1.512p] times etc. In case of 100 clusters and big Lmin,
the ALA procedure runs 200 + 180 + 164 + 152 + 142 +
134+ 128+ 123+ 118+ 116+ 113+ 111+ 109+ 108+
107+106+105+104+103+102+101 = 2626 times only.
Taking into account computational intenseness or the ALA
procedure such as standard k-means algorithm which is es-
timated O(N34p34 log4(N)/σ6) in case of independently
perturbed data vectors by a normal distribution with vari-
ance σ2 [7], reducing number of runs of the local search
procedure is crucial in case of large-scale problems.

Step 3 of Algorithm 7 can be modified as follows.

Algorithm 9. Fast greedy heuristic crossover for initial
seeding: modified steps of the greedy heuristic procedure
(Algorithm 7).

3: For each j ∈ χc, calculate δj =
N∑
i=1

(minj∈(χc\{k}) wiL(Ai, Aj)).

4.1: Sort δi and select a subset χelim = {e1, ..., enδ} ⊂
χc of nδ indexes with minimal values of δi.

4.2: For each j ∈ {2, |χelim|}, if ∃k ∈
{1, j − 1} : L(Aej , Aek) < Lmin then remove ej from
χelim.

4.3: Set χc = χc \ χelim.

The aim of Step 4.2 of Algorithm 8 is to hold the order
of elimination of the clusters provided by Algorithms 6 or
7. In Fig. 1, two cases of running Algorithm 8 are shown.
Let us assume that p = 4 and distances between the centers
of clusters 1 and 3, 3 and 4, 1 and 4, 6 and 7 are less than
Lmin. Let us assume that parameter σe allows eliminating
up to 3 clusters simultaneously in the 1st iteration. After
Step 3 of Algorithm 8 and sorting δi, we have a sequence
of clusters 4, 3, 6, ... . If Step 4.2 is included in Algo-
rithm 8 then only one of clusters 1, 3 and 4 can be removed
in the 1st iteration (Case A). Thus, only two clusters (4 and
7) are eliminated in the 1st iteration. If we remove Step 4.2
from our algorithm or assign big value to Lmin then the si-
multaneous elimination of clusters 3 and 4 is allowed (Case
B) which gives worse value of the squared distances sum.
If the original Algorithm 7 runs, it eliminates cluster 4 first,
then cluster 6. In its 3rd iteration, Algorithm 7 eliminates
cluster 1 and we have the set of clusters shown in Fig. 1,
Case A after two iterations which coincides with the result
of Algorithm 8.

Algorithm 6 starts the ALA procedure many times, it is
a precise but slow method. Having included Algorithm 8
into Algorithm 6, we reduce the number of starts of the
ALA procedure, however, as explained above, at least 2626
starts of the local search algorithm in each iteration of the
genetic algorithm in case of 100 clusters make using this
method impossible for very a large dataset, especially for
the Euclidean metric. Algorithm 7 optimizes the fitness

Figure 1: Succeeding and simultaneous elimination of
clusters.

function calculated for the initial seeding of the ALA pro-
cedure. This approach is fast, however, an optimal value of
the fitness function for the initial seeding does not guaran-
tee its optimal value for the final result of the ALA proce-
dure.

We propose a compromise version of two algorithms
which implements one step of the ALA procedure after
each elimination of the clusters. Since the result of the
ALA procedure does not coincide with the data vectors Ai
(in general), using integer numbers as the alphabet of the
GA (i.e. for coding the solutions forming the population of
the GA) is impossible and we use real vectors (coordinates
of the interim solutions of the ALA procedure) for coding
the solutions in the population of the GA. The whole algo-
rithm is as follows.

Algorithm 10. GA with greedy heuristic and floating point
alphabet.
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Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters, population size Np.

1: Initialize Np sets of coordinates χ1, ..., χNp : chii ⊂
Rd, |χk| = p ∀k = 1, Np with solutions of the ALA
algorithm initialized by the k-means++ procedure (Algo-
rithm 2). Thus, each χi is a local minimum of (2). Store
corresponding values of the function 2 to arrayF1, ...,FNp .

2: If the stop conditions are reached then go to Step 7.
3: Choose randomly two "parent" sets χk1 and χk2 ,

k1, k2 ∈ {1, Np}, k1 6= k2. Running Algorithm 11, obtain
"child" set of coordinates χc which is a local minimum of
(2). Store the value of (2) to Fc.

4: If ∃k ∈ {1, Np} : χk = χc then go to Step 2.
5: Choose index kworst = argmaxk=1,Np

Fk. If
Fwotst < Fc then go to Step 2.

6: Choose randomly two indexes k1 and k2, k1 6= k2;
set kworst = argmaxk∈{k1,k2} Fk.

6: Replace χkworst with χc, set Fkworst = Fc and go to
Step 2.

7: STOP. The result is a set χ∗k, k∗ = argmink=1,Np
Fk.

The greedy heuristic procedure is modified as follows.

Algorithm 11. Greedy crossover heuristic with floating
point alphabet.

