
 Informatica 38 (2014) 213–221 213 

Prototype Implementation of a Scalable Real-Time Dynamic 

Carpooling and Ride-Sharing Application 

Dejan Dimitrijević, Vladimir Dimitrieski, and Nemanja Nedić 

University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia 

E-mail: {dimitrijevic, dimitrieski, nemanja.nedic}@uns.ac.rs 

 

Keywords: real-time, carpooling, ride-sharing 

Received: September 29, 2014 

Setting out to build a real-time carpool and ride-sharing solution, which would be able to attain a 

global user base and is initially designed as highly-scalable, this paper describes some of the selected 

designed concepts, distribution and cloud computing strategies needed to do so. Our selections were 

based on experiences of others with same or similar-purpose solutions which were developed in the 

previous decade. Some of these solutions were either outdated, mostly by leaving its users with a subpar 

user experiences as their user base grew, or outgrown by having limited client reach, leaving them 

available only to a small portion of mobile client devices or desktop browsers and users. This paper 

presents an implementation of a ridesharing application prototype that follows all of aforementioned 

strategies. The goal of this prototype is to show that it is possible to make very scalable and ubiquitous 

ridesharing application, which is able to successfully reach and serve a global user base. 

Povzetek: Članek predstavlja nov prototipa aplikacije za delitev stroškov prevoza z avtomobilom.  

1 Introduction 
This paper is a follow-up to a paper presented at the 

FedCSIS’13 conference [1] which extends further upon it 

with some experimental data and even more prototype 

implementation details. The aforementioned paper 

explored some currently available positions concerning 

an implementation of any present and future carpooling 

and ride-sharing applications. These applications should 

be real-time, dynamic (more about meaning of dynamic 

in following sections) and scalable enough to reach a 

worldwide audience. The explored positions were chosen 

so that any such application could and should work 

without either omitting support for any future mobile 

platform or leaving its clients with deteriorating quality 

of service as it client base grows. Because of the prior of 

the two just previously noted requirements, we identified 

some novel client web technologies which are or will be 

available on all modern mobile platforms. Therefore, we 

felt confident that any real-time dynamic carpool and 

ride-sharing application built upon these technologies 

could be ubiquitous enough. By ubiquitous we mean 

making it available across both various mobile and 

desktop platforms, current and future ones. Also, because 

of the latter requirement, which was also explored and 

outlined in our previous paper, some effort was also put 

in identifying server side technologies capable of 

producing a low-cost development and maintenance real-

time dynamic carpooling and ridesharing mobile and web 

application. Considering existing solution experiences, 

primary idea was to build a scalable solution that could 

start out small but allow easy growth later. This is to 

accommodate the fact that the ride-sharing industry has 

only recently started becoming globally interesting. 

However, carpooling formally appeared in the US in the 

mid-1970s, after the 1973 oil crisis [2]. At that time the 

rising costs of using a personal vehicle for transportation 

of only one passenger made it prudent to drive more than 

one person, usually co-workers commuting to and from 

same workplace, splitting transportation costs. However, 

the reduction of oil and gas costs in the 1980s and the 

breakdown of a typical 9AM to 5PM workday in the 

1990s led to a spiral down trend in carpooling popularity. 

Federal government in the US tried to counter such a 

trend by incentivising carpooling drivers, growing the 

number of no-toll carpool lanes across many highways. 

Those lanes were also allowing for relief from ever 

growing traffic jams and gridlock, as the number of 

vehicles on the roads increases. In 2000 it exceeded 740 

million globally [3] and projections are there will be over 

2 billion motorized vehicles by 2030 [4]. Large number 

of vehicles creates many well-documented problems for 

urban areas, such as increased traffic, increased 

pollution, parking congestion, and the need for expensive 

infrastructure maintenance. To reduce all of those and 

personal transportation costs also, we set out to create a 

low-cost, ubiquitous and global audience capable real-

time carpool and ride-sharing solution.  

1.1 Problem 

The expenses, both environmental and fiscal, of single 

occupancy vehicles can be reduced by utilizing more of 

the empty seats in personal transportation vehicles. 

Carpooling and ride-sharing targets those empty seats: 

taking additional vehicles off the road thus reducing 

traffic and pollution, whilst providing opportunities for 

social interaction. However, historically carpool 

scheduling often limited users to consistent schedules 

and fixed rider groups–carpooling to the same place at 



214 Informatica 38 (2014) 213–221 D. Dimitrijevic et al.  

the same time with a set person or a group of people. To 

make that problem worse, the leading problem concerns, 

given in a 2009 survey about why people don’t carpool, 

were difficulty to organize carpools and the 

inconvenience of organization far in advance [5].  

Due to aforementioned reasons, this paper proposes 

some main guidelines and cloud distribution strategies 

that we fell will bring best value for any future global 

carpool and ride-sharing solution.  

