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To optimize the distribution of solution sets in multi-objective optimization algorithms, this study takes 

the artificial physics optimization algorithm as an example, and introduces the elite learning, inverse 

learning, bi-directional speed, and chaotic mutation strategies to guide the evolution and search of 

individuals. This study guides the algorithm to carry out multi-objective solving from three aspects: 

external archive set, optimal guided individual selection, and step size optimization. The experimental 

outcomes denote that the improved artificial physics optimization algorithm designed in this study has 

the best minimum convergence value, standard deviation, optimization times, and convergence 

performance on the test function. The population fitness curve performs well. At the same time, the 

super volume index is 0.958, and the solution running time on different test functions is 6.13s, 7.61s, 

8.46s, 9.68s, and 10.77s, respectively, with the smallest value. The improved multi-objective artificial 

physics optimization algorithm achieves the lowest Generative Distance value of 0.126, the lowest 

Inverted Generative Distance value of 0.171, the lowest extensiveness evaluation value of 0.210, and 

the maximum distributiveness evaluation value of 0.989. The actual solution coverage is high. This 

study expands the solution ideas and methods for multi-objective optimization problems, significantly 

improving the performance of artificial physics optimization algorithms in solving multi-objective 

optimization problems. 

Povzetek: Razvit je je izboljšan algoritem umetne fizikalne optimizacije z elitnim učenjem, kaotično 

mutacijo in dvosmerno hitrostjo za izboljšanje razporeditve rešitev v večkriterijskih optimizacijskih 

problemih, s poudarkom na stabilnosti in učinkovitosti.

 

1 Introduction 
Multi-objective Optimization Problem (MOP) indicates 

the process of minimizing or maximizing multiple 

objective functions under given constraints. The objective 

functions of multiple decision vectors in MOP are usually 

contradictory to each other, and the goal of solving them 

is to make all objective functions as optimal as possible 

while meeting the design requirements [1]. MOP can 

achieve a balance between solving multiple objectives, 

improve the scientificity and rationality of related 

decision-making problems, and help decision-makers 

optimize resource allocation. In recent years, MOP has 

been applied in various fields through various 

optimization techniques, including energy scheduling 

planning, logistics optimization, and financial investment 

decision-making [2-3]. MOP has multiple optimal 

solutions, and the solutions of Multi-Objective 

Optimization (MOO) algorithms should have good 

convergence, diversity, non-dominance, and optimal 

distribution and stability. The diversity and distribution of 

the solution set are key indicators for evaluating the 

advantages and disadvantages of MOO algorithms [4]. 

The diversity of solution sets determines whether 

algorithms can explore the solution space more 

comprehensively and improve the quality of solution sets. 

The distribution of the solution set is mainly reflected in 

two aspects: uniformity and universality, reflecting the  

 

 

characteristics of the Pareto frontier algorithm. To 

maintain the distribution of the solution set, existing 

solutions include techniques such as fitness sharing, 

crowding distance, and non-dominated sorting, which 

reduce the fitness of similar solutions and calculate 

crowding levels to maintain the distribution of the solution 

set. However, it is mostly reflected in solving the problem 

of uniform distribution of the solution set, without 

considering the true and effective distribution of practical 

problems [5]. In the real world, there are distributional 

non-uniformity problems in the solution set, including 

inhomogeneous and discontinuous phenomena, but there 

are relatively few researches on solving the distributional 

non-uniformity problems of the solution set. 

To address the issue of uniform and non-uniform 

distribution of MOP solution set, the Artificial Physics 

Optimization (APO) algorithm was selected as the 

research object, and optimization research was conducted 

on the distribution of MOP solution. Firstly, improved 

strategies such as elite learning, Opposition-based 

Learning (OBL), bidirectional velocity, and chaotic 

mutation were introduced for the APO algorithm. Then, 

multi-objective theory was introduced and uniform 

distribution of MOP solution set was achieved through 

various improvements. Finally, the optimization of non-

uniform distribution problems was achieved through the 

use of maximum and minimum distances. This study 
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innovatively used multiple improvement strategies to 

enhance the solving performance of the algorithm, 

providing new ideas and methods for MOP solving. At the 

same time, the application of very large and very small 

distances has achieved remarkable results in solving the 

problem of non-uniform distribution of the solution set, 

which fills the research gaps of the distributional non-

uniform problems and optimizes the distributiveness of 

the solution set. 

The research mainly consists of five parts. The first 

part is a review and summary of the current research status 

of MOP and solutions at home and abroad. The second 

part elaborates on the improvement of APO algorithm and 

the MOO process. The third part conducts solution testing 

and application analysis on the designed multi-objective 

APO algorithm. The fourth part compares the study with 

the results of the existing work and discusses the 

advantages of the improved strategy and the reasons for 

the existence of differences. The fifth part summarizes and 

generalizes the experimental results. 

2 Related works 
MOP is a mathematical problem in the field of 

multidimensional decision-making, which exists in 

various fields and has received extensive attention and 

research from numerous domestic and foreign scholars. 

