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With the continuous progress of science and technology, the transformation of compressive sensing 

problems into convex optimization problems has become a hot research topic. In this study, a novel 

algorithm, the balanced generalized customized proximal point algorithm, is proposed, which integrates 

the generalized customized proximal point algorithm with the balanced-augmented lagrangian method. 

Based on this algorithm, a compressive sensing system for bearing fault signals is designed, and the 

bearing fault signals are compressed by the universal compressive sensing model and the K-singular 

value decomposition algorithm, Then, the signals are reconstructed using the BG-CPPA. The 

experimental results showed that the BG-CPPA had a lower number of iterations and computation time 

compared with the traditional algorithm at different sparsity conditions. The reconstruction effect of the 

bearing inner ring signal was the best. Specifically, the BG-CPPA reduced the reconstruction error by 

33.33% and 20.00%, while reducing the reconstruction time by 32.46% and 52.64%. At compression 

ratios of 0.3, 0.4, and 0.5, the proposed compressive sensing system reduced the reconstruction error by 

35.39%, 44.06%, and 26.76% over the greedy algorithm, respectively. These results confirm the 

effectiveness of the BG-CPPA in improving the reconstruction accuracy and stability of bearing 

vibration signals, as well as the potential of the designed compressive sensing system in enhancing the 

observation efficiency of bearing fault vibration signals. 

Povzetek: Predlagan je izboljšan algoritem za konveksno optimizacijo v stisnjenem zaznavanju 

vibracijskih signalov ležajev, ki zmanjšuje napake rekonstrukcije in izboljšuje stabilnost ter učinkovitost 

obdelave podatkov. 

1 Introduction 

Affected by the development of science and technology, 

various problems in fields such as economy, computer 

science, and industry can be effectively transformed into 

optimization problems to solve. The convex optimization 

problem with linear equality constraints is one of the 

most common optimization problems, which is widely 

used in compressive sensing, image processing, machine 

learning, etc [1-3]. Traditional fault detection of rolling 

bearings mainly relies on bearing vibration signals. 

However, the high sampling frequency generated during 

the operation of rolling bearings can lead to a large 

amount of data, which have negative impacts on the 

detection results [4]. Compressive sensing is an abstract 

mathematical concept. It can effectively reduce the 

volume of compressed signal data obtained, thereby 

achieving bearing vibration signal compression and 

alleviating the drawbacks caused by excessive sampling 

data [5-6]. Therefore, a vibration signal compressive  

 

 

sensing system for rolling bearings is constructed to 

improve the accuracy and precision of bearing fault 

detection. Meanwhile, to improve the effectiveness of this 

method in practical applications, a convex optimization 

algorithm is designed based on the Generalized 

Customized Proximal Point Algorithm (GCPPA) and the 

Balanced-Augmented Lagrangian Method (B-ALM), 

namely the Balanced Generalized Customized Proximal 

Point Algorithm (BG-CPPA). It is expected to improve 

the compressive sensing reconstruction algorithm and 

utilize the convex optimization algorithm BG-CPPA to 

enhance the accuracy and stability of the bearing 

vibration signal compressive sensing system, promoting 

the innovation and development of bearing vibration 

signal processing technology. 

The overall structure of the study consists of five 

sections. The first section summarizes the research 

achievements and shortcomings of convex optimization 

algorithms and compressive sensing technology both 

domestically and internationally. In the second section, a 
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bearing vibration signal compressive sensing system 

based on the BG-CPPA is designed. In the third section, 

experiments and analysis are conducted on the proposed 

BG-CPPA and compressive sensing system. In the fourth 

section, the proposed BG-CPPA and compressive sensing 

system are compared with existing methods. In the fifth 

section, the experimental results are summarized and 

future research directions are indicated. 

2 Related works 

In modern signal processing and data analysis, the 

research on convex optimization algorithms and 

compressive sensing techniques has become a hot topic. 