The rest of the paper is organized as follows: Section 

2 provides an overview of related work. In Section 3 we 

present overall design concepts and our objectives. 

Section 4 elaborates on our proof-of-concept prototype 

system implementation choices, with subsections 

focusing on several specifics. Section 5 concludes the 

paper and discusses our future work. 

2 Related work 
In this section we present existing ridesharing and 

carpool solutions and research. We have divided this 

section into two main parts: Subsection 2.1 reviews 

carpool and ride-sharing related solutions currently 

available and Subsection 2.2 surveys some of the 

literature and papers on the subject. 

2.1 Current carpool and ride-sharing 

solutions 

Entering carpool and ridesharing search terms in some of 

the largest mobile app store and internet search engines 

returns a great deal of mobile apps and internet websites 

offering either classic or dynamic carpooling and ride-

sharing. By the notion of classic carpool mobile app or 

website, we denote applications within which users just 

schedule and advertise their plans for a trip well in 

advance. This is accomplished effectively through an, in 

essence, a searchable electronic bulletin board, seeking 

other users travelling in the same direction at the same 

time. Although some of those apps and websites, such as 

carpooling.com [6] and its mobile client apps have a 

large user bases, the static routing problems they help 

solve makes their usage fairly limited. 

The inconvenience of having to search though large 

carpools or even smaller but fixed choice driver groups, 

hoping to amongst them find a pre-scheduled and 

advertised trip adequately consistent with one’s schedule, 

makes classic carpooling apps or websites non-practical 

for relatively short and near-immediate on-the-go carpool 

and ride sharing trip plans. It is for that reason that even a 

solution presented on [6] and its large network of 

European subsidiary websites, added advanced time 

constrained search features. These features are used to 

“find a lift”, which to a certain extent alleviate some of 

the inconveniences for their on-the-go passenger users. 

However, the added hourly time-constrained advanced 

searching still inconveniences their vehicle driving users 

to be mindful of their advertised pre-trip given schedules, 

even though that may not always be objectively possible, 

due to unforeseen events such as: road accidents, 

gridlocks, etc. 

Thus, a new form of dynamic carpool and ride-

sharing mobile apps and websites is emerging. They are 

indicated by their use of real-time passenger requests 

along with real-time vehicle driving users’ location data, 

foregoing the need for well in advance pre-scheduled and 

advertised trips. Amongst some of the most known and 

pioneering mobile apps and websites offering dynamic 

carpooling and ride-sharing are Lyft [7] and SideCar [8]. 

Both mobile apps are available for iOS as well as for 

Android, but neither app currently has a web browser 

user interface. This may be intentional since both are 

fully natively written, and by our observations both use 

TCP sockets to communicate with their respective 

backend services. Therefore both would need changes to 

make them web browser-friendly. Unfortunately, those 

code changes could include some rather tedious 

transformations. This is due to the fact that native TCP 

socket traffic has not been well suited for consumption in 

web browsers relying mostly on HTTP, until recently. 

Another popular application and website is Waze [9], 

which isn’t intended for carpool and ride-sharing. Waze 

is used for gridlock traffic reporting and avoidance, but 

accommodates for pickup requests also, and it seems to 

have taken another approach in comparison to the two 

aforementioned applications. Although Waze mobile 

apps are also fully natively written, their website presents 

a "live map" user interface which maps events reported 

by their users. Such events include pickup requests and 

replies of passenger and vehicle driving Waze users who 

are otherwise linked either via a popular social network, 

or through email and SMS. Fortunately, access to those 

real-time events has now been extended from its native 

app users to even non-Waze users through private URLs 

which lead to a live map connected to the Waze backend 

via a GeoRSS [10] feed through HTTPS (Figure 1). 

  

Figure 1: Waze “pick up” and mobile "live map" UI. 

The original GeoRSS XML format is however 

transformed to JavaScript Object Notation (JSON) 

presumably for easier (JavaScript) client-side 

consumption and traffic overhead reduction. However it 

is still limited by a set update interval time. To our 

knowledge, there are no other globally popular websites 



Prototype Implementation of a Scalable Real-Time… Informatica 38 (2014) 213–221 215 

and mobile apps that currently allow for carpool and 

ride-sharing uses, excluding commercial taxi dispatchers. 

2.2 Current carpool and ride-sharing 

papers 

Because static carpool still represents the majority of 

existing solutions, almost all of the available papers and 

literature on carpool and ridesharing mainly deal with the 

static ridesharing issues. In the static carpooling users 

must pre-schedule their trips, neglecting the dynamic 

aspect. Despite much of the progress experimented on 

dynamic carpooling and ride-sharing concepts, it still 

remains in the early stages regarding publicly available 

works and literature. In order to make up for that 

shortfall, some of the papers which mention carpooling 

and ride-sharing, and even consider the dynamic aspect, 

like [11], also considered other issues at the same time. 