To handle expensive MOP, Luo et al. decomposed MOP 

into different sub problems and assigned related sub 

problems to the same task group. At the same time, an 

MOO algorithm based on multi-task conditional neural 

processes was proposed, which learned the similarity 

between sub-problems through a joint agent model. This 

method could effectively measure and utilize useful 

similarity information, improving the accuracy and 

robustness of the algorithm [6]. To raise the optimization 

efficiency and convergence accuracy of aerodynamic 

shape optimization in high-dimensional design space, Cao 

et al. proposed a dual-layer parallel mixed algorithm 

framework for multi-objective and large-scale decision 

variables in aerodynamic shape optimization. This 

framework introduced multi-objective gradient operators, 

new population individuals, and achieved a balance 

between development and exploration through elite 

individual selection. The experiment findings indicated 

that the optimization efficiency of the algorithm was 

significantly improved [7]. Changes in environmental 

parameters could affect the Pareto front of dynamic MOP, 

making it difficult to obtain Pareto optimal solutions. To 

achieve an equilibrium between the quality of Non-

dominated Solution (NDS) and the associated 

computational costs, Chen et al. put forth a hybrid 

dynamic multi-objective evolutionary optimization 

method driven by the environment, which designed 

selection criteria for optimization methods based on 

dynamic environmental characteristics and scheme 

switching costs. The experiment findings indicated that 

this method could balance the convergence and robustness 

of NDSs [8]. The increased dimensionality of decision 

variables and the sparsity of Pareto optimal solutions 

contributed to the elevated difficulty of the MOP. Gu et al. 

proposed a quadratic association vector and dynamic 

guidance operator search algorithm, which could use 

reference vectors to achieve quadratic association of 

individuals and use dynamic guidance operators to guide 

the population to evolve towards sparse optimal solutions. 

The simultaneous selection of individuals for cross-

mutation resulted in enhanced convergence of the 

algorithm. The experiment demonstrated that the 

algorithm exhibited comprehensive performance [9]. 

Traditional multi-objective evolutionary algorithms lack 

maintenance of decision space diversity. Zhang et al. 

designed a multi-modal multi-objective evolutionary 

algorithm with independent evolutionary sub-problems. 

This algorithm utilized a two-stage environment selection 

strategy to ensure the convergence of the target space and 

the diversity of the decision space. The experiment 

findings indicated that the algorithm had strong 

performance competitiveness [10]. Zouache et al. 

designed a multi-objective Harris Hawk optimization 

algorithm with reinforced dominance relationships, which 

selected leaders' solutions from external archives to guide 

the population in search, and used reinforced dominance 

relationships to realize a balance between coverage and 

convergence of Pareto sets. The outcomes denoted that 

this method had better convergence performance [11]. To 

achieve high accuracy, diversity, and completeness of 

MOP, Cao et al. designed a reinforcement learning hyper 

heuristic scheme based on a multi-objective simulated 

annealing algorithm with reseeding. This method 

exhibited stronger performance compared to benchmark 

test cases and could be applied in structural damage and 

other fields [12]. The development of automatic text 

summarization systems is crucial, but there are still 

difficulties in extracting multiple document collections 

from specific domains. Abo-Bakr et al. regarded 

automatic text summarization as MOP and designed an 

evolutionary sparse multi-objective algorithm to optimize 

the summarization process. The experiment findings 

confirmed the effectiveness of this method [13]. MOO 

scheduling is an effective means to solve the problem of 

segmented ship painting. Bu et al. designed an artificial 

bee colony algorithm based on decomposition strategy for 

multi-objective solution. This algorithm integrated five 

neighborhood switching methods, ideal solution sorting 

techniques, solution swapping strategies, and two-stage 

encoding methods. The experiment findings indicated that 

this method could effectively solve the problem of 

segmented painting of ships [14]. 

More scholars have conducted research around the 

practical application of optimization algorithms. Liu S et 

al. extended the classical stochastic gradient method to a 

multi-objective optimisation problem and computed a 

stochastic multi-gradient direction by solving a quadratic 

subproblem [15]. Dan Z S et al. entered the non-dominated 

sorting genetic algorithm II of multi-objective 

optimization algorithms into the optimization of the 

structural design of a heat return heater for printed circuits, 

with the weighted sum of the inverse of the total heat 

transfer rate and the total pumping power consumption as 

the optimization objective [16]. Jiang S et al. optimized 

the traditional golden jackal optimization algorithm for the 
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deficiencies of the traditional golden jackal optimization 

algorithm by introducing the concepts of sinusoidal-

cosinusoidal, Cauchy variational, and tent-mapping 

inverse learning to enhance the global exploration and 

solving ability of the algorithm [17]. Malti A N et al. 

proposed a new hybrid optimization algorithm for multi-

objective task scheduling problems in heterogeneous IaaS 

cloud environments, which introduces the crossover 

operator of evolutionary algorithms [18].

 

Table 1: Summary of related work. 

Literatures Algorithms 
Improved 

strategies 
Results 

Limitation

s 

Luo J et al. [6] 

An MOO algorithm 

based on multi-task 

conditional neural 

processes 

Multi-task 

learning, 

decomposing 

subproblems 

The calculation of 

Gaussian process 

covariance matrix is 

avoided, which 

improves the accuracy 

and robustness of the 

model. 

Only 

studied for 

computational 

scale 

optimization 

Cao F et al. [7] 

A two-tier parallel 

hybrid algorithmic 

framework combining 

multi-objective local 

search and global 

evolutionary mechanisms 

Multi-

objective 

gradient 

operator, new 

individuals, elite 

strategy 

The multi-objective 

hybrid algorithm is less 

constrained by the 

number of dimensions; 

there is a significant 

improvement in 

optimization efficiency 

and convergence 

accuracy 

Only 

studied for 

large-scale 

decision 

variables with 

expensive cost 

functions 

Chen M et al. 