Convex optimization algorithms have received 

widespread attention due to their high efficiency and 

stability in solving various mathematical problems, 

especially in dealing with optimization problems with 

complex constraints, showing unique advantages [7]. Lu 

et al. used convex optimization algorithms to re-represent 

non-convex problems in partially convex optimal control 

and optimization problems. A convex concave 

decomposition algorithm was proposed to handle 

nonlinear equality constraints, which solved the optimal 

fuel limited thrust spacecraft orbit problem [8]. For the 

finite time domain robust covariance control problem of 

partially observable linear systems, Kotsalis developed a 

computable processing framework for affine control 

strategy design based on the mean convex quadratic 

inequality and chance constrained linear inequality, 

achieving performance specifications in stochastic state 

control trajectories [9]. He et al. proposed a second-order 

continuous primal dual dynamical system with a 

time-dependent positive damping term for separable 

convex optimization problems with linear equality 

constraints. The time asymptotic properties of the system 

were verified through the Lyapunov analysis method. The 

convergence speed at different damping coefficients was 

derived [10]. A reliable and efficient trajectory generation 

method is a fundamental requirement for autonomous 

power systems. Malyuta et al. proposed a comprehensive 

tutorial on three trajectory generation methods based on 

convex optimization. The lossless convexity and two 

sequence convex programming algorithms ensured 

continuous convexity to optimize sequence trajectories. 

The convex optimization was used to generate 

non-convex trajectories [11]. To solve the collaborative 

problem where only the cost function of each node and its 

neighboring point information can be obtained, Liu et al. 

proposed a continuous time primal dual algorithm for 

constrained convex optimization problems in 

time-varying indirect connected graphs. This achieved the 

optimal solution under global convergence of the average 

state [12]. 

In addition, compressive sensing technology is gradually 

changing traditional signal processing methods due to its 

high efficiency and low-cost characteristics in signal 

acquisition and reconstruction. As a key component in 

mechanical systems, accurate vibration signals analysis is 

crucial for fault diagnosis and predictive maintenance. By 

combining convex optimization and compressive sensing 

techniques, researchers can more effectively process and 

analyze these complex signals, thereby improving the 

accuracy and efficiency of fault detection [13]. Chen 

proposed a compressive sensing method to address the 

limited data transmission capacity during remote machine 

condition monitoring, significantly reducing the 

computational complexity of vehicle fault diagnosis [14]. 

To cope with high sampling points and high sampling 

points for acoustic emission signals, Tai et al. proposed a 

compressive sensing processing framework. The wavelet 

sparse convolutional network was established to solve 

diagnosis and evaluation, thereby reducing the signal 

compression rate while ensuring acoustic reconstruction 

errors, and reducing the transmission signal data and 

pressure [15]. To promote energy perception in long-term 

vibration monitoring systems, Zonzini et al. proposed a 

model assisted variant based on the compressive sensing 

method. Sensing nail tied steel beams could retain 

reconstructed structural parameters even in defective 

configurations [16]. Although the remote wind turbine 

status monitoring system has better computing resources, 

there is data loss. Therefore, Peng et al. proposed a 

fault-tolerant missing data fault detection method based 

on compressive sensing. The compressive sensing signal 

reconstruction algorithm effectively reduced the 

probability of bearing fault detection data loss for two 

types of wind turbines [17]. Wang et al. proposed a novel 

modeling and control strategy for axial hybrid magnetic 

levitation bearings used in household flywheel energy 

storage systems to achieve effective monitoring of 

bearings. A new magnetic flux density feedback control 

was adopted instead of traditional control, achieving 

performance consistent with traditional position feedback 

control strategies [18]. Al-Chaab et al. put forward a 

medical image security compression system based on 

compressive sensing principle to solve the medical data 

security and privacy protection. The image was 

segmented and encoded using a Gaussian random number 

sensor matrix. The compression rate of the image size 

was about 30%, and the least significant bit technique 

was used to hide the data in the audio file, thereby 

improving the security and compression efficiency of the 

data [19]. 

Based on the above, current research on convex 

optimization problems with linear equality constraints 

mainly focuses on algorithm applications, while there is 

relatively little research on algorithm improvement. 

Compressive sensing technology, as a commonly used 

compression method in signal processing, has received 

less research from domestic and foreign scholars on its 

combination with convex optimization algorithms. In this 

context, a new convex optimization algorithm is proposed 

by combining GCPP algorithm and B-ALM algorithm. 

Then, a bearing vibration signal compressive sensing 
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system is designed. Unlike current research methods, an 

innovative reconstruction algorithm for bearing vibration 

signals is designed to address the accuracy and stability 

of signal reconstruction in compressive sensing systems. 

It is expected to expand the application value of convex 

optimization algorithms and improve the effective 

observation of bearing fault vibration signals in 

compressive sensing systems. The study further 

summarizes the differences between the existing 

literature and the proposed method, as shown in Table 1. 