Some papers are especially involved in the concepts of 

traceability, communication and security services. Their 

authors feel that none of the current solutions evoked 

these concepts, identifying the security issues as one of 

the main reasons hindering their success [12]. All cited 

papers provided us with a lot of beneficial ideas and food 

for thought transferred onto this paper. They also 

influenced this paper’s findings and conclusions, and out 

of that still quite disorganized literature, we have 

identified some yet non-tackled issues, laid out in the 

following sections. Mainly, we take issue with web 

browser user interfaces and standardized web 

technologies which seem to be the unifying way forward, 

putting ubiquity in the grasp of every hybrid web and 

mobile application. 

3 Design considerations 
In the previous section we presented some of the 

carpooling and ride-sharing solutions, ideas and issues 

tackled recently. In this section we are building up on 

those solutions and ideas, proposing some of our own 

design concepts for a global dynamic real-time 

carpooling and ride-sharing solution. In Subsection 3.1 

we describe some of design concepts that are suitable for 

a real-time dynamic carpooling and ride-sharing solution. 

Subsection 3.2 further describes our ideas, allowing for 

the proposed real-time solution to tackle the problem of 

being able to serve up to a global user base, adding cloud 

and distribution design concepts. Finally, in Subsection 

3.3 we deal with the ubiquity problem, considering the 

client user interface technology we feel will be future-

proof and available on almost all new mobile and 

desktop platforms. 

3.1 Real-time dynamic solution design 

concepts 

As it was noted in Section 2, real-time dynamic 

carpooling and ride-sharing solutions are becoming more 

common. However it takes more designing effort to 

achieve real-time dynamic capabilities than for mere 

static carpooling and ride-sharing. The reason for the 

recent increase is obviously because real-time dynamic 

solutions are more convenient, and thus more likely to be 

used in greater numbers by end users. Additionally, some 

technologies previously used for seemingly real-time 

communication on the web, have only recently matured 

and have been standardized. 

In the beginning of a so called Web 2.0, at the time 

when real-time updating websites were only just starting 

to appear, most of those websites used Asynchronous 

JavaScript and XML (AJAX) [13]. AJAX is a group of 

interrelated web development techniques used on the 

client-side to create asynchronous, seemingly real-time 

web applications. Most of those techniques relied upon 

regular HTTP, a simple request-response and stateless 

protocol. Having to achieve what was usually two-way 

communication took some effort for websites and web 

applications. Developers were using various 

workarounds, techniques involving the use of the 

browser XmlHttpRequest object or some other web 

browser plugins. 

The first workarounds developed into techniques 

known as: frequent polling, long-polling and the so 

called forever-frames. Although all of those techniques 

were, and still are, very much usable for seemingly real-

time web page updates without requiring full page 

refreshes, they had drawbacks. Their primary drawback 

was the amount of server-side and network resources 

they consume. The server is either forced to respond to a 

large number of frequent requests, or it opens up a 

number of long running responses, which additionally 

occupy its hardware resources. On the other hand, using 

workarounds such as various browser plugins, although 

they used less network and server-side resources, turned 

out to be non-practical, because of the lack of plugin 

support on current mobile devices. For such reasons, new 

techniques were developed, and recently standardized by 

the World Wide Web Consortium (W3C). As part of the 

HTML5 specification Server-Sent DOM Events (SSE) 

were standardized in 2011 [14], but have not yet been 

implemented by all desktop browsers, namely, Internet 

Explorer. However, Web Sockets API [15] was drafted 

back in 2009 and it is currently supported by all major 

web browsers. Web Sockets provide a full-duplex 

communication channel over a single TCP connection, 

thus allowing for a lower network latency time due to 

less traffic overhead compared to HTTP. Compared to 

SSE and other polling techniques, Web Sockets provide 

the best option for building real-time communication on 

the web. Due to aforementioned reasons, this protocol is 

an integral part of our proposed design. 

3.2 Distribution and cloud design concepts 

Having chosen Web Sockets (WS) as a preferred means 

of communication, although helping solve latency issues, 

left another issue unsolved. WS based communication, as 

all others, supports clients’ connections to a single server 

node. Even though a number of users may be greater 

when using WS, it still depends on available server 

hardware resources. Since vertical scaling of server 

hardware resources can be expensive and still ultimately 

limiting, the best solution to the near-infinite scaling 



216 Informatica 38 (2014) 213–221 D. Dimitrijevic et al.  

problem is horizontal distribution, across multiple server 

nodes. Ideally, any global real-time solution would be 

best served in one’s own server farm, but given hardware 

and its maintenance costs, renting cloud resources is a 

more realistic option. However, for horizontal scaling, 

one needs to be able to scale data also. Since traditional, 

i.e. relational data scaling is much harder [16], we have 

turned to non-relational data (NoSQL). NoSQL databases 

allow easier scaling and offer better performance in data 

writes. Additionally, they offer a possibility of scaling 

reads onto multiple database nodes, combining so called 

sharding and some parallelism approaches. The notion of 

sharding denotes horizontal distribution of data across 

multiple servers. Utilizing aforementioned advantages in 

a document oriented NoSQL data store that supports 

geospatial data indexing would make it a perfect fit for 

our proposed solution and storing our users’ location 

based data. Also, a key-value memory caching NoSQL 

data store could be used as a messaging backplane for 

communication between our individual server nodes, but 

that use and setup is trivial in the case of our chosen real-

time library. 