[8] 

Environment-driven 

hybrid dynamic multi-

objective evolutionary 

optimization approach 

Optimizing 

selection criteria 

for multi-

objective 

algorithms 

Convergence and 

robustness of NDSs can 

be balanced 

Studied for 

dynamic multi-

objective 

optimisation 

problems 

Gu Q et al. [9] 

Quadratic association 

vector and dynamic 

bootstrap operator search 

algorithms 

Reference 

vectors, dynamic 

bootstrap 

operator, 

improved cross 

mutation 

The algorithm 

achieves the best 

performance on 66.7% 

of the problems tested 

For large-

scale sparse 

multi-objective 

optimization 

problems 

Zhang J et al. 

[10] 

Multi-modal multi-

objective evolutionary 

algorithms based on 

independent evolutionary 

subproblems 

k-nearest 

neighbour 

deletion strategy 

The algorithm has 

competitive 

performance 

Only 

improves the 

diversity of the 

algorithm's 

solution set 

distribution in 

the decision 

space 

Zouache D et 

al. [11] 

Multi-objective Harris 

Hawk optimization 

approach 

External 

archive sets, 

reinforced 

dominance 

relations, 

Better convergence 

performance 

Doesn't 

improve 

solution set 

distributability 

in a targeted 

way 

Cao P et al. 

[12] 

Reinforcement 

learning hyper-heuristic 

scheme 

Dominance, 

congestion 

distance, and 

hypervolume 

computation 

Shows stronger 

performance compared 

to benchmark test cases 

Completen

ess without 

considering 

distributivity 

Abo-Bakr H et 

al. [13] 

Evolutionary sparse 

multi-objective algorithms 

Evolutionar

y strategies 

Good application in 

automatic text summary 

extraction 

Fewer 

improvement 

strategies 
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Bu H et al. [14] 

Artificial bee colony 

algorithm based on 

decomposition strategy 

Five 

neighbourhood 

switching 

methods, ideal 

solution ordering 

techniques, 

solution 

exchange 

strategies, and 

two-stage coding 

Effective in solving 

the ship segment 

painting problem 

Does not 

improve 

solution set 

distribution 

properties 

Liu S et al. 

[15] 

Stochastic multi-

gradient method 

quadratic 

sub-problems 

The method can be 

applied to any stochastic 

multi-objective 

optimization problem. 

Failure to 

improve the 

distributional 

properties of 

the solution set 

Dan Z S et al. 

[16] 

Un-dominated Sorting 

Genetic Algorithm II 
/ 

The minimum 

deviation index obtained 

by the decision-making 

method is 0.076. 

No 

algorithmic 

optimization 

Jiang S et al. 

[17] 

Golden Jackal 

optimization Algorithm 

Sine-cosine, 

Cauchy variants, 

and tent-

mapping inverse 

learning 

The method 

performs well in terms 

of convergence speed 

and accuracy 

Does not 

improve the 

distributional 

properties of 

the solution set 

Malti A N et 

al. [18] 

Hybrid optimization 

algorithm 

Crossover 

operators 

The results obtained 

confirm the advantages 

of the newly designed 

hybrid algorithm 

Fewer 

improvement 

strategies 
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In summary, a summary of related research work is shown 

in Table 1. As seen in Table 1, there have been many 

studies on the solution and application of MOP, but most 

of them focus on the application, convergence efficiency, 

and solution quality of MOP. There is relatively little 

research on the distribution of solution sets. Therefore, 

research is conducted on the optimization of APO 

algorithm and multi-objective solution set distribution. 

3 Distribution of multi-objective 

optimization solution set based on APO 

algorithm 
Regarding the distribution of solution sets in multi-

objective APO algorithm, the study first introduces 

improvement strategies to optimize the efficacy of APO  

 

 

algorithm. Then, grounded on the multi-objective concept, 

a novel MOO APO (MOAPO) algorithm is proposed. 

3.1 Design of improvement strategy for 

APO algorithm 

Firstly, the study launches an optimization design for the 

APO algorithm. The APO algorithm is a global 

optimization algorithm that draws inspiration from 

artificial physics, which establishes the rules of interaction 

forces between individuals based on Newton's second law, 

driving individuals to continuously update their positions 

and perform optimization searches under the rules of 

interaction forces. APO completes searches based on 

group behavior and has strong parallel capabilities. By 

simulating the laws of motion in physics, strong global 

search can be achieved with a certain degree of flexibility. 

The mapping relationship between APO and optimization 

algorithms is shown in Figure 1. 

In Figure 1, the APO algorithm considers the solution 

space in the optimization problem as a physical space, and 

the solution of the problem as particles in the physical 

space, which move under the action of forces. The 

physical space mainly contains fictional interaction forces 

and repulsion forces. Interaction forces drive particles to 

move towards a better solution, while repulsion forces 

prevent particles from falling into local optima. Firstly, it 

randomly generates a certain number of particles and 

assigns them initial positions and velocities. The set of 

positions is defined as ( ) ( ) ( ) ( )( ),1 ,2 ,, ,...,i i i i nX t x t x t x t= , 

where t  represents time. The velocity set is defined as 

( ) ( ) ( ) ( )( ),1 ,2 ,, ,...,i i i i nV t v t v t v t= , where both velocity 

and position are within a certain threshold range. It sets 

the objective function based on the research problem and 

calculates the fitness value f  of each particle to retain the 

optimal individual. The calculation of individual quality 
( )d

im  is shown in equation (1). 

( )

( )( ) ( )( )
( )( ) ( )( )

d d

ibest

d d
worst best

f x f x

f x f xd

im e

−

−

=
  (1) 

 

In equation (1), d  represents individual grouping. 

According to equation (1), individual quality is inversely 

proportional to fitness value. The workflow of APO 

algorithm is shown in Figure 2. 