 

Table 1: Comparison between existing literature and proposed method 

Reference Method Problem domain Limitations 

Lu et al. [8] Convex-concave decomposition 
Nonlinear equality 

constraints 

May not scale well with 

large datasets 

Kotsalis [9] Affine control strategy 
Stochastic state 

control 

Sensitive to specific types 

of noise 

He et al. [10] 
Second-order continuous 

primal-dual dynamical system 

Separable convex 

optimization 

Strongly dependent on 

damping coefficients 

Malyuta et al. [11] 
Convex optimization-based 

trajectory generation 
Trajectory generation 

Limited applicability to 

non-convex trajectory 

generation tasks 

Liu et al. [12] 
Continuous time primal-dual 

algorithm 

Distributed consensus 

problems 

High computational 

complexity 

Chen [14] Compressive sensing approach 
Remote machine 

condition monitoring 

High demand on data 

transmission capacity 

Tai et al. [15] 
Wavelet sparse convolutional 

network 

Acoustic emission 

signal processing 

Inefficient for processing 

high sampling point data 

Zonzini et al. [16] 
Tilt-degree compressive sensing 

method 

Structural health 

monitoring 

Limited adaptability to 

defect configurations 

Peng et al. [17] 
Fault-tolerant method based on 

compressive sensing 

Wind turbine 

condition monitoring 
Sensitive to data loss issues 

Wang et al. [18] Hybrid magnetic bearing control 
Flywheel energy 

storage system 

Strong dependency on 

control strategies 

Al-Chaab et al. [19] 
CS-based medical image 

compression system 
Medical data security 

Limited hiding capability in 

audio files 

This paper GCPPA and B-ALM 
Bearing fault signal 

compressive sensing 
- 

 

3 A compressive sensing system for 

bearing vibration signals based on 

BG-CPPA 

The compressive sensing problem can be effectively 

transformed into a linear equality constrained convex 

optimization problem for solving. Therefore, a BG-CPPA 

based on GCPPA and B-ALM is proposed to solve the 

bearing fault vibration signal observation. On this basis, a 

bearing vibration signal compressive sensing system is 

designed based on the universal compressive sensing 

theory model, which is reconstructed using the 

BG-CPPA. 

3.1 BG-CPPA design 

Aiming at the low computational accuracy and poor 

stability of convex optimization algorithms in 

compressive sensing systems, a BG-CPPA suitable for 

solving linear equality constrained convex optimization 

problems is designed by combining GCPPA and B-ALM. 

The GCPPA is an extension of the Customized Proximal 

Point Algorithm (CPPA). It has great application value in 

fields such as image processing, statistics, and 

compressive sensing. Unlike the drawbacks of the CPPA 

where convergence efficiency is limited by the relaxation 

factor, GCPPA eliminates the relaxation step while 
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ensuring convergence efficiency [20]. The specific 

iterative expression is shown in equation (1). 
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In equation (1), 
( )x

 represents a convex function and 

also represents the objective function. x  represents a 

convex optimization problem. 


 represents a set. 


 

represents the Lagrange multiplier. A  represents the 

coefficient matrix. b  represent the known vector. r , 

k , t  and   all represent parameters, , , 0r k t  , and 

(0.5,1)
. The B-LAM algorithm is an extension of the 

Augmented Lagrangian Method (ALM). It balances the 

excessive proportions of the objective function, 

coefficient matrix, and set in the two sub-problems by 

reconstructing ALM [21]. The specific iteration is shown 

in equation (2). 
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Figure 1: Iterative steps of BG-CPPA 
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In equation (2), 0M
 represents a positive definite 

matrix. The B-LAM is often transformed into an 

equivalent form in solving convex optimization problems, 

as shown in equation (3). 
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However, the GCPPA has limited applicability in solving 

practical problems. The iterations of the B-ALM is 

affected by the quantity. The convergence efficiency 

decreases accordingly, which is not conducive to solving 

problems related to large-scale data. Therefore, a 

BG-CPPA is proposed by combining two algorithms. The 

specific calculation steps are shown in Figure 1. 