3.3 User interface architecture design 

concepts 

To make a website or mobile app truly ubiquitous, one 

needs to support as many different desktop and mobile 

platforms as possible, ideally all of them. Although client 

applications can be natively written for each platform, 

there are some unifying user interface technologies for 

almost all current desktop and smartphone mobile 

platforms. 

So, to achieve ubiquity, we propose the usage of 

combined HTML5/CSS3 canvas map and form elements 

for user interface (UI) rendering. Building the UI around 

streamed real-time data flows of state changes created by 

passenger and vehicle driving user events is also why the 

paradigm of reactive programming seems to be the 

perfect choice. Reactive programming should not be 

confused with responsive web design, which is also 

utilized, for same UI reuse across various device screen 

resolution sizes. Any changes in state registered by user 

client applications are asynchronously processed when 

transferred preferably by a Web Socket (as it offers 

lowest latency compared to other real-time web transport 

mechanisms) to cloud server nodes and back again to 

either desktop or mobile clients which are schematically 

displayed in Figure 2. 

4 Prototype implementation 
This section describes in more detail implementation 

choices we made to build the prototype of our 

distributable cloud-based dynamic real-time carpooling 

and ride-sharing solution. Subsection 4.1 describes our 

prototype’s real-time communication transport library. 

Subsection 4.2 deals with our use of geospatial indexed 

data and gives a comparison of the previously used 

relational database solution, along with future used 

NoSQL database and a fast memory caching messaging 

backplane solution. In Subsection 4.3 we present UI 

implementation details. 

4.1 Real-time communication 

During our previous research, we have helped develop 

the first online taxi dispatching solution in Serbia, named 

TaxiProxy [17]. This solution was fully realized in .NET 

and is cloud-hosted on Microsoft Azure. Our 

participation on this project influenced a lot of our 

primary technology choices for the prototype of a real-

time dynamic carpooling and ride-sharing solution 

described in this paper. 

As noted in the design section, the need to have a 

real-time dynamic carpooling and ride-sharing solution is 

imperative, since those solutions are what most users 

currently wish to use. To make our prototype solution 

real-time capable, the choice to implement it using a 

library capable of WS protocol communication in .NET 

came down to a library named SignalR [18]. SignalR is 

an open-source library for ASP.NET adding real-time 

web functionality to .NET applications. It also allows for 

server-side code to push content to the connected clients 

 

 

   cloud Server node 

Memory Cache Messaging Backplane 

Server node 

NoSQL shard NoSQL shard 

Driver HTML5 clients     Passenger HTML5 clients 

Figure 2: Basic architecture design. 



Prototype Implementation of a Scalable Real-Time… Informatica 38 (2014) 213–221 217 

as it happens, in real-time. SignalR server is capable of 

supporting clients written in several programing 

languages including .NET and JavaScript. The server-

side code can push content to those connected clients by 

a number of transport techniques, most suitable being bi-

directional WS, if available. For a server-side the WS 

transport requirements are either a self-hosted ASP.NET 

4.0+ application or one hosted within Internet 

Information Services (IIS) 8. Server-side hosted on 

earlier versions of IIS falls back to other means of 

message transports. For clients, WS requirement issue is 

a bit lengthier to describe, so it is listed in better detail in 

the client UI subsection. 

SignalR library allows for two types of 

implementation approaches. First, less abstract, uses 

persistent connection, a low level class option, which 

offers basic real-time mechanisms. It just provides 

mechanisms to notify the server-side backend of client 

connection and disconnection, receiving and sending 

asynchronous individual and bulk messages to connected 

clients. However, second option, named SignalR hubs, 

provides an easier to use development interface. It allows 

abstracting away the need to serialize and deserialize 

request and response messages manually. The power and 

ease of use of the second option made it a prudent choice 

for the speedy development of our prototype application. 

Even though SignalR hubs allow for the collective 

segregation of the real-time connected clients into 

groups, such as a driver and passenger group, the 

connected clients’ membership in those groups is 

unfortunately not automatically persisted. Also, a 

dependency resolving GlobalHost server-side object, 

which is just an implementation of the service locator 

pattern, can also be easily used to communicate real-time 

messages from one hub onto another. It is for that reason 

that we decided to split drivers and passenger clients onto 

two distinct SignalR hubs: a Passenger and a Driver 

SignalR hub. That choice allows easy implementation of 

membership persistence later on, which is important 

when scaling the application onto multiple server nodes. 

