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With the advent of the big data era, tourists receive a massive amount of travel information every day, 

and traditional personalized travel recommendation methods are difficult to provide personalized travel 

recommendation services. Therefore, the study first introduced a multi granularity recommendation 

framework based on attention mechanism, and then designed an unsupervised multi-implicit semantic 

trajectory mining model. The multi granularity recommendation framework was used for optimization to 

obtain more comprehensive user preferences. Finally, based on this, an intelligent personalized tourism 

recommendation method was established. The study used a dataset of user travel trajectory data 

collected and processed from various popular travel portals for subsequent testing, and evaluated the 

performance of different recommendation models from three aspects: computational efficiency, overall 

utility, and resource utilization. Accuracy, average training time F1 value, and resource utilization were 

selected to evaluate the performance of different recommendation models. The research results showed 

that compared with other algorithms, the recall and accuracy growth rates based on the optimized 

unsupervised multiple cryptic semantic trajectory mining model were the fastest, with corresponding 

recall and accuracy rates of 86.57% and 97.62%, respectively. Furthermore, in comparison with the 

most prevalent personalized tourism recommendation model, which was based on an enhanced frog 

leaping algorithm, the proposed model, which was based on an optimized unsupervised multiple implicit 

semantic trajectory mining model, demonstrated an average increase of 10.3% and 8.9% in Hit Ratio 

and normalized cumulative loss gain, respectively. In a comparison of the performance of the research 

method with that of mainstream algorithms, the research method was found to perform the best, 

demonstrating excellent results in terms of computational efficiency, F1 value, and resource utilization. 

The values for these metrics were 11.24 s, 97%, and 91%, respectively. Finally, in practical 

applications, two tourism planning schemes for visiting Guilin were generated based on user needs, and 

users were very satisfied with the generated results. In summary, the method proposed in the study has 

good performance and can effectively improve user satisfaction and service quality in the tourism 

industry. 

Povzetek: Raziskava uvaja optimiziran model UMISTM za rudarjenje trajektorij in personalizirana 

priporočila v turizmu. 

 

1 Introduction 
In recent years, the tourism industry has been developing 

rapidly, and tourism services are also moving toward 

intelligence and informatization. However, there are still 

many problems in the development process, such as poor 

quality of intelligent recommendation services, 

information asymmetry, and so on. In addition, the 

personalized needs of tourism services are becoming 

more and more important. How to meet the personalized 

needs of different tourists in the tourism process has 

become an important challenge [1-3]. The Unsupervised 

Multiple Implicit Semantic Trajectory Mining 

(UMISTM) model does not require a large amount of 

labeled data for training, thus better mining user travel 

trajectories and interest preferences. At the same time, it 

can also mine user's cryptic semantic trajectories in 

different dimensions, thereby more comprehensively  

 

grasping the personalized needs of users [4-5]. However, 

this model requires a large amount of training data for 

training, as well as complex optimization and adjustment 

of model parameters, which will consume a lot of 

computational resources and time costs [6-7]. In response 

to the above issues, the study introduces a Multi 

Granularity Recommendation (MGR) framework based 

on Attention Mechanism (AM) to optimize the UMISTM 

model and establish an intelligent personalized tourism 

recommendation method. The research aims to improve 

the effectiveness of personalized tourism 

recommendations and user satisfaction, provide valuable 

insights for the tourism industry, and also provide new 

ideas for the development of tourist attractions. There are 

two main innovative points in the research. The first 

point is to propose an optimized UMISTM model to 

mine user travel trajectories, and apply it to intelligent 
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personalized tourism recommendation methods. The 

second point is to design an AM-based MGR framework 

to improve the UMISTM model and use it to extract user 

preferences. The research structure is mainly divided into 

four parts. The first part is a review of relevant research 

results. The second part is to construct the UMISTM 

model and optimize its design for intelligent personalized 

tourism recommendation methods. The third part is to 

verify the performance and application effectiveness of 

the proposed research method. The last part is a summary 

of the research. 

2 Related works 
With the continuous improvement of the national 

economic level and the continuous increase in per capita 

disposable income of residents, people have more funds 

for tourism consumption, which has promoted the 

development of the tourism industry. However, 

designing and recommending more intelligent tourism 

trajectories for different user needs can further improve 

the quality of tourism services and user satisfaction. Lin 

et al. developed a two-stage optimization model to 

address the importance of recommendation diversity. In 

the first stage, the optimization model considered topic 

diversity, while in the second stage, a model that 

minimized misclassification costs was proposed to 

balance the diversity and accuracy of recommendations. 

The research method was shown to significantly improve 

the accuracy and diversity of recommendations in 

real-world travel data [8]. Nitu et al. proposed a 

personalized travel recommendation system based on 

social media activities and proximity effects. The results 

showed that the model was superior to the current 

personalized interest point model, with an overall 

accuracy of 75.23% [9]. Kumar et al. introduced a model 

based on explicit sentiment and star ratings to predict the 

best tourist destination. The model extracted 

user-selected topics through latent Dirichlet topic 

allocation modeling, and then introduced a 

morphological linear neural network model to generate 

sentiment scores for text content. The experimental 

results showed that the accuracy, recall and F1 score of 

the research method were 86%, 87% and 89%, 

respectively [10]. Fudholi et al. designed a deep learning 

based mobile tourism recommendation system to help 

tourists discover more different tourist destinations. The 

experimental results showed that the system achieved an 

average accuracy of over 85% and an average absolute 

percentage error of 5% [11]. 