Firstly, the initial point, positive definite matrix, 

termination condition, and other parameters are set. A 

new iteration point is calculated based on the maximum 

number of iterations. The iterative of the BG-CPPA is 

shown in equation (4). 
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In equation (4), G  stands for the positive definite 

matrix, which can be used to ensure the convexity of the 

objective function, thus ensuring the convergence and 

uniqueness of the optimization algorithm. The shutdown 

criterion condition is shown in equation (5). 
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In equation (5),   represents the termination condition. 

max iteration
 represents the maximum number of 
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iterations. The first-order optimality condition for the 

convergence iteration of the proposed BG-CPPA is 

shown in equation (6). 
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According to the optimality condition equation, the 

equivalent form of its inequality is transformed into a 

compact form of inequality, as shown in equation (7). 
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In equation (7), 
Q

 represents a positive definite matrix. 

  represents the iteration point. 
( )F 

 denotes the 

affine monotone function, as shown in equation (8). 
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The lemma of algorithms is closely related to their 

properties. Therefore, two lemmas are further proposed as 

reference equations for subsequent performance 

verification of the BG-CPPA. Lemma 1: The solution of 

the first-order optimality condition inequality for convex 

optimization problems is generated based on the sequence 

generated by the BG-CPPA, as shown in equation (9). 
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Lemma 2: The sequences calculated according to the 

iterative equation of the BG-CPPA satisfy the inequality 

shown in equation (10). 
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According to Lemma 1 and Lemma 2, the convergence 

property of the BG-CPPA can be further effectively 

verified, thereby achieving broader application value. 

Therefore, the process of BG-CPPA to achieve 

convergence is shown in Table 2. 

3.2 A compressive sensing system design for 

bearing vibration signals based on 

BG-CPPA 

Compressive sensing technology obtains signals in actual 

engineering construction through under-sampling based 

on signal sparsity and non correlation. Combined with 

optimization algorithms, the data are reconstructed to 

directly collect natural signal data through compression. 

The sparse signal is shown in equation (11). 

y = 
              (11) 

In equation (11), 
y

 represents the sampled value or 

observed data.   represents a matrix that multiplies the 

number of linear measurements by the length of the 

original signal.   represents a sparse signal. In the 

sensing process of sparse targets, the signal itself contains 

fewer non-zero elements, i.e., the target finite coefficient 

signal contains only several non-zero elements. The 

specific sparse signal compressive sensing routine theory 

model is shown in Figure 2. 

However, in practical applications, the sampled signal 

data do not exhibit sparsity. Sparse features often need to 

be formed through changes in a certain transformation 

domain. Therefore, combined with the mathematical 

expression equation of basic compressive sensing, a 

universal compressive sensing mathematical model is 

developed, as shown in Figure 3. 

Compared with the sparse signal compressive sensing 

theory model, the target signal in the universal 

compressive sensing model is a vector with sparse 

features that has a finite length and a discrete distribution 

in the spatiotemporal dimension [22-23]. Therefore, the 

bearing vibration signal compressive sensing system 

based on the BG-CPPA proposed in the study follows a 

universal compressive sensing model, forming an 

over-complete dictionary in dictionary learning. It 

combined with the optimal measurement matrix to 

capture bearing vibration signal data. The specific 

implementation process is shown in Figure 4. 

 

Table 2: Convergence process of BG-CPPA 

Pseudocode of # BG-CPPA 

# Initialization 

x_k = initial_point_x 

y_k = initial_point_y 

G = positive_definite_matrix 

epsilon = termination_condition 
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max_iterations = maximum_number_of_iterations 

r = positive_real_number 

t = positive_real_number 

alpha = alpha_parameter_in_range_0_5_to_1 

# Iteration process 

for k in range(max_iterations): 

# Calculate new iteration point x_{k+1} 

x_k_plus_1 = argmin_x {theta(x) + 0.5 * ||x - y_k||_G^2 + r * ||Ax - b||^2} 

# Calculate new iteration point y_{k+1} 

y_k_plus_1 = x_k_plus_1 + alpha * (A * x_k_plus_1 - b) 

# Convergence Check 

if ||x_k_plus_1 - x_k|| <= epsilon or ||A * x_k_plus_1 - b|| <= epsilon: 

print ("Algorithm has converged.") 

break 

else: 

x_k = x_k_plus_1 

y_k = y_k_plus_1 

# Output the solution 

print ("Solution:", x_k_plus_1) 

 

y

Observations

 

Target 

sparse signal

 

Figure 2: Theory model of sparse signal compressive sensing 

Observations

Target sparse signal

Merge matrix Sparse vector

 

Figure 3: Universal compressive sensing theory model 
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Figure 4: Implementation process of compressive sensing system for bearing vibration signals 

 

After compression detection, the BG-CPPA is used to 

reconstruct and restore the original bearing vibration 

signal. This compressive sensing system is used to 

compress signals under under-sampling conditions. 