Persisted group membership allows for a single server 

node instance to fail without losing all of the membership 

data of our perspective clients connected to the failing 

node. As each server node replicates the original driver 

and passenger SignalR hub architecture, any passenger or 

driver clients connected to a failing node server should 

be unaware of any server-side problems, this due to the 

fact that the load balancer would then just instruct them 

to another fully working server node and its SignalR 

hubs. 

4.2 Database implementation and 

performance considerations 

For this prototype implementation we have identified two 

main entities:  

 Driver entity which comprises main identifier, 

position and availability. For each driver, 

SignalR updates drivers’ geospatial coordinates, 

i.e. position, based on a signal it receives from 

drivers’ devices. When a driver picks up enough 

passengers, to utilize desired number of empty 

seats, it becomes unavailable for other 

passengers to join.  

 Passenger entity comprises main identifier and 

position. Passengers’ position is also updated 

through SignalR and data received from 

passengers’ device. 

We have chosen two databases with different data 

models for this prototype implementation. As we have 

already implemented our previous project TaxiProxy on 

Windows Azure platform, we have chosen Windows 

Azure SQL Database (SQL Azure) as relational database 

to test in this research. Additionally, we have decided to 

use one NoSQL database as we plan to make our solution 

scalable and deploy it in a distributed environment. There 

is plethora of available NoSQL databases, but we have 

opted for MongoDB [19] due to our previous experience 

with this database. Since IIS 8 was our prototype’s 

hosting platform of choice, it should be noted that the 

server node could then only have been hosted within the 

Windows 8 / Server 2012 OS platforms. Fortunately, 

Windows Server 2012 was made available to end-users 

on the Windows Azure cloud platform as a virtual 

machine operating system choice since late 2012, and it 

is deployable onto an Extra Small low-cost machine 

instance. Extra Small Windows Azure instance, which 

entails a shared core processor with only 768MB RAM, 

may not be the first choice from a performance 

standpoint. However, it is sufficient for proof-of-concept 

deployments and for limiting cloud-hosting costs. 

SQL Azure was our first choice to store data as we 

have used Windows Azure cloud to implement other 

parts of this prototype. In order to support faster and 

easier distance calculations between drivers’ and 

passengers’ positions, we have used SQLGeography data 

type for columns containing geospatial data. This data 

type offers a number of methods for creating and 

manipulating geospatial data. In order to speed up query 

execution over geospatial data eve further, we have 

created indexes on these SQLGeography columns. 



218 Informatica 38 (2014) 213–221 D. Dimitrijevic et al.  

One of main motivations to choose MongoDB 

database came from the fact that MongoLab [20] service 

offers up to 500MB of free storage for a single-machine 

instance of MongoDB. This is a major advantage as we 

want to keep our ridesharing system’s costs at minimum 

to allow cost-free usage of our application for end users. 

The only drawback is that it is deployed on a single 

machine which doesn’t fully utilize MongoDB’s 

functions as it is supposed to run on a distributed 

environment. MongoDB is a document oriented NoSQL 

database and thus we have created driver and passenger 

documents to store appropriate data. For each driver and 

passenger data is stored in JSON. Driver’s and 

passenger’s positions are stored as longitude and latitude 

pairs. Similarly to SQL Azure, we have created 

geospatial indexes to speed up execution of queries. 

In order to see which database suits our needs better, 

we have decided to test these databases based on two 

criteria: 

1. Time needed to execute geospatial query. This is 

tested with the most used query in our system 

that finds five nearest drivers for a passenger. 

2. Amount of storage space needed to store all 

passengers and drivers. As the cost of renting 

cloud based storage is proportional to size of 

data, we want to keep cost and thus storage size 

as low as possible. 

To prepare a test environment for testing these two 

database instances, we have set up as similar instances as 

it is possible with two different data models. We have 

populated both databases with the same amount of data: 

10000 drivers and 20000 passengers. Locations are 

randomly assigned to all entities. All locations are 

distributed uniformly within the city area of Novi Sad, 

Serbia. Both servers, Mongo DB and SQL Azure, are 

located in EU-West region (geographically closest to us) 

and are deployed on a single machine. Single machine 

deployment was chosen as we want to keep service costs 

as low as possible. Both databases were accessed from a 

computer with 8GB of DDR3 RAM, 2.67GHz quad core 

CPU and with 10Mbs/1.5Mbs bandwidth. We have 

executed 1000 geospatial queries, querying for five 

nearest drivers to a random location in Novi Sad. Each 

query was executed using an index on geospatial data. 

We have taken into consideration only the queries that 

needed between 50ms and 300ms to execute. 