The UMISTM model is an unsupervised learning 

method that can be used for text mining and can 

automatically learn the semantic and structural 

information of text, but its training process is more 

complex and time-consuming. Li et al. proposed a graph 

based encoding source code semantic method, which was 

mainly used for limited interpretive and implicit 

representation learning. The results showed that the 

proposed method outperformed text-based methods 

without increasing complexity [12]. Duan et al. believed 

that the behavior of users calling services belonged to 

implicit semantics. By analyzing user calls, mining their 

implicit semantic representations, and modeling users' 

hidden preferences, the research results showed that the 

proposed hybrid intelligent service recommendation 

method based on implicit semantics and explicit scoring 

had better recommendation accuracy and recall than 

existing methods [13]. Zhang et al. proposed a sparse 

user check-in location prediction method based on 

implicit meaning to predict the sparse online check-in 

records and decision-making context of location-based 

online social network users. The research results showed 

that this method significantly improved the prediction 

accuracy [14]. Due to the influence of not only network 

structure but also supervised and unsupervised learning 

on the learning of specific feature encoding models, Yao 

et al. designed a graph comparison accelerated encoder 

using unsupervised learning, which maintained the final 

performance at an advanced level [15]. To better 

demonstrate the above research findings, a summary is 

conducted as shown in Table 1. 

 

Table 1: Summary of research findings 

Author Method Index 
Key 

Results 

Lin et 

al. [8] 

Developed a two-stage 

optimization model 

Accuracy 

and 

diversity 

/ 

Nitu et 

al. [9] 

Personalized travel 

recommendation system 

based on social media 

activities and proximity 

effects 

Overall 

accuracy 
75.23% 

Shah 

et al. 

[10] 

Introducing a model based 

on explicit sentiment rating 

and star rating to predict the 

best tourist destination 

Accuracy, 

recall, and 

F1 score 

86%, 

87%, 

and 

89% 

Kumar 

et al. 

[11] 

Mobile tourism 

recommendation system 

based on deep learning 

Accuracy 

and Mean 

Absolute 

Percentage 

Error 

85% 

and 5% 

Li et 

al. 

[12] 

Graph based encoding 

source code semantic 

method 

/ / 

Duan 

et al. 

[13] 

Propose a sparse user 

check-in location prediction 

method based on implicit 

semantics 

Accuracy 

and recall 

rate 

/ 

Zhang 

et al. 

[14] 

Design a graph contrast 

acceleration encoder using 

unsupervised learning 

Predictive 

accuracy 
/ 

Yao et 

al. 

[15] 

Sparse user check-in 

location prediction method 

based on implicit semantics 

/ / 

 



Optimized Unsupervised Semantic Trajectory Mining for…                          Informatica 49 (2025) 167–180   169 

In summary, there is currently relatively little 

research on multiple implicit meanings, and personalized 

tourism recommendations are also facing great 

difficulties. Therefore, this study designs a UMISTM 

model for mining hidden information in tourism 

trajectories, and optimizes it using the MGR framework, 

ultimately obtaining an intelligent personalized tourism 

recommendation method based on the optimized 

UMISTM model. 

3 Design of personalized 

recommendation method for 

intelligent tourism based on 

optimized UMISTM model 
In recent years, with the improvement of people's living 

standards and the transformation of tourism concepts, 

more and more people have chosen to spend their leisure 

time on tourism activities. However, the rapid increase in 

tourist attractions has caused great difficulties for people 

to choose the attractions they are interested in. In 

response to the above issues, the study first constructs a 

UMISTM model for mining user travel trajectories, then 

improves it using the MGR framework, and finally 

constructs an intelligent personalized travel 

recommendation method. 

 
 
 
 

3.1 User travel trajectory mining based on 

UMISTM model 

User travel trajectory refers to the itinerary, duration of 

stay, and consumption situation of tourists during the 

tourism process. By obtaining user travel trajectory, it 

can better grasp user travel preferences and consumption 

habits, and provide reference for the development and 

marketing of the tourism industry [16-17]. However, it is 

difficult to extract valuable information from user travel 

trajectories. To solve the above problems, a UMISTM 

model is proposed, which can semantically represent 

various complex and diverse information in travel 

trajectories and has strong flexibility. Firstly, it is 

necessary to preprocess the data and study the collection 

of 200000 users' travel information from tourism portals 

such as Fliggy, mainly including scenic spot route 

information and time information. The collected data 

should be subjected to noise removal, missing value 

filling, and display of scenic spot attribute information 

through knowledge graphs. In the process of data 

cleaning, administrative region information and 

non-urban scenic spots are mainly screened out. Then the 

cleaned data is entity identical through the tourism 

domain knowledge graph. Finally, the route information 

in the tourist travelogue can be obtained. The specific 

process is shown in Figure. 1. 

After data preprocessing, 14000 user travel 

trajectory data can be obtained, with 257 scenic spots in 

2022. Through the above operations, a preliminary 

summary of user travel activities can be obtained, as 

shown in Figure. 2. 
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Figure 1: Data preprocessing process based on UMISTM model 
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Figure 2: Preliminary summary of user travel behavior 

 

In Figure. 2, the average number of tourist 

attractions in the area is 16, with over 80% of users 

staying in the area for 7 days and visiting multiple 

attractions in a relatively short period of time. The user 

travel trajectories obtained through research mainly 

include three types: time information, user information, 

and scenic spot information. These are integrated into the 

UMISTM model, and the above implicit semantic 

information is represented through the same dimensional 

space. Before constructing the UMISTM model, it is 

necessary to define the attraction records and travel 

trajectories. The former is when user user  travels at 

attraction a  while in t , and the attraction record sa  

can be obtained as  , ,user t a . The latter is the 

gameplay trajectory 

     1 1: , , , , , , , , , ,i i n nPT user t a user t a user t a  where 

each sa  of user  travels continuously over time, where 

n  represents the length of PT  and satisfies the 

following condition 1,  1i is s for i n+  − . The implicit 

meaning of user travel trajectory represents the factors 

that affect the travel route. Searching for the implicit 

meaning of user travel trajectory can better grasp the 

user's travel behavior. Therefore, the UMISTM model 

uses contextual information to obtain corresponding 

implicit semantic features. The specific structure is 

shown in Figure. 3. 
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Figure 3: Structure diagram of UMISTM model 
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In Figure. 3, the model includes three levels of 

implicit meanings: time, user, and attraction. By using 

these implicit meanings, one can fully understand the 

user's tourism activities. In the modeling process of the 

UMISTM model, it is first necessary to represent the 

probability of tourism trajectory occurrence for user 's 

PT  in month m  through conditional probability 
p

. 