Therefore, the negative impact of large-scale sampled 

signal data on transmission and storage systems can be 

mitigated. Meanwhile, considering the limitations of 

compressive sensing systems in signal usage, actual 

signal data have potential sparsity. Therefore, sparse 

matrices are used to represent the collected data signals, 

as shown in equation (12). 
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In equation (12), N  represents the length of the original 

signal. i  represents the coefficient atom.   represents 

a sparse vector in a sparse matrix.   represents the 

sparse basis. Sparse vectors have potential sparse features 

in sparse bases. Then, the K-Singular Value 

Decomposition (K-SVD) algorithm is used to construct 

an over-complete dictionary internally associated with 

vibration signals. The core of the K-SVD mainly includes 

two parts: iteratively updating the dictionary and sparse 

encoding [24-25]. The process of iteratively updating the 

dictionary is often accompanied by significant deviations. 

Therefore, under the sparsity control, the overall error is 

reduced by optimizing and updating each column of 

atoms. The error matrix is shown in equation (13). 
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In equation (13), Err  represents the error matrix. Y  

represents the atomic matrix of the bearing vibration 

signal.   represents the sparsity. d  represents the 

error value. The mathematical expression of sparse 

encoding is shown in equation (14). 

 

2

2
, arg minP O Y PO= −

      (14) 

 

In equation (14), P  represents the original 

over-complete dictionary. O  represents a sparse matrix. 

According to the constructed bearing vibration signal 

compressive sensing system, the termination condition of 

the BG-CPPA in numerical experiments is shown in 

equation (15). 
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The algorithm parameter selection for decompressive 

sensing problem is shown in equation (16). 
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In equation (16), nI
 represents the identity matrix of n  

dimension. 


 represents the number of repeated 

experiments. 

4 Verification analysis of bearing 

vibration signal compressive 

sensing system based on BG-CPPA 

The convex optimization algorithm BG-CPPA and the 

compressive sensing system are used for sparse signal 

simulation experiments in response to the potential 

sparsity characteristics of bearing fault vibration signals. 

The algorithm is validated in terms of function 

performance comparison, simulated signal reconstruction 

effect, and reconstructed Signal-To-Noise Ratio (SNR) at 

different compression ratios. Based on wavelet threshold 

function denoising, the fault signal observation 

verification of the compressive sensing system is carried 

out. 

4.1 BG-CPPA validation analysis 

To verify the effectiveness of the proposed BG-CPPA in 

solving convex optimization problems such as 

compressive sensing, the algorithm performance is 

verified by combining function performance comparison, 

one-dimensional simulation signal reconstruction 

efficiency, and reconstruction SNR of bearing fault 

signals at different compression ratios.  

The BG-CPPA takes the value of 0.95 for  , 0.1 for r , 

and 
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Optimal fitness are selected and 

the average value is calculated by repeating the 

experiment 10 times.  

By controlling the increase in sparsity, the comparison 

results of BG-CPPA, GCPPA, and B-LAM at termination 

conditions of 10-8 are shown in Figure 5. 
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Figure 5: Comparison of algorithm performance at different sparsity variations 

 

From Figure 5 (a), the B-ALM exhibited significant 

fluctuations with increasing sparsity. The iterations of 

BG-CPPA and GCPPA were relatively more stable. The 

number of iterations of BG-CPPA was lower than the 

other two methods in the whole sparsity change, which 

shows that the algorithm can maintain consistent 

performance and better robustness when dealing with 

data with different sparsity. The sparsity of detection 

algorithm is low, which is very important for fault 

detection system. In bearing fault detection, the reliability 

is directly related to the accuracy and timeliness of fault 

detection, thus affecting the maintenance and operation 

safety of equipment. Figure 5 (b) shows the computation 

time of three algorithms at different sparsity levels. The 

calculation time of BG-CPPA was less affected by 

sparsity, which fluctuated around 0.60s. The calculation 

time of B-ALM was greatly affected by sparsity. When 

the sparsity was greater than 150, the calculation time 

increased by 12.13% -30.47%. This shows that 

BG-CPPA can maintain high efficiency at different 

sparsity. In contrast, the calculation time of B-ALM 

algorithm increases significantly with the increase of 

sparsity, which indicates that it is inefficient when 

dealing with high sparsity data. Overall, the BG-CPPA 

performs significantly better than the other two 

algorithms when the termination condition is 10-8. 