  

a) MongoDB b) Windows Azure SQL Database 

Figure 3: Query execution time including time needed to open connection to a database 

  

a) MongoDB b) Windows Azure SQL Database 

Figure 4: Query execution time without time needed to open connection to a database 

 



Prototype Implementation of a Scalable Real-Time… Informatica 38 (2014) 213–221 219 

In Figures 3 and 4, query execution times are 

depicted for aforementioned databases. In Figure 3 we 

have presented query execution times that include time 

needed to establish and close connections to appropriate 

database. Both databases performed similarly if we take 

average times into consideration. MongoDB needed 

124.22ms to establish connection, execute query and 

iterate over results. For the same process, SQL Azure 

needed 124.83ms. The only difference in these tests is 

the fact that all query execution times on MongoDB had 

a small dispersion unlike SQL Server query times. Of all 

queries on SQL Azure, 33 queries took over 300ms to 

complete, while all queries on MongoDB were 

completed in the required time frame between 50ms and 

300ms. 

In Figure 4 we have presented query execution times 

without taking into consideration time needed to 

establish and close connections databases. MongoDB 

was twice as fast as SQL Azure in these tests. MongoDB 

needed 62.95ms to execute query and iterate over results. 

For the same process, SQL Azure needed 122.43ms. 

Similarly to the test that included time needed to 

establish and close a connection, MongoDB again had a 

small dispersion unlike SQL Azure queries. While 

querying SQL Azure, 20 test cases took over 300ms to 

complete, while all queries on MongoDB were 

completed in the projected time frame. 

In addition to previously described query time 

considerations, other main factor in choosing database 

for final product is the size its data are occupying. Both 

Windows Azure and MongoLab have limitations on the 

amount of data their cheapest options can store. As it is 

already stated, we have populated both databases with 

the same amount of data: 10000 drivers and 20000 

passengers. This data, stored in SQL Azure occupies 

1598 KB. At the same time, data stored in MongoDB 

occupies 3727KB which is twice as many as SQL Azure. 

This is a direct consequence of the overhead that storing 

data in JSON format has. 

As this amount of data is our prediction for a Serbia-

based application, storage size issues are not much of a 

problem as there is more than 500MB left in both 

databases to keep them in the same cost range. Even if 

this application is intended for worldwide use, there is 

still much space for user base growth. Of greater 

significance is the speed of query execution. If a 

connection pool is created to keep connections open, 

MongoDB is the obvious choice as it is two times faster 

than SQL Azure. Even in the case of opening one 

connection per query, MongoDB has more stable 

execution times. Furthermore, as this is single-machine 

instance, we expect even greater improvements by 

deploying MongoDB instance in distributed environment 

thus allowing Map-Reduce algorithm to fully show its 

potential. Therefore, we will use MongoDB for a further 

development of our prototype. 

In addition to databases that store driver and 

passenger data, we have used a NoSQL database to 

support SignalR server nodes. SignalR server-side code 

may be deployed alongside a NoSQL key-value memory 

cache data store named Redis [21]. With the minimum 

amount of 250MB of RAM allocated to Redis, a fully 

functioning server node could be produced. Such a node 

is capable of serving initially large enough number of 

simultaneous users on its own. Since a new server node 

can be cloned, and any cloned node’s Redis object 

instance can then be easily subscribed to an existing 

Redis instance node, we can easily increase the number 

of new server nodes to meet our future scaling needs. 

Scale out is easily achieved in part due to SignalR's in-

built scaling mechanisms, which uses Redis pub/sub 

features for a messaging backplane. Each SignalR server 

node could then be notified of any new WS or other real-

time connection channels opened on any SignalR server 

node through its Redis instance. The load balancer of 

connected computing cloud instances, which is built into 

Windows Azure, takes care of diverting traffic to a most 

appropriate SignalR server node. Such node is chosen 

based on its current traffic, and it is able to process any 

incoming new or reoccurring real-time request. But since 

each node has by then been notified, by its Redis instance 

each connection should be replicable by any other 

SignalR node. Therefore each node is capable of replying 

to any previously opened real-time connection request on 

another SignalR node. 

Table 1: Web browser support for Web Sockets. 

Web browser Supported since 

version 

Supported 

Internet Explorer 10.0 (fully) Yes 

Firefox 4.0 (partially) 

6.0 (fully) 

Yes 

Chrome 4.0 (partially) 

14.0 (fully) 

Yes 

Safari 5.0 (partially) Yes 

6.0 (fully) 

Opera 
11.0 (partially) Yes 

12.1 (fully) 

iOS Safari 
11.0 (partially) Yes 

12.1 (fully) 

Opera Mini 
- No 

Android Browser 
- No 

BlackBerry Browser 
7.0 (fully) Yes 

Opera Mobile 
11.0 (partially) Yes 

12.1 (fully) 

Crome for Android 
25.0 (fully) Yes 

Firefox for Android 
19.0 (fully) Yes 

Firefox OS 

Boot2Gecko 

1.0.0-prerelease (fully) Yes 

Tizen OS 
2.0.0a-emulator (fully) Yes 

 



