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Department of Intelligent Systems, Jožef Stefan Institute, Ljubljana, Slovenia
Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
E-mail: boza.cvetkovic@ijs.si

Keywords: HVAC, energy saving, occupants’ comfort, occupants’ activity monitoring

Received: June 15, 2014

Energy consumption and occupants’ comfort are key factors when evaluating smart-home environments.
This paper focuses on occupants’ comfort, which is affected by environmental factors (such as temperature,
humidity, radiation of elements, and air movement), and occupant-related factors (such as occupants’ level
of activity, clothing insulation). To satisfy a thermal comfort objective, energy is needed for heating and
cooling, which affects energy consumption. This paper presents a proof-of-concept analysis of smart-home
control based on occupants’ activity level in terms of human energy expenditure, and a trade-off analysis of
the energy consumption versus thermal comfort when the activity level serves as an input into an intelligent
home energy management system.

Povzetek: V članku je predstavljen inteligentni nadzor pametnega doma, ki temelji na kompromisu med
porabo električne energije in udobjem uporabnika.

1 Introduction

Research has focused on regulation of the smart-home en-
vironment from various perspectives, including economic,
ecological, and assistive. It is common to take into account
the occupants’ satisfaction and comfort, both depending on
environment- and occupant-related factors. The regulation
of occupants comfort is a complex and multivariate prob-
lem and, to simplify the problem, researchers have assigned
static values to occupant-related factors [1, 2, 3].

The complexity of the problem can be expressed as fol-
lows. The occupants’ comfort must be evaluated according
to the knowledge about occupants’ activity level and cloth-
ing rate and according to the environmental state, such as
temperature and humidity. The heating process and its de-
lay due to a room’s thermal inertia must be taken into ac-
count. The problem is multivariate; the indoor tempera-
ture is affected by various heating bodies, such as heat pro-
duced by the occupant, the sun through the window, and
mechanical heaters [4]. Occupant activity levels and cloth-
ing rates can also change much faster than the environmen-
tal state. Finally, the effect of the regulation affects comfort
slowly and it takes time for an occupant to actually feel this
change.

We implemented an agent-based control system that is
able to process large data-sets from various external and
data sources (weather station, environmental sensors and
virtual sensors) and use the extracted knowledge for heat-

ing, ventilation and air-conditioning (HVAC) system con-
trol to provide occupants with a high level of comfort. We
have also deployed a virtual sensing agent for monitoring
the activity of occupants in order to provide additional in-
formation crucial for regulation of the occupants’ thermal
comfort. The activity of the occupant is estimated in terms
of the human energy expenditure (EE), which is expressed
in metabolic equivalent of task (MET), where 1 MET is the
energy expended at rest.

The paper presents a multi-agent architecture with vir-
tual sensing agents dedicated to monitoring the real-time
state of the occupant (activity level, clothing rate, presence)
and shows how the different personal lifestyles influence
the HVAC energy consumption and comfort experience.

The rest of the paper is structured as follows. Section
2 presents the background on the topics of comfort expe-
rience, human energy expenditure and multi-agent control
systems. The system architecture in terms of multi-agent
system is presented in section 3. The experimental setup is
described in section 4 and respective results are provided in
section 5. Section 6 concludes the paper with conclusions
and discussion.
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2 Background

2.1 Thermal Comfort Experience
Thermal comfort experience is the notion of a person’s
thermal sensation in a conditioned environment. The pre-
dicted mean vote (PMV) index, derived by Fanger et al.
[5], expresses the thermal sensation on a seven-point scale
ranging from -3 to +3, where negative values denote cold
sensation and positive values denote warm sensation. The
value 0 denotes neutral sensation, which is the target value
for indoor air conditioning. The more distant the PMV is
from 0, the more cold (if negative) or hot (if positive) the
sensation.

PMV is calculated with the following parameters: cloth-
ing insulation (clorate [clo]), human energy expenditure
(EErate [MET]), air temperature (Tin [◦C]), relative air
velocity (var [m/s]), relative humidity (RH [%]), and mean
radiant temperature (Tmr [◦C]). The units that are impor-
tant for this research are defined as follows: 1 clo=0.155
m2K/W and 1 MET =58.2 W/m2. In contrast to environ-
mental factors, occupant-related factors are harder to per-
ceive and include into a control system. In [6] we demon-
strated the effect that indoor temperature on PMV and de-
cided to regulate PMV maintaining the Tin.