The BG-CPPA is to transform the compressive sensing 

signal of bearing vibration into a convex optimization 
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problem for reconstruction. Therefore, to further verify 

the performance of the BG-CPPA, a reconstruction 

verification is conducted using simulated signals. 

Considering that the signal data obtained in practical 

applications often contains external noise disturbances, an 

additional 15 decibel Gaussian white noise is added to the 

simulated signal for performance testing. 15dB is a 

common SNR level. After repeated experiments, it is 

found that 15 dB is a balance point between algorithm 

performance and computing resources, which can ensure 

sufficient performance and avoid excessive computing 

burden. The comparison results of the three methods are 

shown in Figure 6. 

From the signal reconstruction results of the three 

algorithms, the three convex optimization algorithms 

were not sensitive to the signal sparsity. There was no 

distortion in the reconstruction results. This indicates that 

when the convex optimization algorithm performs 

reconstruction, it can automatically predict sparsity and 

accurately recover the original signal. Overall, the 

GCPPA shown in Figure 6 (a) has the worst simulation 

effect, followed by Figure 6 (b). The simulation effect of 

the BG-CPPA proposed in the study is superior among 

the three algorithms. The average reconstruction time, 

reconstruction error, SNR and Peak Signal-to-Noise Ratio 

(PSNR) comparisons of the three methods are shown in 

Table 3. 

In Table 3, the BG-CPPA had the lowest reconstruction 

error and reconstruction time among the three algorithms. 

In terms of reconstruction error, BG-CPPA decreased by 

32.46% and 52.64% compared with GCPPA and B-ALM, 

respectively. In terms of reconstruction time, the 

BG-CPPA reduced 33.33% and 20.00% respectively 

compared with the two algorithms. From the 

reconstruction results, it is demonstrating that the 

BG-CPPA has significant advantages in reconstruction 

speed, noise resistance, and reconstruction accuracy, 

making it more effective in solving convex optimization 

problems in compressive sensing technology. From the 

SNR and PSNR of the three algorithms, the SNR and 

PSNR of the proposed method are better than the other 

two methods. This indicates that the reconstructed signal 

quality of BG-CPPA is better, with less difference from 

the original signal and higher recovery accuracy. The 

reconstruction SNR results of three algorithms at 

different compression ratios are shown in Figure 7. From 

Figure 7, the reconstruction SNR of the three algorithms 

increased with the increase of the compression ratio. The 

reconstruction SNR of BG-CPPA had the best increase in 

amplitude and speed compared with the other two 

algorithms. This indicates that BG-CPPA has advantages 

in reconstruction processing, which has the best 

reconstruction effect. The performance of three 

algorithms in reconstruction testing is shown in Figure 8. 
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Figure 6: Comparison of reconstruction effects at 15 dB Gaussian white noise 
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Table 3: Comparison of analog signal reconstruction performance at 15dB Gaussian white noise 

Targets GCPPA B-ALM BG-CPPA 

Err 3.05 4.35 2.06 

Time (s) 0.06 0.05 0.04 

SNR (dB) 21.50 28.13 29.76 

PSNR (dB) 22.04 28.97 30.53 
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Figure 7: Reconstruction signal-to-noise ratio at different compression ratios 
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Figure 8: Comparison of three algorithms for reconstructing sparse signal of bearing inner ring fault 
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From Figures 8 (a) and 8 (b), the trained over-complete 

dictionary showed that the bearing vibration signal had 

potential sparsity. The sparsity effect was superior, which 

met the experimental requirements of the proposed 

compressive sensing system. The sparse representation 

signal reconstruction effects of the three algorithms at a 

compression ratio of 0.5 are shown in Figures 8 (d) - (f). 

Figure 8 (c) shows the original sparse signal. The 

reconstruction effects of the three algorithms showed that 

the BG-CPPA had the best reconstruction effect. The 

convex optimization algorithm BG-CPPA performed the 

best in reconstructing sparse signals. It is suitable as a 

reconstruction algorithm for the compressive sensing 

system of bearing vibration signals, thereby improving 

the reconstruction processing performance of the 

compressive sensing system. 

4.2 Verification analysis of compressive 

sensing system for bearing vibration 

signals 

To further verify the superiority of the convex 

optimization algorithm BG-CPPA in the bearing 

vibration signal compressive sensing system, the 

proposed bearing vibration signal compressive sensing 

system is analyzed. The vibration signals generated by 

bearing failure operation are complex and diverse, with a 

large amount of noise. Therefore, the wavelet threshold 

function is used to denoise it. The pre- and post noise 

reduction effects of bearing vibration signals are shown 

in Figure 9. 