220 Informatica 38 (2014) 213–221 D. Dimitrijevic et al.  

4.3 User interface 

Finally, for ubiquity reasons, our choice of prototype 

client’s UI rendering was LeafletJS [22]. LeafletJS is an 

open-source library that provides HTML5 Canvas [23] 

mapping. Encouraged by the results of our previous 

project, TaxiProxy, we felt confident that 

HTML5/PhoneGap was a right choice. PhoneGap [24] 

allows a developer to develop a fully functional 

HTML5/CSS UI and then generate native mobile 

applications. Therefore, this client could be used on both 

desktop and mobile devices and have an ubiquitous UI. 

In both desktop and mobile web client, sharing the same 

JavaScript logic codebase offers a unified access to a 

geolocation [25] feature of the device clients are running 

on. That is a necessary feature for a dynamic carpooling 

and ride-sharing applications, but also although the look 

and feel across smaller resolutions changes accordingly, 

it is not drastically changed. The learning curve for using 

clients across multiple platforms is thereby reduced by 

utilizing a responsive CSS3 web design incorporated in 

Twitter’s Bootstrap [26] library. 

As we have previously mentioned in Subsection 4.1, 

real-time request and response messages used by clients 

to communicate with the SignalR server-side backend are 

in JSON format. LeafletJS utilizes this format for 

encoding a variety of geographic data structures named 

GeoJSON [27]. JSON and its derivatives tend to be 

lightweight, compared to XML, in an attempt to reduce 

the latency caused by the need to parse out data from 

server requests and responses. Additionally, reducing any 

network latency is also achieved by an attempt to support 

Web Socket transport, as it is data just sent at the TCP 

instead of HTTP level but still accessible by the browser. 

However, support for WS as a mean of 

communication transport, depends primarily on a 

platform web browser’s capabilities which is for current 

desktop and mobile web browsers given in Table 1. 

5 Future work and conclusion 
Having described our prototype application, of which the 

early-development stage UI is depicted in Figure 5, our 

future work and plans envision for it to be deployed and 

further tested in the real-world. Since the prototype 

clients were based on previous work done for a 

commercial online taxi dispatcher, it will initially be 

tested and deployed as part of that solution to a limited 

number of taxi drivers. Early adopters of the online taxi 

dispatching service will then get the benefit of being able 

to track a few assigned taxis in real-time. The drivers of 

those taxis will be either issued mobile devices with pre-

installed HTML5/PhoneGap web clients or those client 

apps will be installed on their own devices. Such real-

world tests will hopefully lead to identifying problems 

not yet foreseen. Once a stable solution is reached, the 

prototype application could and will become a standalone 

service, open for public use and not just for taxi 

dispatching and the cost of its operational maintenance 

could then also be better estimated. If deemed low 

enough to be offset by ad support according to [28], its 

use could be free for end users unlike currently popular 

services like Lyft and SideCar [7, 8]. 

To reach that point however, some other issues, such 

as security and privacy, will also need to be tackled. In 

[29] the solution for the security and privacy issue was 

implied by use of a 3rd party location based service 

(LBS). This LBS used claims based authentication 

protocol OAuth to authenticate and subsequently 

authorize which exact set of users would be allowed 

access to the authorizing user’s location. Unfortunately, 

from February 2013 the 3rd party LBS was shut down, 

and an alternative solution should either be found or 

developed a standalone service. 

Trying to avoid the repeat of having to find 

alternatives to a 3rd party components not being 

operational any more, the focus in this paper was on 

starting to build up our own LBS features respective of 

privacy using NoSQL. Additionally, our goal in the 

future would be to also rely on information which can be 

provided from popular social networks for user 

authentication. To aid us in that endeavour, instrumental 

part of the puzzle could be Windows Azure built-in 

Access Control Service (ACS), allowing for users to 

Figure 5: Prototype app screenshot on WP8 and Android platforms, respectfully showing passenger and driver UI 



Prototype Implementation of a Scalable Real-Time… Informatica 38 (2014) 213–221 221 

single sign-on to the proposed carpool and ride-sharing 

service just as if they were signing into the selected 

social networks. If those users comply, their location data 

could then only be made accessible to a subset of their 

social network friends, a widely acceptable solution from 

a current privacy standpoint. 

This paper tried to underscore the need for 

developing dynamic real-time carpool and ride-sharing 

solutions, instead of already outdated static ones. Our 

approach comprises novel web technologies and 

approaches. Since a prototype has been successfully 

developed following the outlined design concepts, 

distribution and cloud strategies, it is obviously possible 

to build other such solutions using the same approaches. 