Then, the multiple implicit semantic feature vectors are 

instantiated to obtain the objective function expression of 

the UMISTM model, as shown in equation (1). 

1
context context

context

log , , :
tN

i i K i Kuser U ut T i
p a user t a a− +  =

 
 
 
 

    (1) 

In equation (1), U , T , and tN  are the sets of 

user  and m , as well as the trajectory length, 

respectively. :i K i Ka a− +  represents the position 

sequence of the model training window for ia , and 

context  represents the context corresponding to 

different levels. Among them, p  is usually established 

using the softmax function. However, in the study, the 

computational cost of using this function in the model is 

high, so negative sampling is chosen to train the model 

parameters. The probability of maximizing the location 

of all scenic spots is obtained by the given context  of 

PT  and calculated as shown in equation (2). 

( )( )1
log

tN i

ii
p a f

=               (2) 

In equation (2), ia  represents the location of the 

target scenic spot, and ( )i
f  represents context  with all 

implicit meanings. Among them, ia  is a positive 

sample, and attractions that are not in the context of the 

attraction are negative samples. For a given positive 

sample 
( )( ),
i

if a , the objective function is improved by 

using the random gradient ascent method to obtain the 

gradient results of the final objective function ( ),ia   

with respect to the different levels of context  vectors 

and ( )i
f

X  in ( )i
f . Therefore, the update expression V  

for all embedded vectors is shown in equation (3). 

( )

( )   

( )
,

: ,
ii i

i

f i

a NEG a
f

a
V V f context a

X

 


 


= + 


  (3) 

In equation (3),   represents the learning rate, and 

( )iNEG a  represents a non empty negative sample 

subset related to ia . By training through the above 

steps, the final UMISTM model can be obtained, which 

can be applied in tourism trajectory route 

recommendation in the future. 

3.2 Optimization based on UMISTM model 

Due to the unsupervised learning nature of the UMISTM 

model, it has high work efficiency but low accuracy 

[18-20]. Therefore, the MGR framework will be 

optimized and the learning effectiveness of the UMISTM 

model will be improved through diverse training data and 

multi granularity mining, thereby improving the 

personalized recommendation method for intelligent 

tourism. Firstly, it is necessary to define the following 

content: interaction event ( ), , ,iuser user t i c=  is when 

user  interacts with item i  at time t , where c  is the 

category to which i  belongs. The interaction behavior 

sequence 

( ) ( ) 1 1 1 1 2, , , , , , , , ,n n n nS user t i c user t i c t t t=     

of user  concatenates all interaction points of 

( ), ,user t c  in ascending order through timestamps. By 

forming a triplet user  with user , timestamp, and 

category among all interaction points, a coarse-grained 

interaction sequence 

( ) ( ) ( ) 1 1 2 2, , , , , , , , ,n nC user t c user t c user t c=  can be 

obtained. By combining user , timestamp, and i , a 

fine-grained interaction sequence 

( ) ( ) ( ) 1 1 2 2, , , , , , , , ,n nI user t i user t i user t i=  can be 

obtained by arranging them. User preferences are hidden 

in S , so it is very important to extract each user 's own 

preferences from the large amount of information 

collected. The study first learns and mines fine-grained 

preferences based on the I -sequence of each user, and 

then learns and mines coarse-grained preferences based 

on the C -sequence of each user. The specific schematic 

diagram of the MGR framework structure is shown in 

Figure. 4. 
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Figure 4: MGR frame structure schematic diagram 
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In Figure. 4, the MGR framework utilizes the same 

two parallel structures to mine user preferences of 

different granularities, and then uses the AM method to 

mine multi granularity preferences. Finally, static and 

dynamic user feature representations of different 

granularity levels are obtained. After concatenation, a 

complete preference representation of users after 

watching new travel trajectories can be obtained. The 

interaction points of the interaction behavior sequence 

are composed of four elements, and the information 

contributed by all of them is the project, the category to 

which the project belongs, and the time information. If 

there is more than one project in each category, the user's 

interaction behavior sequence can be divided into 

interaction sequences corresponding to the project and 

the category, which provides the user with different 

aspects of preference information. Therefore, an 

extensible two-level framework, namely MGRA, is 

designed to comprehensively analyze user preferences. 

The structure of the MGR framework specifically 

includes five levels: embedding layer, hidden layer, AM 

layer, attention layer, and application layer. The 

embedding layer includes embedding vector methods 

corresponding to c  and i , and interaction time, in 

order to obtain the interaction behavior encoding of all 
user . The specific expression is shown in equation (4). 

 

( ) ( ) 

( ) ( ) 

t

i i i

t

c c c

user fv i lookup bucketize t

user fv c lookup bucketize t

 = +


= +

      (4) 

 

In equation (4), iuser  and cuser  are the 

interaction behavior codes corresponding to i  and c  

of user , ( )fv i  and ( )fv c  are the feature vectors 

corresponding to i  and c  after passing through the 

feedforward neural network, respectively. The above 

feature vectors are shareable, lookup  represents the 

lookup function, and bucketize  represents the 

automatic standardization of a certain time. The output 

result of this level is a vector list composed of all 

interaction i  and c  after combining time information, 

as shown in equation (5). 