The predicted percentage dissatisfied (PPD) measure is
used for long term comfort evaluation. PPD predicts the
percentage of people who are likely to be dissatisfied with
the current thermal state of environment. It depends on
PMV and transforms the value of comfort in the range of
5% - 100%. The lowest PPD value equals 5%, which is
similar to when PMV equals 0 and is interpreted as follows:
at least 5% of people are never satisfied with the thermal
state of the environment. PPD and PMV indices formula-
tion is internationally standardised in ISO 7730 [7].

PMV index regulation has been researched to some ex-
tent. Calvino et al. [1] developed fuzzy controller for PMV
regulation. Ciglar et al. [2] and Liang et al. [3] used the
model predictive controller for PMV regulation. Experi-
ments were done in a simulated environment and they all
assumed the clothing and activity of a person as a static,
predefined value.

2.2 Estimation of Energy Expenditure
The cost of physical activity, namely energy expenditure, is
usually expressed in metabolic equivalents of task (MET),
where 1 MET is defined as the energy expended at rest.
MET values range from 0.9 (sleeping) to over 20 in ex-
treme exertion. Table 1 shows activity levels and their cor-
responding MET values.

There are a range of methods for reliably estimating en-
ergy expenditure (EE). EE can be directly measured us-
ing approaches such as direct or indirect calorimetry, or
doubly labelled water [8]. These methods are expensive
and cumbersome for free-living applications. Accessible
commercial devices for estimating EE come in the form of
one- [9] [10] or multi-sensor wrist-or armbands [11] that

can be used in everyday life. They are based on the con-
cept of high correlation between movement of inertial sen-
sors and activity level, which are in some cases learned
using machine-learning algorithms. Most of the methods
based on machine learning techniques estimate energy ex-
penditure using wearable sensors and seek linear or non-
linear relations between the energy expenditure and the ac-
celerometer outputs. The most basic methods use one ac-
celerometer and one linear regression model. These ap-
proaches can be improved by utilising additional regres-
sion models. The method by Crouter et al. [12] uses data
from one accelerometer attached to the hip to classify the
type of activity (sitting, ambulatory activity or lifestyle ac-
tivity). According to the recognised type of activity, an
appropriate estimation regression model is used, except for
sitting, for which a static value of 1 MET is assigned. The
drawback of this method is that it can underestimate seden-
tary activities such as sitting, since such activities are usu-
ally accompanied by additional movements (such as office
work). Previous research has accelerometers attached to
the fixed position on the person’s body to bypass the ori-
entation problem of the accelerometer. Our research on es-
timating EE by using a smartphone in a person’s pocket,
regardless of orientation, has been shown to product results
that are similar or even better [13] than the commercial de-
vice SenseWear [11], which is currently claimed to be the
most accurate device for free-living situations [14].

Intesity MET values
Low EE < 3
Moderate 3 > EE < 6
Vigorous EE > 6

Table 1: Corresponding MET values for different activity
intensity levels.

2.3 Multi-agent control system
Modern buildings contain a range of systems, such as
HVAC, domestic hot water system, lighting, safety, etc.
Intelligent operation of such systems requires the collec-
tion and processing of large sets of heterogeneous data
about sensor states, actuator actions, and occupant ac-
tions. Distributing tasks among devices, such as smart-
phones, can provide several types of benefits, such as dis-
tributed task solving as well as adding or removing systems
and devices during system run-time. The multi-agent sys-
tem (MAS) approach makes system decentralisation pos-
sible. The comparison between the traditional and agent
approach was done by Wagner et al. [15], who argued that
the agent approach results in a transparent software struc-
ture and dynamic and adaptive application software. Klein
et al. [16] implemented MAS for coordination of occupant
behaviour for building energy and comfort management.
Dounis et al. [17] conducted a review on conventional and
advanced control systems and implemented MAS for com-
fort and energy management in buildings, and stated that
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Figure 1: Architecture layers: The bottom layer is the en-
vironment with sensors and actuators. The middle layer
are the routing agents. The top layer is the sensing, virtual
sensing and control agents. The direction of communica-
tion is represented with arrows.

a controller has the characteristics of an intelligent agent.
Moroşan et al. [18] compared the computational efficiency
of centralised and distributed architectures and concluded
that the distributed architecture is less computationally de-
manding than the centralizsed architecture, but achieves the
same effect. Our previous research included the develop-
ment of MAS control architecture, where the operation of
each agent was formulated [19].