In Figure 2, after completing the fitness evaluation, it 

needs to calculate the resultant force and update the 

individual's position and velocity. Firstly, based on the 

fitness value and positional relationship of the particles, 

the interaction and repulsion forces acting on each particle 

are determined. The calculation process of force 
( )

,ij k

d
F  is 

shown in equation (2). 

 
( )

( ) ( ) ( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( ) ( )( )

,

, ,

, ,

,
,

,

ij k

i k j k j i

i k j k j i

d

d d d d d d

i j

d d d d d d

i j

F

Gm m x x f x f x
i j i best

Gm m x x f x f x

=

 − + 


  
− 



(2) 
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Figure 1: Schematic diagram of the mapping relationship between APO and optimization algorithm. 
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Figure 2: Schematic diagram of the workflow of APO algorithm. 

 

In equation (2), G  represents the gravitational factor, 

and G  is within the range of [1, 100], and has a value of 

10 based on prior empirical knowledge; 
( ) ( )

, ,i k j k

d d
x x−  

represents the distance between individual i  and 

individual j , ,j i m . When individual i  is greater than 

the fitness value of individual j , an interaction force 

occurs. k  represents dimension. The calculation of 

resultant 
( )

,i k

d
F  is shown in equation (3). 

 

( ) ( )

, ,

1,
i k ij k

m
d d

j i j

F F
= 

=    (3) 

 
According to the force and motion rules of the 

particles, the position and velocity of the particles are 

updated. The calculation process is shown in equation (4). 

 

( ) ( )

( ) ( ) ( )
, ,

, , ,

1 /

1 1

i k i i k i

i k i k i k

v t wv t F m

x t v t x t

 + = +


+ = + +
 (4) 

 

In equation (4),   represents a random variable, 

which takes values between (0, 1) according to prior 

empirical knowledge; w  means the inertia weight, which 

determines the convergence effectiveness of the 

algorithm, while w  is within the range of [0.1, 0.9]. 

However, traditional APO algorithms still have some 

shortcomings. Firstly, the randomly generated population 

samples during the initialization phase may exhibit a 

phenomenon of centralized distribution, which limits the 

search range of the algorithm and reduces its global search 

capability. Secondly, the APO algorithm has a single 

direction of individual resultant force, which facilitates the 

acceleration of individuals in the same direction during the 

iteration, resulting in limited search paths. During the final 

population iteration process, the diversity of the 

population continuously decreases, leading to the 

algorithm being prone to falling into local optima. To 

achieve better application results of APO algorithm in 

MOP, research is conducted on the quality improvement 

of APO algorithm.  

The initial stage involves the introduction of an elite 

learning strategy, using elite individuals to guide the 

learning of other individuals, which serves to balance the 

global exploration capability and local optimization 

capacity of the algorithm [19-20]. The study divides elite 

learning into three phases: grouping, intra-group and inter-

group learning. In the pre-grouping phase, each group 

needs to ensure that the region near the current better 

solution has been sufficiently searched to facilitate the 

subsequent mining of the better solution. As the evolution 

proceeds, the best individuals in each small 

neighbourhood are selected from each group to form elite 

individuals for information sharing and collaborative 

search. After completing the elite search, individuals from 

different groups conduct local fine search again around 

their respective elite individuals. The APO algorithm 

process based on elite learning strategy is denoted in 

Figure 3. 

In Figure 3, the optimization process is composed of 

three stages. In the first stage, interval grouping strategy is 

adopted after randomly selecting the initial population 

individuals, dividing the search area equally according to 

the size of the coordinate values, with different areas 

containing the same individuals. Then, it calculates the 

fitness value of the individual and retains the dominant 

individuals. In the second stage, when the amount of 

iterations is less than the number of iterations within the 

group, intra-group learning is performed, and the resultant 
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force of individuals is calculated to update their position 

and velocity, while retaining the dominant individuals. In 

the third stage, when the amount of iterations is greater 

than the amount of iterations within the group but less than 

the max amount of iterations, the top b  optimal 

individuals outside the neighborhood r  range are selected 

as elite individuals, while preserving the history and 

global optimality of the elite individuals. It randomly 

groups other individuals and searches around their 

respective elite individuals. 

In addition, the study further introduces three 

improvement strategies based on elite learning, namely 

OBL, bidirectional velocity, and chaotic mutation, to 

enhance the population diversity of the algorithm and 

avoid it falling into local optima. To avoid the over-

concentration of initial solutions in local regions caused 

by the random initial population generation approach, the 

study implemented the OBL strategy. OBL is designed 

based on the idea of exploration and balancing, which can 

generate a reverse solution based on a random initial 

solution during the population initialization process, 

ensuring a uniform distribution of the population, 

increasing the diversity of the search space, and helping 

the algorithm escape from local optima [21-22]. The OBL 

theory is shown in equation (5). 
*

min maxl l l lx x x x= + −   (5) 

The bidirectional velocity is designed to prevent the 

APO algorithm from moving in a single direction, and 

should simultaneously consider the velocity or trend in 

two or more directions [23]. Dual-directional velocities 

originate from the idea of random wandering based on 

stochastic search algorithms, the individual's velocity 

direction is adjusted to achieve a wider search of the 

solution space, and the calculation process is shown in 

equation (6). 