Require: Set V = (A1, ..., AN ) ∈ Rd, number p of
clusters, two "parent" sets of centers or centroids χk1 and
χk2 , parameters σe and Lmin.

1: Set χc = χk1 ∪χk2 . Run the ALA procedure for |χc|
clusters starting from χc. Store its result to χc.

2: If |χc| = p then run the ALA procedure with the
initial solution χc, then STOP and return its result.

2.1: Calculate the distances from each data vector to the
closest element of χc.

di = min
X∈χc

L(X,Ai) ∀i = 1, N.

Assign each data vector to the corresponding cluster with
its center in an element of χc.

Ci = arg min
X∈χc

L(X,Ai) ∀i = 1, N.

Calculate the distances from each data vector to the second
closest element of χc.

Di = min
Y ∈(χc\{Ci})

L(Y,Ai).

3: For each X ∈ χc, calculate δX = F (χc \ {X}) =∑
i:Ci]X

(Di − di).

4.1: Calculate nδ in accordance with (6). Sort δX and
select a subset χelim = {X1, ..., Xnδ} ⊂ χc of nδ coordi-
nates with minimal values of δX .

4.2: For each j ∈ {2, |χelim|}, if ∃k ∈
{1, j − 1} : L(Xj , Xk) < Lmin then remove Xj from
χelim.

4.3: Set χc = χc \ χelim.

4.4: Reassign data vectors to the closest centers or cen-
troids.

C∗i = arg min
X∈χc

L(X,Ai) ∀i = 1, N.

For each X ∈ χc, if ∃i ∈ {1, N} : Ci = X and C∗i 6=
X then recalculate center or centroid X∗ of the cluster
CclustX = {Ai|C∗i = X, i = 1, N}. Set χc = (χc\{X∗})∪
{X}.

5: Go to Step 2.

An important parameter of Algorithms 8 and 11 is Lmin.
Performed series of experiments on various data, we pro-
pose the following method of its determining for each pair
of centers or centroids Xj and Xk (see Step 4.2 of Algo-
rithm 11):

Lmin = min
X∈χc

{max{L(X,Xj), L(X,Xk)}}.

We ran this algorithm with large datasets and proved its
efficiency experimentally.

4 Computational experiments

4.1 Datasets and computing facilities
For testing purposes, we used real data and generated
datasets collected by Speech and Image Processing Unit
of School of Computing of University of Eastern Finland1

and UCI Machine Learning Repository2. Other authors use
such problems for their experiments [56, 1, 43]. Number of
data vectors N varies from 150 (classical Iris plant prob-
lem) to 581013 (Cover type dataset), number of dimen-
sions d varies from 2 to 54, number of clusters from 3 to
1000. In addition, we used specially generated datasets for
p-median problems (uniformly distributed data vecrots in
R2, each coordinate in interval [0; 10) with uniformly dis-
tributed weights in range [0; 10)).

Computational experiments were performed for prob-
lems with Euclidean (l2) and squared Euclidean (l22 )
distances (p-median and k-means problems, correspond-
ingly).

For our experiments, we used a computer Depo X8Sti
(6-core CPU Xeon X5650 2.67 GHz, 12Gb RAM), hyper-
threading disabled and ifort compiler with full optimization
and implicit parallelism (option -O3).

For algorithms comparison purposes, we ran each algo-
rithm with each of datasets 30 times.

4.2 Algorithm parameters tuning
An important parameter of the genetic algorithm is num-
ber of individuals (candidate solutions)Np in its population
(population size). Running Algorithm 10 for the generated
datasets (d = 2, N = 1000 and N = 10000, p = 10 and

1http://cs.joensuu.fi/sipu/datasets/
2https://archive.ics.uci.edu/ml/datasets.html
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Figure 2: Results of Algorithm 10 with various population sizes.

p = 100) and real datasets (MissAmerica1 with p = 100)
show that large populations (Np > 50) slow down the con-
vergence. Analogously, running with very small popula-
tions (Np < 10) decrease the accuracy.

Results of running our algorithm for a generated prob-
lem with squared Euclidean metric are shown in Fig. 2. In
this diagram, we fixed the best results achieved by the al-
gorithms and the spent time after each improvement of the
results in a special array. This diagram shows the average
or worst results of 30 starts of the algorithms.

Experiments show that a population of 10–25 individuals
is optimal for all tested problems for all greedy crossover
heuristics considered in this paper (Algorithms 6, 7, 8 and
11). There is no obviois relation between d and Np, p and
Np norN andNp. In all experiments below, we usedNp =
15.

4.3 Numerical results
For all datasets, we ran the genetic algorithm with greedy
heuristic (Algorithm 5) with various crossover heuristics
(Step 3 of Algorithm 5): its original version proposed by
Alp et al. [3, 42] (Algorithm 6), its version for initial clus-
ter centers seeding only (Algorithm 7), our modifications
allowing elimination of many cluster centers in one step
(Algorithm 8) and our new genetic algorithm with floating
point alphabet (Algorithm 11).