3 System Architecture

We implemented the smart-home control system as a multi-
agent control system. Several agents are developed to op-
erate in groups and each agent can communicate with any
other agent. A simplified system architecture is presented
in Figure 1. The bottom layer in Figure 1 is the envi-
ronment including sensors and actuators. Routing agents
are above the environment and are used for communica-
tion between physical elements of the environment and
software agents. The top layer consists of the sensing
agents, the control agents and the virtual sensing agents.
A group of sensing agents are used to perceive simple en-
vironmental states, such as temperature, humidity, acceler-
ation, etc., which can be measured directly, without com-
plex pre-processing. A group of virtual sensing agents is
used to perceive complex environmental states that utilise
the data obtained from sensing agents or other virtual sens-
ing agents. Control agents are used to affect the environ-
ment by changing control parameters and set-point values
based on control algorithms, which are denoted as control
behaviours. The roles of individual entity behaviour are
described in the following subsections.

3.1 Environment
The environment in our research is implemented as a sim-
ulator of a building with integrated HVAC equipment. It
collects weather data, contains an occupant and generates
environmental states. These are represented as state vari-
ables and are perceived through sensors. Actions on the
environment are performed through actuators. One-way ar-
rows in Figure 1 represent the direction of precipitation and
action.

For simulation purposes, we assume the time is repre-
sented as a discrete value k, k ∈ [0, N − 1], where N is the
number of minutes in the simulation. In each simulation
time-step, the environment accepts the vector of set-point
values, represented as ~r(k) = [r1(k), r2(k), ...rK(k)] and
outputs the vector of state variable values, represented as
~s(k) = [s1(k), s2(k), ...sJ(k)] for J environment vari-
ables.

3.2 Sensing Agents
Sensor agents are software entities that are used to serve
current and historic state variables, obtained through sen-
sors. Sensing agents also include meta-data regarding the
physical sensor they represent, such as location of sensor,
sensor type, accuracy, drift, unit output, conversion factor,
etc. Sensor agents return value of state variable s(k), ei-
ther on request or based on contract about periodical report
between engaged agents using agent communication lan-
guage (ACL) messaging. The process of contract assign-
ment and cancellation is described in [19].

3.3 Virtual Sensing Agents
Virtual sensor agents are used to perceive and serve cur-
rent and historic state variables, obtained through sensing
agents and/or virtual sensing agents. These agents are used
to estimate complex environmental states cs(k) in time k,
which cannot be obtained utilising only physical sensors.
Examples of environmental states are PMV, PPD, and EE,
where the additional processing has to be performed. The
processing is based on models that define the relation be-
tween environmental states. Detailed functionalities of vir-
tual sensing agents utilised for experiments are presented
in the following subsections.

3.3.1 Occupancy Detection Agents

Occupancy detection agents detect the occupancy state of a
building based on the data retrieved from sensing agents.
For the purposes of this paper, the occupancy state was
simulated-agent obtained data about occupancy from a pre-
defined data-set. The approach described by Lu et al.
[20] uses a combination of passive infrared motion (PIR)
sensors installed in rooms and magnetic reed switches on
doors to detect occupancy and sleeping. This approach is
inexpensive, unobtrusive, simple to install, and can be used
for occupancy detection to extract the occupancy state.
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3.3.2 Activity-Monitoring Agents

The activity-monitoring agents communicate with sensing
agents to determine current state of the occupant in terms
of human energy expenditure (EE). Acceleration data re-
ceived from sensing agents is collected into 10-second win-
dows, each of which overlaps with the previous one by one
half of its length. Each overlapping window is processed
into a set of features forming a feature vector that is fed
into the regression model to estimate the EE. To build an
EE regression model, we have performed two subtasks: (i)
machine-learning algorithm selection, and (ii) feature se-
lection, to optimise the performance of the estimation and
reduce computational load of the agent.

Selection of appropriate machine-learning regression al-
gorithm was performed with 10-fold cross-validation on
the data of 10 people, where one person represents a fold.
Data for one person contains regular everyday activities
such as rest, cleaning, cooking, and office work, and sport-
ing activities such as walking, running, and stationary cy-
cling. Reference EE expenditure was measured in a con-
trolled environment using indirect calorimetry equipment
Cosmed K4b2 [21]. The Table 2 presents the comparison
results of regression machine-learning algorithms, Sup-
port Vector Regression (SVR), Linear Regression (LR),
M5Rules, M5P and REPTree as implemented in Weka
machine-learning suite [22]. The results are expressed in
mean absolute error (MAE) calculated with Equation 1.
We have chosen the SVR algorithm to be deployed in the
activity-monitoring agent, since it performs with the low-
est estimation error. The best-performing model was com-
pared against the commercial device SenseWear, proving
that the smartphone model is comparable to a dedicated
device. Note that activity-monitoring agents can use any
tri-axial inertial sensor for the EE estimation.