Start

Initialize the speed and 

position of the population

Calculate fitness and retain 

the optimal individual

Divide populations according 

to grouping schemes

Divide populations according 

to grouping schemes

Calculate fitness, 

update speed and 

position, and retain 

the historical and 

global best of each 

group

Sort all individuals by fitness 

value and select the top b elite 

individuals who are not within 

the same small neighborhood 

radius range

Calculate the fitness value 

of elite individuals, update 

speed and location, and 

retain the historical and 

global optimal individuals 

of elite individuals

Randomly group the 

remaining individuals and 

conduct a detailed search 

around their respective elite 

individuals, retaining the 

historical and global best of 

each group

Output the global 

optimal value

Termination

 condition

N

Y

N

Y

Y

N

Meet refined 

search criteria

The selection 

criteria within the 

group

 

Figure 3: Schematic diagram of APO algorithm flow based on elite learning strategy. 

 

( )
( ) ( )

( ) ( )
, ,

,

, ,

,
1

,

i k i k

i k

i k i k

x t v t rand
x t

x t v t rand





 + 
+ = 

− 
 (6) 

 

In equation (6),   represents the speed reverse 

walking control parameter, which takes the value of 0.2 

based on prior empirical knowledge. After a certain 

amount of iterations of the APO algorithm, the population 

search ability decreases. The study introduces a chaotic 

mutation strategy to use the characteristics of chaotic 

variables to mutate individuals, increase population 

diversity, and help APO escape from local optima. The 

chaotic mapping   process is shown in equation (7) [24]. 

 

min

max min

bestx x

x x


−
=

−
  (7) 

 

Chaotic mapping variant operations are based on the 

properties of chaos theory, exploiting initial value 
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sensitivity, long-term unpredictability and ergodicity to 

produce rich search behaviour. The chaotic variable is 

reversely mapped back to the solution space to obtain the 

position 
'

best
x  of the mutated point, as shown in equation 

(8). 

( )( )'

min max min1
best

x x x x = + − −  (8) 

In equation (8),   represents a variable parameter 

used to control the chaotic state of the system and takes 

the value 4 based on prior empirical knowledge. 

3.2 Design of multi-objective improved 

APO algorithm 

After completing the improvement and optimization of the 

APO algorithm, to further solve the MOP problem, an 

MOPO algorithm based on the improved APO algorithm 

is proposed by combining MOO ideas. Moreover, the 

problem of solution set distribution is discussed from two 

aspects: uniform distribution and non-uniform 

distribution. The definition of multi-objective problem is 

shown in equation (9). 

 

( ) ( ) ( ) ( )( )

( )

( )

 

1 2

min max

min , ,...,

0, 1,2,...,

. . 0, 1,2,...,

,

m

i

j

y F x f x f x f x

g x i q

s t h x j p

x x x

 = =

   =
 

= =
 

(9) 

 

In equation (9), x  represents n  decision variables in 

MOP; y  represents m  objective functions; ( )ig x  and 

( )jh x  respectively represent q  inequality constraints 

and p  equality constraints. The goal of MOP solution is 

to find the Pareto front, which satisfies the premise that no 

other solution can improve any objective function without 

weakening other objective functions. The Pareto 

dominance relationship in the target space is shown in 

Figure 4. 

In Figure 4, the dominance relationship reflects the 

comparison of the advantages and disadvantages between 

different solutions, and the Pareto NDS is the solution that 

achieves the best balance between different objectives. 

Pareto Dominated Solutions (DS) are inferior to other 

solutions in multiple objectives. The research on 

constructing MOAPO algorithm mainly focuses on three 

aspects: external archive set, optimal guidance individual 

selection, and optimization of travel step size. 

The external archive set is mainly used to store and 

maintain Pareto NDS found during the optimization. The 

insertion of solutions in the maintenance process of 

external archive sets should follow two principles. Firstly, 

if a new solution dominates certain solutions in the archive 

set, the meaning of the DS will be removed and a new 

solution will be inserted. Secondly, it is notable that the 

novel solution, in conjunction with all other solutions 

within the archive set, does not exert dominance over the 

others, and the archive set has not reached its maximum 

capacity, allowing the insertion of new solutions. But 

when the archive set reaches its maximum capacity, other 

strategies need to be used to remove a solution from the 

archive set. To avoid premature convergence of the 

archive set, research is being conducted using adaptive 

grid method to maintain the diversity of the archive set. 

The target space is divided into several small spaces, and 

the calculation process of the mesh's modulus 
't

iF  is 

shown in equation (10). 

 
' '

' max mint t

t i i

i

F F
F

M

−
 =  (10) 

 
In equation (10), M  represents the number of grids. 

The definition of grid number is shown in equation (11). 

 
'

'
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1, 1,2,...,

k t

i i

t

i

F F
Int i n

F

 −
+ = 

  

 (11) 

 

In equation (11), 
k

iF  represents the objective 

function value of the k th individual. Finally, it obtains 

density information of different grids and adaptively 

adjusts the grids based on individual threshold settings in 

the archive set. When Pareto NDS is unevenly distributed 

in the solution space, individuals in sparse regions are 

more likely to explore a wider solution space and become 

the globally optimal individuals. However, the possibility 

of higher quality solutions still exists in dense areas has 

been ignored. Therefore, the study introduces a game 

update mechanism to select the optimal guiding 

individual, and the operational mechanism is shown in 

Figure 5. 

In Figure 5, the game mechanism is set in the external 

archive set, with the individual who wins the game as the 

f1

Non-dominated 

Solutions

Dominated 

Solutions

f2

Figure 4: Schematic diagram of Pareto dominance 

relationship. 
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Figure 5: Schematic diagram of the optimal guidance individual game update mechanism. 
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Figure 6: Schematic diagram of the workflow of the improved MOAPO algorithm. 