By comparing before and after signal denoising, the 

signal in Figure 9 (a) was affected by noise. The 

threshold function showed more fluctuations, making it 

impossible to directly compress and sense the signal data. 

Figure 9 (b) shows the threshold function after denoising. 

The overall signal was smoother after denoising. On this 

basis, the compressive sensing system is validated for 

bearing fault signal compression. The testing and 

reconstruction results of the bearing fault inner ring 

signal at a compression ratio of 0.5 are shown in Figure 

10.  

From Figure 10 (a) and Figure 10 (b), the improved 

K-SVD sparsely represented the bearing fault signal, 

fully demonstrating its potential sparse features. Based on 

the Gaussian random observation matrix with a 

compression ratio of 0.5 in Figure 10 (c), sparse signals 

were compressed through matrix compression to achieve 

signal data compression. Figure 10 (d) shows the 

reconstruction effect of the proposed convex optimization 

algorithm. It effectively reconstructed and recovered 

bearing signals. Meanwhile, the Greedy Algorithm (GA) 

is introduced to compare the reconstruction performance 

of bearing inner ring fault signals with three methods at 

different compression ratios. The specific comparison 

data is shown in Table 4. 
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Figure 9: Simulation analysis of noise reduction effect on noise signals 
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Figure 10: Signal reconstruction effect of compressive sensing system at 0.5 compression ratio 

Table 4: Comparison of reconstruction performance for bearing fault inner ring signal at different compression ratios 

Algorithm 

M/N=0.3 M/N=0.4 M/N=0.5 

Err 

Reconstruct 

signal-to-noise 

ratio (dB) 

Time 

(s) 
Err 

Reconstruct 

signal-to-nois

e ratio (dB) 

Time 

(s) 
Err 

Reconstruct 

signal-to-nois

e ratio (dB) 

Time 

(s) 

GCPPA 21.34 0.14 3.76 9.21 3.81 4.37 6.99 11.32 3.83 

B-ALM 19.27 0.33 2.15 8.76 5.66 2.28 6.34 13.54 2.67 

BG-CPPA 9.22 0.73 0.29 4.45 13.18 0.54 3.01 18.04 0.79 

GA 14.27 0.46 1.70 5.49 23.56 1.04 4.11 17.43 1.28 

 

From Table 4, the reconstruction performance of 

BG-CPPA was significantly better than GCPPA and 

B-ALM at different compression ratios. At a compression 

ratio of 0.4, the reconstruction SNR of the GA increased 

by 10.38dB compared with BG-CPPA. However, at 

compression ratios of 0.3 and 0.5, the BG-CPPA 

performed better. In terms of the running time, BG-CPPA 

showed better ability. It had the lowest average signal 

reconstruction time among all algorithms at three 

compression ratios. The BG-CPPA reduced time 

consumption by 82.94%, 48.08%, and 38.28% compared 

with the GA at three compression ratios, respectively. As 

the compression ratio increases, the BG-CPPA requires 

more time to reconstruct the SNR and signal, while the 

Err decreases. This indicates that BG-CPPA can 

effectively improve the signal reconstruction accuracy 

and efficiency of the bearing vibration signal compressive 

sensing system. It also confirms the effectiveness and 

reliability of the proposed compressive sensing system in 

bearing fault vibration signals and compression 

processing. The mean, Standard Deviation (SD) and 95% 

confidence intervals of the reconstruction errors of the 

bearing fault signals at different compression ratios are 

shown in Table 5. 

From Table 5, the mean value of the reconstruction error 

decreased with the increase of the compression ratio, 

which indicates that the compressive sensing system can 

still maintain high reconstruction accuracy at higher 

compression ratios. Meanwhile, the smaller standard 

deviation and confidence interval width indicate the 

consistency and reliability of the experimental results.