MAE =
1

n

n∑
1

|METtrue −METpredicted| . (1)

Table 2: Results of regression machine-learning algorithms
expressed in MAE and comparison against commercial
system SenseWear.

Algorithm MAE
SVR 0.83
LR 0.88
MLP 1.04
M5Rules 1.05
M5P 1.04
REPTree 1.01
SenseWear 0.86

The feature selection procedure was performed using the
ranking algorithm RelifF, which ranks the features and as-
signs each a weight. We have selected only positively

weighed features for the final feature set. We began with 67
features computed from acceleration signal and ended with
43 features. The remaining features are partially adopted
from Tapia [23] (25 features) and partially developed by us
(18 features). Adopted features are: mean of absolute sig-
nal value, cumulative sum over absolute signal value, quar-
tiles, variance, inter quartile range, correlation and mean
crossing rate. Features developed by us are: signal peak
count, cumulative sum over peak absolute value, cumula-
tive sum over signal absolute value, cumulative sum over
signal absolute value after band-pass filtering, cumulative
square sum over signal absolute value after band-pass fil-
tering, cumulative sum of square components, square of
cumulative sum of components after band-pass filtering,
velocity, kinetic energy, vector length, integration of area
under vector length curve. The highest-ranked features are
quartiles (four features) and peak count (one feature).

3.3.3 Clothing Detection Agent

The clothing detection agent communicates with the
activity-monitoring agent and sensing agents to predict the
type of clothing a user is currently wearing. The output
is expressed in unit clo, where one clo is the amount of
insulation that allows a person at rest to maintain thermal
equilibrium in an environment at 21◦C.

The prediction is based on simple heuristics that utilise
information about the current season, current weather, time
of the day, and estimated EE in the indicated order. Exam-
ples of the rules can be observed in Rules 1 and 2.

Rule 1:
if season is winter and weather is sunny
then if time > 11 PM
then if EErate > 2MET
then clorate = 1
else clorate = 2

Rule 2:
if season is winter and weather is sunny
then if time > 7 AM and time < 11 PM
then if EErate > 3MET
then clorate = 0.5
else clorate = 1

Rule 1 predicts the clorate value according to the amount
of activity in the evening, where a higher clorate value in-
dicates higher thermal insulation due to clothes or blankets.
Rule 2 predicts the clorate value according to the estimated
EE during the day. If the occupant’s EErate is higher than
3 MET, this indicates exercise.

3.3.4 Comfort Estimation Agent

A comfort estimation agent is used to perceive the state of
comfort, expressed as PMV according to ISO 7730, Annex
D [7]. For such purpose, it obtains values Tin andRH from
sensing agents and clorate and EErate from the clothing
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detection agent and the activity monitoring agent, respec-
tively, for the current time k. The Tmr is assumed equal
Tin and var is assumed fixed as 0.15 m/s.

3.4 Control agent
The control agent includes an algorithm for defining indoor
temperature set-point values Ts in order to regulate PMV
when the building is occupied. If the building is not occu-
pied, the Ts is fixed at 5◦C and 40◦C for the heater and the
chiller, respectively, in order to prevent freezing or over-
heating of HVAC components. There are two versions of
control agents: the heater control agent and the chiller con-
trol agent. The desired range PMVrange includes accept-
able PMV values and is specified with a value of PMVref
so that PMVrange ∈ [−PMVref ,+PMVref ]. The con-
trol algorithm is designed in order to increment/decrement
the set-point value of Ts in a way that brings the PMV
value on the borders of PMVrange. The −PMVref value
is a target value for the PMV for the heater control agent
and +PMVref for the chiller control agent. The increment
function for set-point temperature Ts for both versions is
defined as:

Ts(k + 1) = Ts(k) + Tinc(k), (2)

where the set-point temperature in the next time step
Ts(k + 1) is computed according to the previous set-
point temperature Ts(k + 1), incremented by a value
Tinc(k). Tinc is computed according to the Equation 3.
The PMVdiff definition is presented in Equation 4.

Tinc(k) = A · PMVdiff (k)
3+

+B · PMVdiff (k)

D · Tdiff (k)2 + 1
+

+ C · PMVdiff (k)

(3)

PMVdiff =

{
−PMVref − PMV, if heater
+PMVref − PMV, if chiller

(4)

The PMVdiff expresses the distance between the PMV
and the value PMVref in case of chiller and the PMVdiff
expresses the distance between the PMV and the value
−PMVref in the case of the heater, where the Tdiff defi-
nition is presented in Equation 5.