 

 

guiding individual. The game updating mechanism can 

fully consider the interactions and influences between 

individuals, so that the algorithm can be more 

comprehensive and accurate in selecting the optimal 

guiding individuals. In addition, during the individual 

iteration process, optimizing the initial step size can 

effectively raise the accuracy of algorithm optimization. 

Therefore, the study introduces dynamic step size to raise 

the search speed and accuracy of the algorithm. The 

dynamic step size mechanism is shown in equation (12). 

 

max  
exp

max

time Current time

time

Step AS Step





−
=


 =  −

 (12) 

In equation (12), AS Step−  represents the original 

step size;   represents the control factor of the dynamic 

step size mechanism. Finally, to address the issue of non-

uniform distribution of the solution set, the MOAPO 

algorithm is improved by introducing Max-Mini Distance 

Density (MMDD), which can measure the density of an 

individual in the objective function space. The individual 

set is defined as S , with a scale of 'n . The Euclidean 
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Table 2: Comparison of comprehensive convergence performance of different optimization algorithms. 

Test function Algorithm 
Average 

convergence value 
Standard 

deviation value 
Number of successful 
optimization attempts 

Iteration times 

Sphere 

GA 2.4499E-04 0.535 34 639 

PSO 3.9043E-06 0.558 30 735 

APO 3.6148E-07 0.320 42 604 

Improved APO 2.9186E-12 0.142 50 567 

Quartic 

GA 1.3971E-04 0.483 34 647 

PSO 3.3631E-05 0.297 39 610 

APO 1.9542E-06 0.286 44 561 

Improved APO 1.8003E-11 0.086 50 497 

Schaffer 
GA 3.0487E-05 0.536 36 772 

PSO 1.0685E-04 0.368 25 746 

 

distance between any individual and other individuals is 
i

jd , and the minimum Euclidean distance is min

id ; For all 

individuals in the set S , there exists a minimum distance 

set consisting of min

id , where there exists a maximum 

value max mind − , and max mind −  denotes the max-mini 

distance of the set S . The definition formula for the max-

mini distance density ( )D i  is shown in equation (13). 

 

( ) ( )( )max min

1,

sgn

in
i

j

j j i

D i d d−

= 

= −  (13) 

 

In equation (13), sgn  represents a sign function. 

When the individual distribution is relatively sparse and 

the max-mini distances between individuals are large, 

introducing MMDD can improve the algorithm's ability to 

maintain solution diversity during the search. The 

workflow of the improved MOAPO algorithm is denoted 

in Figure 6. 

In Figure 6, in the MMDD optimization algorithm 

section, the individual with the maximum ( )D i  is placed 

in the external archive set, and the quality im  calculation 

of the individual is shown in equation (14). 

 

( )min max min  exp /i id dm − −=  (14) 

 

In equation (14), minid −  represents the distance 

between an individual and the individual with the highest 

( )D i . Then, it calculates the individual resultant force and 

updates the individual position and external archive set 

until the algorithm meets the stopping condition. 

Taking the real problem solving as an example, it is 

assumed that there exists a two-dimensional planar point 

set containing an initial population of 100 random points, 

and different points correspond to the cost function value 

and the optimization objective value. The initialized 

external archive set is empty for storing NDSs; and all 

hyper-parameters are completed with a maximum of 1000 

iterations. The cost function value and optimization 

objective value of all points are calculated, the points 

according to the Pareto dominance relation are sorted, and 

the NDSs are added to the external archive set. Then, it 

selects the bootstrap individuals with relatively small cost 

function values and optimization objective values from the 

external archive set, and according to the positional 

relationship between the bootstrap individuals and other 

individuals in the population, dynamically step the 

adjustment mechanism. Subsequently, it generates new 

solutions and calculates their cost function values and 

optimization objective values. They are compared with the 

solutions in the external archive set, the external archive 

set is updated to include all the NDSs, and the distribution 

of the solution set is adjusted by using MMDD to regulate 

the distribution of the solution set non-uniformity. 

4 Performance testing of multi-

objective optimization combined with 

APO algorithm 
To verify the efficacy and solution quality of the improved 

APO algorithm and MOAPO algorithm designed in the 

research, algorithm performance testing experiments were 

conducted and the results were analyzed and discussed. 

4.1  Performance testing of improved APO 

algorithm 

The experiment was based on the Windows 10 operating 

system, with an Intel Core i7 central processor at 2.6 GHz 

and 128GB of memory. The image processor was Ge 

Force RTX 2080Ti. The experimental programming 

language was Python 3.8. Quantitative analysis of 

optimization algorithms were conducted using unimodal 

test functions Sphere and Quartic, as well as multimodal 

test functions Schaffer, Bohachevasky, and Eggrate. The 

Schaffer, Bohachevasky, and Eggrate functions had 

multiple local minima, which could test the effectiveness 

of the algorithm in exploring complex search spaces. 

Comparative algorithms included traditional APO 

algorithm, Particle Swarm Optimization (PSO) algorithm, 

and Genetic Algorithm (GA). The maximum number of 

iterations for the algorithm was set to 1000, the initial 

population size was 60, the dimension was 30, and the 

optimization times were 50. The neighborhood radius was 

15 and the number of elite searches was 10. The 

comprehensive convergence performance comparison 

analysis outcomes are denoted in Table 2. 