 

 

 

1 2

1 2

, , ,

, , ,

i i in

c c cn

I user user user

C user user user

=


=

           (5) 

 

The above list is input to the hidden layer. Due to 

the significant differences between the two embedding 

vectors, it is not possible to perform concatenation 

operations to merge the information. Therefore, a linear 

projection method is used to uniformly project the two 

obtained vectors into the implicit semantic space of 

dimension K . The modified vector expressions for I  

and C  can be obtained, as shown in equation (6). 

( ) ( ) ( ) 

( ) ( ) ( ) 
1 2

1 2

1 2

1 2

' , ,

' , ,

n

n

i i in

c c cn

I cancat user user user

C cancat user user user

  

  

  

  

 =


=

 

(6) 

 

In equation (6), cancat  represents the string 

concatenation function, and   represents the projection 

function with parameter   and the relu activation 

function, which puts all interaction behavior and time 

information together into a m -dimensional vector space. 

To improve the expression of I  and C  sequences, 

G-fold projections are conducted on both sequences and 

the sequence information is described through D  

semantic spaces. The corresponding expressions are 

shown in equation (7). 

 

( )

( )
D

D

D

D

I I

C C









=


=

               (7) 

 

In equation (7), 
D

  and 
D

  are both 

corresponding projection functions in H th−  space. In 

the AM layer, it is mainly used to capture the hidden 

intrinsic relationships in all semantic spaces. Due to the 

correlation between the occurrence of user 's interaction 

behavior and other interaction behaviors, the research 

conducts AM within previous interaction sequences to 

enhance the information of related interaction points. The 

attention dispersion matrices I DG −  and I CG −  

corresponding to I  and C  in each subspace are 

calculated as shown in equation (8). 

 

( )( )

( )( )

max ,

max ,

I D D

C D D

G soft I I

G soft C C





−

−

 =


=

        (8) 

 

In equation (8), maxsoft  is the softmax function 

and   is the calculation function of attention score, 

which is used to determine the impact of all interaction 

behaviors in H th− , as shown in equation (9). 

 

( )

( )

,

,

T

D D I k

T

D D C k

I I I W I

C C C W I





−

−

 =


=

            (9) 

 

In equation (9), W  represents the weight of the 

corresponding interaction behavior. In H th− , the 

expression for the attention vector is shown in equation 

(10). 

 

( )

( )
I D

C D

I D I D Q

C D C D Q

H G I

H G C





−

−

− −

− −

=


=

           (10) 
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In equation (10), ( )
I DQ I
−

 and ( )
C DQ C
−

 are 

both projection functions with the activation function 

relu. Finally, after splicing, the recombination operation 

can be performed to obtain the static coarse-grained IU  

and fine-grained preference CU , as calculated in 

equation (11). 

 

 

 

1 2

1 2

, , ,

, , ,

I e I I I I D

C e C C C C D

U cancat U U U

U cancat U U U





− − − −

− − − −

=


=

     (11) 

 

In equation (11), e I −  and e C −  belong to the 

feedforward network of the embedding layer, and the 

static multi granularity preference can ultimately be 

obtained. In the attention layer, AM is introduced to 

capture the dynamic preference of user , and through the 

static multi granularity acquisition steps of the 

recommended items, the dynamic multi granularity 

preference is ultimately obtained. In the application 

layer, first set the sorting function rf  to describe the 

dynamic preference tq  of user  and the correlation r  

between the recommended item userb , as shown in 

equation (12). 

 

( ),user tr h b q=                (12) 

 

Due to the fact that the interaction probability 

between tq  and userb  belongs to a binary classification 

problem, the mainstream cross entropy loss function is 

selected, and the calculation is shown in equation (13). 

 

( ) ( )
,

log 1 log 1i ii user
LOSS y r y r= − + − −     (13) 

 

In equation (13), iy  is the predicted result. The 

aforementioned content illustrates that the incorporation 

of AM can augment the semantic data associated with 

pertinent interaction points, thus mitigating the 

detrimental effects of unrelated interaction points and 

facilitating the effective capture of user-specific 

preferences. In summary, an optimized UMISTM model 

can be obtained and applied to mining user travel 

preferences and tourism recommendations. 

3.3 Intelligent personalized tourism 

recommendation method based on optimized 

UMISTM model 

Based on the above content, this study constructs an 

intelligent personalized tourism recommendation method 

for cross domain preference acquisition, extracts tourism 

planning and preference information of new users in the 

city, and then generates personalized tourism routes. The 

specific structure of the intelligent tourism personalized 

recommendation method based on optimized UMISTM 

model is shown in Figure. 5. 

 

Route screening and recommendation 

module

Feature extraction module User preference extraction module

Data Acquisition Module User Personalization Constraints Candidate Route and Feature Extraction 

Module

Route generation module

Data preprocessing module

 
Figure 5: Process of personalized recommendation method for intelligent tourism based on optimized UMISTM model 

 

In Figure. 5, the intelligent personalized tourism 

recommendation method consists of 7 modules, mainly 

divided into three parts: data collection and 

preprocessing, feature extraction and travel trajectory 

generation, and tourism recommendation. In the data 

collection and preprocessing part, the first step is to 

crawl the user's travel trajectory, including attractions, 

transportation, hotels, etc. Next, data cleaning operations 

are carried out to remove invalid and redundant 

information. Then, information such as time and travel 

expenses between different attractions is added, and 

various attributes of the attractions are encoded through a 

knowledge graph. Finally, the user's travel trajectory in 

other cities is queried to obtain corresponding 

personalized travel preferences, and all scenic spots are 

classified into fixed categories, including 25 categories 
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such as humanities, karst caves, and history. Composite 

statistics are performed on the categories of scenic spots 

and the proportion of each category is calculated. In the 

feature extraction section, it mainly includes the 

extraction of scenic spot features and user travel 

preferences. In the part of travel trajectory generation 

and travel recommendation, personalized travel 

recommendation needs to meet both the user's constraints 

and personalized needs. The generated travel route 

feature representation vector is calculated as shown in 

equation (14). 