Especially interesting is the possibility to develop a web 

platform application that runs across multiple devices 

and their web browsers, be they mobile or desktop. Using 

an open-source Bootstrap library and Apache Cordova 

[30] mobile developer platform, which was derived from 

PhoneGap, is our main topic of interest. We feel this 

approach could be the unifying tool for any future service 

supposedly usable across multiple operating systems, 

current and future. Combining those with some other 

frameworks which use the HTML5 UI elements such as 

the canvas element thus adding the ability to render 

graphical data such as street level maps for carpool 

should, by our position, be the leading way forward. 

References 
[1]  Dmiitrijevic, D., Nedic, N., & Dimitrieski, V. 

(2013, September). Real-time carpooling and ride-

sharing: Position paper on design concepts, 

distribution and cloud computing strategies. In 

Computer Science and Information Systems 

(FedCSIS) 2013 Federated Conference on (pp. 781-

786). IEEE. 

[2]  Ozanne, L., & Mollenkopf, D. (1999). 

“Understanding consumer intentions to carpool: a 

test of alternative models.” In Proceedings of the 

1999 annual meeting of the Australian & New 

Zealand Marketing Academy. smib.vuw.ac.nz (Vol. 

8081). 

[3]  Fraichard, T. (2005). “Cybercar: l'alternative à la 

voiture particulière.” Navigation (Paris), 53(1), 53-

74.  

[4]  Dargay, J., & Hanly, M. (2007). “Volatility of car 

ownership, commuting mode and time in the UK.” 

Transportation Research Part A: Policy and 

Practice, 41(10), 934-948. 

[5]  Massaro, Dominic W., et al. (2009) 

"CARPOOLNOW: Just-in-time carpooling without 

elaborate preplanning." the 5th International 

Conference on Web Information Systems and 

Technologies. Lisbon, Portugal. 2009.  

[6]  The largest car sharing network for cheap, green 

travel in Europe. Web – www.carpooling.com 

[7]  Lyft. Web – www.lyft.me 

[8]  SideCar. Web – www.side.cr 

[9]  Outsmarting traffic, together. Web – 

www.waze.com 

[10]  GeoRSS. Web – georss.org 

[11]  Sghaier, M., Zgaya, H., Hammadi, S., & Tahon, C. 

(2011). A Distributed Optimized Approach based 

on the Multi Agent Concept for the Implementation 

of a Real Time Carpooling Service with an 

Optimization Aspect on Siblings. International 

Journal of Engineering (IJE), 5(2), 217.  

[12]  Sghaier, M., Zgaya, H., Hammadi, S., & Tahon, C. 

(2010, September). A distributed dijkstra's 

algorithm for the implementation of a Real Time 

Carpooling Service with an optimized aspect on 

siblings. In Intelligent Transportation Systems 

(ITSC), 2010 13th International IEEE Conference 

on (pp. 795-800). IEEE.  

[13]  Garrett, J. J. (2005). Ajax: A new approach to web 

applications. 

[14]  Hickson, I. Server-Sent Events, W3C Working 

Draft 20 October 2011. 

[15]  Hickson, I. (2010). The Web Sockets API, W3C 

Working Draft 29 October 2009. 

[16]  Cattell, R. (2011). Scalable SQL and NoSQL data 

stores. ACM SIGMOD Record, 39(4), 12-27. 

[17]  Najbrži put do slobodnog vozila. Web – 

taxiproxy.com 

[18]  ASP.NET SignalR: Incredibly simple real-time web 

for .NET. Web – www.signalr.net 

[19]  MongoDB. Web – www.mongodb.org 

[20]  MongoLab. Web MongoDB. Web – 

www.mongolab.org 

[21]  Redis. Web – www.redis.io 

[22]  LeafletJS. Web – www.leafletjs.com 

[23]  HTML5 Canvas. Web – www.w3.org/TR/2009/ 

WD-html5-20090825/the-canvas-element.html 

[24]  PhoneGap. Web – www.phonegap.com 

[25]  Popescu, A. (2010). Geolocation api specification. 

World Wide Web Consortium, Candidate 

Recommendation CR-geolocation-API-20100907. 

[26]  Bootstrap. Web – www.getbootstrap.com 

[27]  GeoJSON. Web – www.geojson.org 

[28]  Goldstein, D. G., McAfee, R. P., & Suri, S. (2013, 

May). The cost of annoying ads. In Proceedings of 

the 22nd international conference on World Wide 

Web (pp. 459-470). International World Wide Web 

Conferences Steering Committee. 

[29]  Dimitrijević, D., & Luković, I., & Dimitrieski, V., 

& Vasiljević, I. (2013) “Orchestrating Yahoo! 

FireEagle location based service for carpooling” 3rd 

International Conference on Information Society 

Technology and Management, Kopaonik, Serbia, 

2013.   

[30]  Apache Codrova. Web – cordova.apache.org 

  

http://www.w3.org/TR/2009/


222 Informatica 38 (2014) 213–221 D. Dimitrijevic et al.  

 