In Table 2, the improved APO algorithm performed 

better on the unimodal test function with a minimum 

convergence value of 2.9186E-12 on the Sphere function 

and 1.8003E-11 on the Quartic function. The convergence 

values of the other three algorithms were greater than 
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those of the improved APO algorithm. The improved APO 

algorithm had an increased convergence mean on 

multimodal test functions, with Schaffer, Bohachevasky, 

and Eggrate functions of 4.0512E-09, 4.4789E-09, and 

2.9270E-10, respectively. However, compared with other 

algorithms, it still achieved the best performance. The 

standard deviation of the improved APO algorithm was 

the smallest, all below 0.20. The maximum standard 

deviation value of PSO algorithm was 0.558. At the same 

time, the improved APO algorithm designed for research 

had a success rate of 100% in optimization, and the 

minimum number of iterations during convergence was 

around 500. Overall, the elite search and bidirectional 

speed strategy have improved the convergence and 

optimization ability of the algorithm, without any local 

convergence. 

The optimization ability of the algorithm was 

evaluated before and after improvement, using the 

population fitness curve as the evaluation index. The 

experiment findings are indicated in Figure 7. In Figure 7 

(a), the APO algorithm before improvement gradually 

approached the optimal population fitness in the later 

stages of iteration. In Figure 7 (b), in the early stage of 

iteration, the average population fitness of the improved 

APO algorithm approached the optimal population fitness. 

The population fitness ability of the improved APO 

algorithm has significantly improved, and the reverse 

learning and chaotic mutation strategies have improved 

the distribution and diversity of the initial population, 

thereby enhancing the algorithm's fitness ability. 

Comparing the hypervolume (HV) index and solution 

running time of different optimization algorithms, the 

experiment outcomes are denoted in Figure 8. In Figure 8 

(a), the HV curve of the improved APO algorithm was 

always at the highest level, and the growth rate of the 

entire iteration cycle was the fastest, with the maximum 

HV value reaching 0.958. By comparison, the maximum 

HV values of APO, PSO, and GA were 0.846, 0.779, and 

0.714, respectively. HV measured the convergence and 

distribution of the solution set, and evaluated the 

algorithm by calculating the spatial HV enclosed by 

Pareto NDS and reference points. Experiment findings 

indicated that the improved APO algorithm had better 

convergence and distribution of the solution set than the 

other  
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Figure 7: Comparison of population fitness curves before and after algorithm improvement. 
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Figure 8: Comparison of HV index and solution run time for different algorithms. 

three algorithms. In Figure 8 (b), the computation running 

time on the five different test functions of the improved 

APO algorithm was the smallest, with values of 6.13s, 

7.61s, 8.46s, 9.68s, and 10.77s, respectively. The longest 

computation times for APO, PSO, and GA were 19.58 s, 

19.50 s, and 19.04 s, respectively. The improved APO 

algorithm had lower computational complexity and lower 

application costs. Usually, a higher HV value means that 

the algorithm is more capable of exploring the search 

space and can find more high-quality solutions, which will 

lead to an increase in the computational complexity of the 

algorithm and prolong the algorithm running time. 

However, the improved APO algorithm does not sacrifice 

the quality of the solution by pursuing computational 

efficiency. On the contrary, the PSO and GA algorithms 

perform poorly in the trade-off between HV value and 

computational efficiency. 

4.2 Performance testing of improved 

MOAPO algorithm 

The improved MOAPO algorithm was contrasted with 

MOPSO, Non-dominated Sorting Genetic Algorithm III 

(NSGA-III), and Multi-Objective Harris Hawks 

Optimization (MOHHO) algorithm in reference [11]. 

Performance testing of MOO algorithm was conducted 

using SCH, ZDT3, ZDT6 dual objective function, and 

DTLZ1 triple objective function. The experimental results 

of Generative Distance (GD) and Inverse Generative 

Distance (IGD) for different algorithms are indicated in 

Figure 9. In Figure 9 (a), the GD curve of the improved 

MOAPO algorithm designed for research converged to the 

minimum value of 0.126, and remained at the lowest level 

after 20 iterations. By comparison, the minimum GD 

values of NSGA-III, MOHHO, and MOPSO algorithms 

were 0.336, 0.316, and 0.340, respectively. The GD value 

could evaluate the distance between the approximate 

optimal solution set and the true Pareto front. The GD 

value of the improved MOAPO algorithm was minimized, 

and the deviation between its solution result and the true 

optimal solution set was minimized. In Figure 9 (b), the 

IGD value of the improved MOAPO algorithm was also 

at its minimum, converging to 0.171. The minimum IGD 

values for NSGA-III, MOHHO, and MOPSO algorithms 

were 0.359, 0.364, and 0.480, respectively. The IGD value 

was the average Euclidean distance between the true 

Pareto front and the non-dominant solution, indicating that 

the distribution uniformity of the improved MOAPO 

algorithm has been improved. 

The results of the Space Performance (SP) and 

Uniformity Performance (UP) evaluations for different 

multi-objective algorithms are denoted in Figure 10. In 

Figure 10 (a), the improved MOAPO algorithm had the 

lowest SP values on the four types of test functions. The 

minimum SP values on SCH, ZDT3, ZDT6, and DTLZ1 

functions were 0.236, 0.233, 0.210, and 0.259, 

respectively. The SP values of NSGA-III and MOPSO 

algorithms were both above 0.23, with a maximum value 

of 0.666. SP represents the standard deviation of the 

minimum distance from different solutions to other 

solutions. The improved MOAPO algorithm had the best 

distribution. In Figure 10 (b), the UP value of the 

improved MOAPO algorithm could reach up to 0.989, and 

the uniformity of individual distribution in the algorithm 

solution set was relatively good. 