 

1 2a a aM

a

b b b
b

N

+ + +
=             (14) 

 

In equation (14), N  represents the feature 

representation vector of attraction a  in the generated 

tourist route, and N  represents the number of 

attractions in the tourist route. Because N  and the 

user's personal preference pb  are known, the matching 

degree M  between the two is calculated using equation 

(15). 

 
T

a pM b b=                 (15) 

 

Through the above matching, the recommended 

route with the same number of candidate tourist routes 

and the highest matching value can be obtained. 

4 Result analysis of personalized 

recommendation method for 

intelligent tourism based on 

optimized UMISTM model 
To analyze the performance and application effect of the 

intelligent tourism personalized recommendation method 

based on optimized UMISTM model proposed in the 

study, the study first explored the performance of the 

optimized UMISTM model in the method, and then 

applied it to actual tourism recommendation to explore 

the application of the intelligent tourism personalized 

recommendation method proposed in the study. 

4.1 Result analysis based on optimized UMISTM 

model 

To evaluate the performance of the optimized UMISTM 

model, commonly used metrics such as recall, accuracy, 

training time, resource utilization, and F1 value were 

selected for evaluation. Among them, accuracy 

represented the overall prediction accuracy, recall was 

the probability of being predicted as a positive sample, 

F1 value reflected the comprehensive effect of the 

model, training was used to analyze the computational 

efficiency, and resource utilization measures the 

effective use of model resources in terms of their 

availability and capacity. A comprehensive analysis of 

the model was required in order to ascertain its accuracy, 

computational efficiency, and comprehensiveness. This 

will facilitate the development of efficient and accurate 

personalized tourism recommendation methods. In 

addition, to more scientifically validate the performance 

of the proposed model, the study selected the currently 

mainstream Personalized Travel Recommendation Based 

on Improved Frog Jump Algorithm (PTR-IFJ) and 

UMISTM models for comparative experiments. The 

dataset used in the study was 14000 user travel trajectory 

data collected and preprocessed from various popular 

tourism portal websites, which were divided into training 

and testing sets in a 7:3 ratio. The experimental 

parameter settings are shown in Table 2. 

 

Table 2: Experimental parameter setting 

Parameter 
Corresponding 

parameters 
Illustrate 

Parameter 

value 

thre 

High 

frequency 

downsampling 

threshold 

1E-5 


 

Initial learning 

rate 
0.05 

threads 

Number of 

program 

threads 

9 

nega 
Negative 

sample count 
25 

iter Iterations 300 

size Z 
Vector 

dimension 
200 

wind 2c 
Training 

window size 
5 

 

Experimental parameters were an extremely 

important part of model training, and in practical 

situations, it was necessary to improve the parameters 

based on the model, dataset, and training results. The 

training and experimentation of the model were 

conducted on the Hewlett Packard Z8 G4 workstation. 

The study first took the Four Seasons Autumn Begonia 

as an example, and its best viewing seasons were 

December and January, so its viewing had strong 

seasonal semantics. A study was conducted to compile 

and summarize the number of visitors to the Four 

Seasons Autumn Begonia in each month of 2022. 
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Figure 6: The Number of Visits and Recommended Results of Four Seasons Begonia in 2022 under the UMISTM 

Model 

 

The number of visits and recommended results of 

autumn crabapple in each month of 2022 under the 

UMISTM model are shown in Figure. 6. Among them, 

the horizontal axis represented each month in mid-2022, 

the left vertical axis corresponds to the recommended 

ratings, and the right vertical axis corresponded to the 

share of tourists. In Figure. 6, the recommendation scores 

for users recommending the Four Seasons Autumn 

Begonia scenic spots were the highest in January and 

December, and the actual trend of gameplay was 

consistent with the changes in the UMISTM model 

recommendation scores. The above results indicated that 

the research method could fully preserve the seasonal 

semantics hidden in scenic spots. By studying the cosine 

similarity between users and attractions, a top-K 

candidate attraction list was generated, and then the 

recall and accuracy results of different recommendation 

models were evaluated. 
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Figure 7: Performance results of different recommendation models and the variation curve of K 

 

The performance results of different 

recommendation models and the variation curve of K are 

shown in Figure. 7. Figure. 7(a) and 7(b) show the recall 

and accuracy results and the K value, respectively. The 

vertical axis corresponded to the recall and accuracy 

indicators, while the horizontal axis corresponded to the 

K value. As the length of the scenic spot 

recommendation list continued to expand, the optimized 

UMISTM model had the fastest growth rate in both 

recall and accuracy. When K was 20, the corresponding 

recall and accuracy were 86.57% and 97.62%, 

respectively. In the accuracy results, the UMISTM model 

gradually surpassed the PTR-IFJ model as the K value 

increased, ultimately reaching 95.16%. This was due to 

the fact that as the K-value increases, the recommended 

list corresponding to the recommendation model will 

expand, thereby increasing the probability of 

recommending accurate tourist attractions to users. 

Consequently, the results of the study will demonstrate 

an upward trajectory in terms of recall and accuracy, 

while the implicit semantic information embedded within 

the research method will exhibit greater richness and 

completeness. To explore the impact of the size of the 

model training window and the P-value on the model, a 

fixed K-value of 15 was set, where P was the number of 

historical scenic spots that the user watched. 
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Figure 8: Variation curves of different models under different influencing factors 

 

The variation curves of different models under 

different influencing factors are shown in Figure. 8. 