Results for each of datasets are shown in Tables 1 and 2.
We used the sampling k-means procedure (Algorithm 3)

for datasets with N ≥ 10000 as the ALA procedure at
Step 1 of Algorithms 5, 10 and 11. For smaller datasets,
we ran all algorithms without sampling. However, running
algorithms without sampling k-means procedure for large
datasets equally delays the genetic algorithm with all con-
sidered greedy crossover heuristics.

Computation process with each of the algorithms was
performed 30 times. Time limit shown in the first column
was used as the stop condition. Value of this maximum

running time was chosen so that adding equal additional
time does not allow to obtain better results in case of us-
ing the original greedy crossover heuristic for initial seed-
ing (Algorithm 7) in at least 27 attempts of 30. In addi-
tion, for the problems listed in Table 1, we fixed the av-
erage time needed for achieving the average result of the
original genetic algorithm with greedy crossover heuristic
(Algorithm 5 + Algorithm 6, see [3, 42]). For more com-
plex problems listed in Table 2 where the original greedy
crossover procedure is inapplicable due to huge computa-
tional complexity, we fixed the average time needed for
achieving the average result of the original genetic algo-
rithm with greedy crossover heuristic applied for optimiz-
ing the fitness function value of the initial dataset of the
ALA procedure (Algorithm 5 + Algorithm 7).

Algorithm 5 with the original greedy crossover heuris-
tic (Algorithm 6) proposed by Alp et al. [3, 42] shows
excellent results for comparatively small datasets (see Ta-
ble 1). For the least complex problems (”Iris” dataset), us-
ing the algorithm proposed in this article (Algorithm 10,
Problems 1 and 3) reduces the accuracy of the solution in
comparison with the original algorithm of Alp et al. [3, 42]
(Algorithms 5 and 6). For larger datasets, new algorithm
(Algorithm 10+Algorithm 11) is faster and more precise.

Moreover, using the original greedy crossover heuristic
is impossible for large datasets (for all larger gatasets with
p > 30, N ≥ 10000) due to very intensive computation
at each iteration. For such datasets, we used the algorithm
of Alp et al. applied for optimizing the fitness function
value of the initial dataset of the ALA procedure (Algo-
rithms 5 and 7) for comparison purposes. In this case, for
all solved large-scale test problems with both Euclidean
(l2, planar p-median problem) and squared Euclidean (l22,
k-means problem) metrics, our Algorithm 10 with float-
ing point alphabet and modified greedy crossover heuristic
(Algorithm 11) works faster and gives more precise results
than Algorithm 5 with greedy heuristic implemented for
the initial seeding only (Algorithm 7, [3, 42]).
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Table 1: Results of running new Algorithm 11 and original genetic algorithm with greedy crossover heuristic.

Dataset, Dis- Method Avgerage Average Worst Avg.
and its tance result time needed result speedup

parameters, for reaching (new vs.
time limit result of the original

original method)
method, sec.

Iris l22 Original 1.40026039044 0.0096 1.40026039044
(n = 150, d = 4, · 1014 · 1014

p = 3), ALA mult. 1.40026039044 0.0103 1.40026039044
100 sec. · 1014 · 1014

New 1.400262 · 1014 - 1.4002858 · 1014 -
Iris l22 Original 46916083985700 2.4 46916083985700

(n = 150, d = 4, ALA mult. 46917584582154 - 46935815209300
p = 10), New 46916083985700 2.5 46916083985700 -
100 sec. - -

MissAmerica1 l22 Original 105571815.061 603 105663081.95
(n = 6480, d = 16, ALA mult. 105714622.427 - 106178506.965

p = 30), New 105440299.602 13.8 105440299.601 43.69
1500 sec. - -
Europe l22 Original 1099348562.46 1050.8 1099355026.03

(n = 169309, ALA mult. 1099345009.09 15.6 1099345033.08
d = 2, p = 10), New 1099345067.99 123.8 1099345210.55 8.48

1500 sec. - -

Note:”Original” algorithm is Algorithm 5 with original greedy crossover heuristic (Algorithm 6),
”ALA mult.” algorithm is multiple start of the ALA procedure (Algorithm 4),
”New” algorithm is the genetic algorithm with floating point alphabet (Algorithm 10 with Algorithm 11 as the greedy crossover procedure).

To illustrate the dynamics of the solving process, we
present the timing diagrams which show the average re-
sults of 30 runs of each algorithm for various datasets in
Fig. 3 and 4. Diagrams show that new algorithm with
floating point alphabet allows to increase the accuracy at
early stages of the computation process in comparison
with known methods which allows to use it for obtaining
quick approximate solutions. In addition, results of the fast
greedy heuristic (Algorithm 8) are shown in the diagrams.
Using this heuristic without other modifications to the ge-
netic algorithm can reduce the accuracy of the results.

5 Conclusion

New genetic algorithm based on ideas of the p-median ge-
netic algorithm with greedy heuristic and two original pro-
cedures can be used for fast and precise solving the large-
scale p-median and k-means problems. For the least com-
plex problems, the results of our method are less precise
than the original GA with greedy heuristic proposed by Alp
et al. However, new algorithm provides more precise re-
sults in appropriate time for the large-scale problems.
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