The coverage metrics (C-metric) and Knee-driven 

dissimilarity (KD) results of different algorithms are 

shown in Figure 11. In Figure 11, the improved MOAPO 

algorithm designed for research had a higher value in the 

C-metric index, which was significantly different from 

other algorithms, with a maximum value of 0.845. The 

minimum C-metric value of MOPSO algorithm was 

0.601. The design and solution of the research resulted in 

a wider distribution of the solution set in the target space, 

which could better cover and approach the real solution 

set. Meanwhile, the improved MOAPO algorithm had a 

smaller KD value, indicating that its solution set had a 

stronger ability to cover inflection points. 

Finally, the cold chain logistics distribution path 

optimization taking into account the dynamic market 

demand response is the research object. The results of 

Friedman test and convergence comparison analysis of 
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different methods are shown in Figure 12. In Figure 12(a), 

the improved MOAPO algorithm had the smallest number 

of iterations when the solution curve converged, and it 

reached the convergence level within 20 iterations, and the 

convergence value took the value of 0.02, which tended to 

be close to 0. Compared with other MOO algorithms, the 

convergence curve did not have the situation of local 

optimization for many times, and the global convergence 

was better. As seen in Figure 12(b), the improved 

MOAPO algorithm designed by the study obtained a rank-

mean value of 3.75, which is ranked first. It can be seen 

that the design of the study achieved a more significant 

performance advantage. 
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Figure 9: Comparison of generative distance and inverse generative distance. 
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Figure 10: Comparison of spread performance and uniformity of different algorithms. 
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Figure 11: Coverage metrics and KD for different algorithms.
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Figure 12: Comparative analysis of Friedman's test results and convergence. 

5 Discussion 
MOP designing multiple conflicting or interrelated 

objectives requires simultaneous optimization to find the 

superior equilibrium between multiple objectives. To 

solve MOP, researchers continue to propose a series of 

new algorithms, such as the multi-task conditional neural  

 

process-based multi-objective optimization algorithm 

proposed by Luo J et al. in reference [6], the environment-

driven hybrid dynamic multi-objective evolutionary 

optimization method proposed by Chen M et al. in 

reference [8], and the quadratic correlation vectors and 

dynamic bootstrap operator search algorithms proposed 

by Gu Q et al. in reference [9]. These studies have 
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enriched the variety of optimization algorithms and 

improved the optimization efficiency and convergence of 

the algorithms. However, in practical MOPs, such as path 

optimization, distribution network planning, power 

generation scheduling, etc., the distribution of the solution 

sets is not completely uniform, but the existing researches 

seldom focus on it. In contrast, the study took the APO 

algorithm as the object of research, which not only 

introduced elite learning, OBL, and dual vector speed to 

enhance the performance of the single-objective 

algorithm, but also extended the performance of the multi-

objective optimization by combining the external archive 

set, the optimal bootstrap individual selection, and the 

travelling progress length optimization. Importantly, 

optimization for distributional non-uniform problems was 

achieved through very, very small distances. Compared to 

other research works, the improved MOAPO algorithm 

had richer and more targeted optimization measures, 

resulting in the lowest GD value of 0.126, the lowest IGD 

value of 0.171, the lowest SP value of 0.210, the maximum 

UP value of 0.989, and the best performance in terms of 

solution coverage. Combined convergence, distribution 

and diversity metrics, the improved MOAPO algorithm 

took better values than the MOHHO algorithm in 

reference [11]. 

6 Conclusion 
MOP is an effective means of solving resource allocation, 

multi-objective decision-making, and system planning. To 

improve the non-uniformity of the solution set distribution 

of MOO algorithms, an improved design was carried out 

based on the APO algorithm. Moreover, multi-objective 

theory was introduced to optimize the distribution of the 

solution set. The experiment findings indicated that the 

minimum convergence value of the improved APO 

algorithm was 2.9186E-12, the standard deviation value 

was less than 0.2, and the optimization success rate of the 

improved APO algorithm was 100%. The algorithm had a 

maximum HV value of 0.958 and the shortest running 

time. The GD curve of the improved MOAPO algorithm 

converged to the minimum value of 0.126, and the IGD 

value converged to 0.171. The minimum SP values for the 

improved MOAPO algorithm on four types of test 

functions were 0.236, 0.233, 0.210, and 0.259, 

respectively. The UP value could reach up to 0.989. The 

C-metric index of this MOO algorithm was 0.845, and the 

KD value was relatively small. The improved MOAPO 

algorithm designed for research achieved better 

performance in the distribution of solution sets, promoting 

the advancement of MOP solving techniques. 

However, there are still some potential drawbacks 

and challenges in the algorithm and its implementation. 

On the one hand, to maintain the diversity and quality of 

the solution set, the study introduced an external archive 

set to store the NDSs. However, the increase in the number 

of iterations and the increase in the size of the real-world 

problem both directly affected the size of the external 

archive set, which is related to the cost of storage and 

management. Memory requirements and operational 

efficiency are challenges to improve MOAPO in handling 

large-scale MOPs. On the other hand, the performance of 

the MOAPO algorithm relies heavily on a series of hyper-

parameter settings. However, there is a lack of systematic 

and scientific theoretical guidance on how to make 

reasonable hyper-parameter settings according to the 

characteristics of actual problems. In future research work, 

research should continue to develop effective hyper-

parameter tuning methods to improve the generality and 

robustness of the MOAPO algorithm. It also considers 

reducing the complexity of the algorithm while 

maintaining its performance, and promoting the 

application and development of the MOAPO algorithm in 

a wider range of fields. 
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