Figure. 8 (a) and 8 (b) show the change curves of recall 

and accuracy under different influencing factors. As the 

training window size continued to expand, the optimized 

UMISTM model showed a trend of initially increasing at 

a larger rate and then slowly decreasing, while the curves 

of the other two recommended models were relatively 

stable. This indicated that when c was 4, the proposed 

model retained the most comprehensive implicit 

semantic information. When P was 24, the accuracy of 

the optimized UMISTM model, PTR-IFJ model, and 

UMISTM model were 97.25%, 96.33%, and 91.78%, 

respectively. To further evaluate the performance of the 

optimized UMISTM model, the study selected Hit Ratio 

(HR) and Normalized Discounted Cumulative Gain 

(NDCG) for evaluation. 
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Figure 9: The impact of the number of hidden semantic spaces on HR and NDCG of optimizing UMISTM models 

 

The impact of the number of hidden semantic 

spaces on the HR and NDCG of the optimized UMISTM 

model is shown in Figure. 9. Figure. 9 (a) and 9 (b) show 

the results of HR and NDCG, respectively. As the 

number of iterations increased, the number of semantic 

spaces in different hidden layers showed an increase in 

both indicators. Among them, the performance of 

optimizing the UMISTM model was the worst when the 

number was 1, and the changes in HR and NDCG were 

relatively consistent under the other numbers. However, 

considering both indicators comprehensively, the model 

had the best performance when the number was 4, with 

the average values of the two indicators being 83.16% 

and 48.85%, respectively. To further analyze the 

performance of the proposed model, the TMDB 5000 

Movie dataset was introduced for testing, which included 

500000 comments from 975 users on 10000 movies, 

mainly including user, movie, and rating data. 
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Figure 10: Performance results of different recommendation models on self-made datasets and TMDB 5000 Movie 

datasets 

 

The performance results of different 

recommendation models on the self-made dataset and 

TMDB 5000 Movie dataset are shown in Figure. 10. 

Figure. 10 (a) and 10 (b) show the performance results of 

the self-made dataset and TMDB 5000 Movie dataset, 

respectively. The optimized UMISTM model achieved 

the best results on HR and NDCG on different datasets. 

Compared with the most mainstream PTR-IFJ model, the 

proposed model improved HR and NDCG by an average 

of 10.3% and 8.9%, which confirmed the effectiveness of 

the research method. In summary, the model proposed in 

the study had better performance and comprehensively 

captured user preferences and personalized preferences 

during travel. Finally, to further analyze the 

computational efficiency and resource utilization of the 

research method, the effectiveness of different 

recommendation models was tested. In addition to the 

comparative recommendation models previously 

discussed, the study also introduces the two-stage 

optimization model, which demonstrated the most 

optimal performance in the relevant work section. 

Furthermore, models based on explicit sentiment rating 

and star rating are presented for comparison. The results 

are presented in Table 3. 

 

Table 3: Calculation efficiency and resource utilization 

results of different recommendation models 

Recommendation 

models 

Average 

training 

time/s 

F1 

value/% 

Resource 

utilization 

rate/% 

Optimize 

UMISTM 
11.24 97 91 

PTR-IFJ 18.36 91 87 

UMISTM 13.65 92 89 

Two stage 

optimizations 
21.35 90 88 

A model based on 

explicit emotional 

rating and star 

rating 

26.83 88 85 

 

In Table 3, the research method displayed excellent 

performance in terms of computational efficiency, 

overall performance, and resource utilization, with values 

of 11.24s, 97%, and 91%, respectively. However, the 

model based on explicit sentiment and star ratings 

performed poorly, with corresponding indicators of 

26.83, 88%, and 85%, respectively. Among them, the 

PTR-IFJ recommendation model had excellent 

performance, with computational efficiency, 

comprehensive performance and resource utilization of 

18.36s, 91% and 87%, respectively. Compared with 

them, the research method greatly improved in various 

aspects of performance. This was because the research 

method effectively and deeply explores various hidden 

semantic information in the route, and obtained more 

comprehensive user personalized preferences at different 

granularities in the feature extraction part. Lightweight 

processing methods were introduced, so the accuracy and 

computational efficiency of search was greatly improved. 

In addition, the PTR-IFJ recommendation model had low 

computational efficiency due to insufficient 

communication between local and global information 

during the search process. Compared with the best 

performing two-stage optimization models in related 

work, both made certain improvements in accuracy. 

Compared with the best performing two-stage 

optimization models in related work, both have shown 

certain improvements in accuracy. The two-stage 

optimization model improves the accuracy and diversity 

of tourism recommendations through different stages, but 

does not pay attention to computational efficiency, 

resulting in lower computational efficiency. 

4.2 Application of intelligent tourism 

personalized recommendation method based on 

optimized UMISTM model 

To test the practical application effect of the intelligent 

tourism personalized recommendation method based on 

the optimized UMISTM model, a study randomly 

selected a user who planned to play for 3 days in June, 

and generated two new routes through the intelligent 

tourism personalized recommendation method. 
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Figure 11: Recommendation scheme of intelligent tourism personalized recommendation method based on optimized 

UMISTM model in practical applications 

 