Table 5: Means, standard deviations and 95% confidence intervals of reconstruction errors (Err) for bearing fault 

signals 

Compression ratio Mean SD 95% confidence 

interval 

0.3 9.22 0.73 (8.76, 9.68) 

0.4 4.45 0.29 (4.16, 4.74) 

0.5 3.01 0.54 (2.47, 3.55) 
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4.3 Time complexity analysis 

In the BG-CPPA, the most time-consuming part is the 

iterative process, especially solving the optimization 

problem and updating the iteration points in each 

iteration. The time complexity of each iteration is 

assumed to be O(f), where f represents the computational 

complexity of a single iteration. The initialization step 

has a time complexity of O(1), and the algorithm 

performs up to N iterations with a time complexity of 

O(f) per iteration. Therefore, the time complexity of the 

entire iterative process is O(N·f). A convergence check is 

performed after each iteration, which also has a time 

complexity of O(1). Therefore, the overall time 

complexity of the BG-CPPA is O(N·f). Although the time 

complexity of the BG-CPPA is proportional to the 

number of iterations, experimental verification has shown 

that the algorithm can maintain a low number of 

iterations at different sparsity levels. This indicates that 

the BG-CPPA has high efficiency and good scalability in 

handling compressive sensing problems. 

5 Discussion 

The BG-CPPA introduced in this study outperforms 

existing methods in the compressive sensing of bearing 

fault signals, particularly in stability, efficiency, and error 

reduction. It exhibits robustness across varying data 

sparsity, maintaining low iteration counts and 

computation time with minimal fluctuations, indicating 

its effectiveness in handling data size changes and 

adapting to practical uncertainties. The computation time 

of B-ALM increases with the increase of sparsity, while 

BG-CPPA remains efficient. Due to its optimized 

computation and fast convergence, the average 

reconstruction time of BG-CPPA is only 0.04s, 

significantly faster than GCPPA and B-ALM. In addition, 

the reconstruction SNR of BG-CPPA is superior to other 

algorithms, especially when the compression ratio 

increases. The accuracy in representing and recovering 

signal sparsity through the K-SVD-based over-complete 

dictionary contributes to its superior reconstruction 

precision. 

The novelty of the BG-CPPA is that it combines the 

advantages of GCPPA and B-ALM while overcoming the 

limitations of both in practical applications. Although 

GCPPA eliminates relaxation steps and improves 

convergence efficiency, its applicability is limited when 

dealing with large-scale data problems. Although the 

B-ALM algorithm balances the objective function, 

coefficient matrix, and set proportion by reconstructing 

ALM, its iteration times are affected by the size of the 

problem, and the convergence efficiency is 

correspondingly reduced. The B-CPCA not only 

improves the applicability and convergence efficiency of 

the algorithm by combining the advantages of both, but 

also significantly improves the computational efficiency  

 

and reconstruction accuracy of the algorithm through 

optimizing the iterative process. 

6 Conclusion 

A convex optimization algorithm BG-CPPA combining 

GCPPA and B-ALM is proposed to address the poor CS 

accuracy and reconstruction effect of bearing fault 

vibration signals. Therefore, a bearing vibration signal 

compressive sensing system combining universal 

compressive sensing model and K-SVD over-complete 

dictionary is designed. The results showed that the 

BG-CPPA had fewer iterations and time than traditional 

algorithms at different sparsity levels. Compared with 

GCPPA and B-ALM, BG-CPPA reduced the 

reconstruction error ratio by 32.46% and 52.64%, 

respectively. At different compression ratios, the 

reconstruction performance of BG-CPPA was superior to 

the other two algorithms. According to the BG-CPPA, the 

compressive sensing system had the best reconstruction 

effect compared with different reconstruction algorithms. 

Compared with GA, BG-CPPA reduced reconstruction 

time by 82.94%, 48.08%, and 38.28% respectively at 

compression ratios of 0.3, 0.4, and 0.5. The results 

indicate that the proposed convex optimization algorithm 

BG-CPPA has great application value in solving linear 

equality constrained convex optimization problems. The 

compressive sensing system based on BG-CPPA has 

certain feasibility, which can effectively improve the 

reconstruction accuracy and effectiveness of bearing 

signal compressive sensing. However, the convex 

optimization algorithm proposed in the study only solves 

the compressive sensing technology. It has not been 

validated in other fields. It has certain limitations. 

Therefore, future research work will be carried out in the 

following areas: 

Further explore the potential applications of BG-CPPA in 

other fields, such as image processing and machine 

learning. 

Optimize the BG-CPPA to improve its performance in 

large-scale data processing. 

Investigate the application of BG-CPPA in real-time 

systems, such as online monitoring and fault diagnosis. 

Develop more efficient sparse representation and 

reconstruction techniques to enhance signal processing. 

Explore the combination of BG-CPPA with other 

optimization techniques, such as deep learning or 

evolutionary algorithms. 

Track and evaluate the performance of the BG-CPPA in 

real-world applications over time to gather feedback and 

guide future improvements. 
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