The recommendation scheme of the intelligent 

tourism personalized recommendation method based on 

optimized UMISTM model in practical application is 

shown in Figure. 11. This method generated two 

completely different tourism routes based on user needs 

and personalized preferences. Scheme 1's 3-day journey 

arrangement included Zhengyang Road Pedestrian Street, 

Rongshan Lake, Bamboo Raft Tour of Lijiang River, 

Xingping Ancient Town, Shili Gallery, The Moon Hill, 

Big Banyan Tree, Moon River, The Silver Cave, Maling 

Ancient Village, Nanxi Mountain, Shanshui Jian, Sun 

Moon Twin Towers, and Elephant Trunk Mountain. Not 

only can tourists experience the local natural scenery, but 

also, they can also taste local specialties. The second 

plan was relatively simple, with itinerary arranged for 

Lijiang Scenic Area, Xingping Ancient Town, West 

Street, Guilin's Eternal Love, "Impression Liu Sanjie" 

performance, Yulong River Drifting, Ten Li Gallery, 

Yinziyan, Seven-Star Park, Dongxi Alley, Elephant 

Trunk Mountain, and Two Rivers and Four Lakes. This 

plan can also appreciate the local historical and cultural 

heritage. The user expressed satisfaction with both 

tourism planning solutions. By acquiring personalized 

preference and attraction vectors from users and 

inputting them into a feedforward neural network, it was 

possible to calculate the user's satisfaction with the 

corresponding attractions. This allowed attractions with 

high satisfaction ratings to be effectively recommended 

to users. 

4.3 Discuss 

In the context of the current vast tourism information 

network, the issue of how to provide tourist attractions 

that are easily accessible according to consumer needs 

represents a significant challenge that must be addressed 

in the process of China's tourism informatization 

development and industrial upgrading. Therefore, a 

UMISTM model was proposed to mine users' travel 

traces, and a more comprehensive user preference was 

obtained through the MGR framework, and finally an 

intelligent tourism personalized recommendation method 

was obtained. 

Firstly, the performance of the optimized UMISTM 

model was analyzed. Among the change curves of recall 

rate, accuracy rate and K value of different models, the 

recall rate and accuracy rate of the optimized UMISTM 

model were the fastest growing rate. When K was 20, the 

corresponding recall rate and accuracy rate were 86.57% 

and 97.62%, respectively. The above results were 

generated because as the value of K increased, the list of 

recommendations corresponding to the recommendation 

model would increase, and the probability of 

recommending accurate attractions to users will increase. 

Therefore, the corresponding recall rate and accuracy 
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results could show an increasing trend, and the cryptic 

information contained in the research method could be 

richer and more complete. The performance change 

curves of each influencing factor showed that with the 

continuous expansion of the size of the training window, 

the optimized UMISTM model displayed a trend of first 

increasing at a large growth rate and then decreasing 

slowly, which indicated that when c was 4, the proposed 

model retained the most comprehensive semantic 

information. The performance results of each 

recommended model in the self-made dataset and the 

TMDB 5000 Movie dataset were as follows: Compared 

with the current most mainstream PTR-IFJ model, the 

model proposed in this study had an average increase of 

10.3% and 8.9% in HR and NDCG. It indicated that the 

research method could comprehensively capture users' 

preferences and personalized preferences during travel. 

Then, the two-stage optimization model with the 

best performance in related works and the model based 

on explicit emotion score and star rating were compared 

and tested, and the analysis was carried out from the 

three perspectives of computational efficiency, F1 value 

and resource utilization. The research method showed the 

best results in each performance index, and the 

computational efficiency, F1 value and resource 

utilization ratio were 11.24s, 97% and 91%, respectively. 

Among them, the indicators of PTR-IFJ recommendation 

model were 18.36s, 91% and 87%, respectively. 

Compared with them, the performance of the research 

method greatly improved in all aspects, which was 

because the research method was effective and deeply 

excavated different hidden meaning information in the 

route, and obtained more comprehensive personalized 

preferences of users under different granularity in the 

feature extraction part. Lightweight processing was 

introduced. In addition, the model recommended by 

PTR-IFJ was not computationally efficient due to 

insufficient local and global information exchange in the 

search process. Compared to the two-stage optimization 

model, the accuracy of both models improved to some 

extent. The research method was processed from the data 

mining part, lightweight design and feature extraction 

part, and also effectively improved the computational 

efficiency and accuracy of its application. However, the 

two-stage optimization model improved the accuracy and 

diversity of travel recommendation through different 

stages, and it did not pay attention to the computational 

efficiency, so its computational efficiency was low. 

Finally, two different travel routes are generated 

according to user needs and personalized preferences in 

practical applications. Since the designed system is based 

on the user's personalized preference vector and scenic 

spot vector, which are input into the feedforward neural 

network to obtain the user's satisfaction with the 

corresponding scenic spot, the users are satisfied with the 

generated system results. 

In summary, the research method can fully meet the 

individual needs of users, is conducive to promoting the 

high-quality development of tourism industry, and is an 

important assistant to promoting the green and 

sustainable development of tourism. 

5 Conclusion 
To solve the problem of poor recommendation quality in 

traditional recommendation methods, a UMISTM model 

was proposed to mine user travel trajectories, and then 

the MGR framework was used to optimize it. Finally, an 

intelligent personalized travel recommendation method 

was designed. The experimental results showed that the 

recall and accuracy growth rates of the optimized 

UMISTM model were the fastest, with corresponding 

recall and accuracy rates of 86.57% and 97.62% at K=20, 

respectively. In the accuracy results, the UMISTM model 

gradually surpassed the PTR-IFJ model with the increase 

of K value, ultimately reaching 95.16%. The optimized 

UMISTM model achieved the best results on both HR 

and NDCG datasets. Compared with the current 

mainstream PTR-IFJ model, the proposed model showed 

an average increase of 10.3% and 8.9% in HR and 

NDCG. Finally, in the application results, the study 

provided two tourism planning schemes based on the 

personalized needs of users, and users believed that both 

schemes could meet their own requirements. In 

summary, the proposed method has good performance 

and can fully meet the personalized needs of users in 

actual tourism recommendations. However, there are still 

shortcomings in the research. The research only assists 

users in providing personalized travel routes. However, 

during the travel process, users not only need to visit 

scenic spots, but also need to provide real-time activity 

information such as restaurants, experience shops, and 

accommodation. Therefore, in future research, user 

preference information during travel can be further 

divided to provide better services to users. 

Reference 
[1] Hasan R, Koles B, Zaman M, Paul J. The potential of 

chatbots in travel and tourism services in the context 
of social distancing. International Journal of 
Technology Intelligence and Planning, 13(1):63-83, 
2021. https://doi.org/10.1504/ijtip.2021.10041470  

[2] Beldona S, Kher H V, Lin K. Gains-focused vs 
risk-averse orientations and their impact on 
location-based marketing services in tourism. Journal 
of Hospitality and Tourism Technology, 
13(2):333-347, 2022. 
https://doi.org/10.1108/jhtt-07-2021-0209  

[3] Shen L. Analysis of Immersive Virtual Reality 
Tourism Resources Based on Navier-Stokes 
Equations. Informatica, 48(6):131-140, 2024. 
https://doi.org/10.31449/inf.v48i6.5514  

[4] Chefrour A, Drissi S. K-CAE: Image Classification 
Using Convolutional AutoEncoder Pre-Training and 
K-means Clustering. Informatica (Slovenia), 47, 
2023. https://doi.org/10.31449/inf.v47i7.4499  

[5] G Mehdi, H Hooman, Y Liu, S Peyman and R. Arif 
Data Mining Techniques for Web Mining: A Survey. 
Artificial Intelligence and Applications, 1(1):3-10, 
2022. https://doi.org/10.47852/bonviewAIA2202290 

[6] Jiang H, Wan C, Yang K, Ding Y, Xue S. Continuous 
missing data imputation with incomplete dataset by 
generative adversarial networks–based unsupervised 



180   Informatica 49 (2025) 167–180 P. Guo 

 

 

learning for long-term bridge health monitoring. 
Structural Health Monitoring, 21(3):1093-1109, 
2022. https://doi.org/10.1177/14759217211021942  

[7] Obert J, Loffredo T. Efficient Binary Static Code 
Data Flow Analysis Using Unsupervised Learning. 
International Journal of Semantic Computing, 
16(4):569-583, 2022. 
https://doi.org/10.2172/1592974  

[8] Lin Y, Huang C, Yao W, Shao Y. Personalised 
attraction recommendation for enhancing topic 
diversity and accuracy. Journal of Information 
Science, 49(2):302-318, 2023. 
https://doi.org/10.1177/0165551521999801  

[9] Nitu P, Coelho J, Madiraju P. Improvising 
personalized travel recommendation system with 
recency effects. Big Data Mining and Analytics, 
4(3):139-154, 2021. 
https://doi.org/10.26599/bdma.2020.9020026  

[10] Shah C, Trupp A, Stephenson M L. Conceptualising 
local perceptions of research‐related tourism in an 
indigenous village in Fiji. International Journal of 
Tourism Research, 25(4):416-428, 2023. 
https://doi.org/10.1002/jtr.2578  

[11] Fudholi D H, Rani S, Arifin D M, Satyatama M R. 
Deep Learning-based Mobile Tourism Recommender 
System. Scientific Journal of Informatics, 
8(1):111-118, 2021. 
https://doi.org/10.15294/sji.v8i1.29262  

[12] Li L, Liu Y. Mapping Modern JVM Language Code 
to Analysis-Friendly Graphs: A Study with Kotlin. 
International journal of software engineering and 
knowledge engineering, 32(11/12):1667-1688, 2022. 
https://doi.org/10.1142/s0218194022500735   

[13] Duan L, Gao T, Ni W, Wang W. A hybrid intelligent 
service recommendation by latent semantics and 
explicit ratings. International Journal of Intelligent 

Systems, 36(12):7867-7894, 2021. 
https://doi.org/10.1002/int.22612  

[14] Zhang D, Zhang Y, Li Q, Wang D. Sparse User 
Check-in Venue Prediction by Exploring Latent 
Decision Contexts From Location-Based Social 
Networks. IEEE transactions on big data, 
7(5):859-872, 2021. 
https://doi.org/10.1109/tbdata.2019.2957118  

[15] Yao Z, Yu J, Ding J. Contrastive learning of graph 
encoder for accelerating pedestrian trajectory 
prediction training. IET image processing, 
15(14):3645-3660, 2021. 
https://doi.org/10.1049/ipr2.12185  

[16] Karami F, Malek M R. Trajectory similarity 
measurement: An enhanced maximal travel match 
method. Transactions in GIS, 25(3):1485-1503, 2021. 
https://doi.org/10.1111/tgis.12733  

[17] Kim Y K, Choi W C. Effect of change of sand 
properties on travel distance of ricocheted debris. 
Defence Technology, 17(4):1486-1495, 2021. 
https://doi.org/10.1016/j.dt.2020.08.006  

[18] Tian L. Analysis of Media Content Recommendation 
in The New Media Era Considering Scenario 
Clustering Algorithm. Informatica, 48(6):141-156, 
2024. https://doi.org/10.31449/inf.v48i6.5375  

[19] An Q, Maggioni M, Kevrekidis Y, Lu F. 
Unsupervised learning of observation functions in 
state space models by nonparametric moment 
methods. Foundations of Data Science, 5(3):340-365, 
2023. https://doi.org/10.3934/fods.2023002  

[20] Li L, Li X, Yang S, Ding S, Zheng X. 
Unsupervised-Learning-Based Continuous Depth and 
Motion Estimation with Monocular Endoscopy for 
Virtual Reality Minimally Invasive Surgery. IEEE 
transactions on industrial informatics, 
17(6):3920-3928, 2021. 
https://doi.org/10.1109/tii.2020.3011067  

 