Tdiff (k) = Ts(k)− Tin(k) (5)

Equation 3 represents the regulation algorithm, which is
proportional to the difference between the current PMV
and PMVref and tends to achieve the equality of men-
tioned values, which is the purpose of our algorithm. Fur-
thermore, Equation 3 is inverse-proportional to the differ-
ence between the current Tin and current Ts with the pur-
pose of reducing the fluctuation of the Ts value in order to
reduce instability of regulation system. The constant val-
ues A = 0.01, B = 3, C = 0.1 and D = 1 were obtained

iteratively with several simulation runs in order to achieve
the desired control effect.

4 Experimental Setup

Experiment consists of two individual procedures: the EE
model creation and evaluation in isolations already pre-
sented in Section 3.3.2, and evaluation of the model on
two-day data of the occupants.

Data used in the first experiments was collected in a lab-
oratory environment, where the persons performed prede-
fined scenarios (rest, cooking, cleaning, walking, running,
cycling). They carried a smartphone in their trouser pock-
ets, from which we collected the raw acceleration data. For
reference energy expenditure measurements, the Cosmed
K4b2 indirect calorimeter was used. Both acceleration data
and Cosmed data were synchronised to produce a training
and testing data-set.

Since we could not collect the free-living reference data-
set, due to the cumbersome nature of Cosmed, we have
created synthetic two-day data with a one-minute sam-
pling rate from the synchronised recordings (smartphone
and Cosmed) for five people used in this experiment. This
data-set was further enriched with weather data (including
outdoor temperature, humidity, wind speed and solar radi-
ation). The weather data was collected from the Slovenian
Environment Agency (ARSO) portal [24] and represents
two sunny days in February 2014, city Rateče.

The data represents one working day and one non-
working day (e.g., a weekend) for each person. The char-
acteristics of their lifestyles can be observed in Table 3.
The goal was to produce data for people with different
lifestyles. They are summarised as follows. Persons B, C
and D have regular eight-hour jobs, where Person A works
at night and Person E works from home. Person A does
regular exercise such as walking and vigorous running on
a treadmill. Person B does regular exercise on weekends.
Person C is engaged in very intensive home chores over
both days. Person D is an athlete and frequently exercises
vigorously. Person E does not exercise and leaves home
only for half an hour. Table 3 shows the percentage of
time the occupant was at home, the absolute minutes of
performed activities with low, moderate, and vigorous in-
tensity. The new data-set were included into a simulation
environment.

Experimental setup included the control system, de-
veloped using JADE [25]; the simulation model, devel-
oped using EnergyPlus software [26]; and the simula-
tion environment, developed using BCVTB [27] software.
Machine-learning models for energy expenditure were im-
plemented using Weka [22].

We have instantiated sensor agents for acceleration, in-
door temperature, mean radiant temperature, relative hu-
midity and outdoor temperature. We then instantiated the
activity-monitoring agent, comfort estimation agent, cloth-
ing detection agent, and occupancy detection agent. Fi-
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Intensity (hours)
Low Moderate Vigourous

Person At home (%) < 3 3 ≥≤ 6 > 6
A 54 20.8 2.1 2.8
B 71 32.2 1.2 0.7
C 56 22.9 4.1 0
D 67 27.7 2.9 1.9
E 99 45.5 1.9 0

Table 3: The characteristics of the occupants for the produced days. The percentage of time present at home and amount
of activities in hours according to the intensity (MET).

nally, two instances of control agents - one heater and one
chiller agent - were created.

A simulation model of a building containing one room
was taken into account for the experiment; this model was
obtained from the EnergyPlus software project examples
and represents a thermal dynamic model of the room. The
room has an integrated packaged terminal heat pump with
chiller, heater and supplementary heater rated at 8500W,
8000 W and 3000 W respectively as a HVAC system, to-
gether with the temperature regulation module. The heat-
ing power produced by a person PpHeat is computed ac-
cording to Equation 6.

PpHeat = EErate · 58.2W/m2 ·Abody · phr (6)

Abody is the area of a human body, phr is the person heat
rate. We took the phr = 0.8, which indicates that 80% of
energy, consumed by a person is transformed to heat and
Abody = 1.8m2, as computed for an average person of
weight 70 Kg and height 1.73 m [5] using the Dubios equa-
tion [28]. Table 4 presents some values of heating power,
produced by a person at various EErate.

Table 4: Heating power produced by a human body at var-
ious EErate values

EErate [MET] PpHeat [W]
1 83.81
2 167.62
3 251.42
4 335.23
5 419.04
6 502.85
7 586.66
8 670.46

A simulation time-step was set to one minute. Each
simulation time-step a simulation environment - BCVTB
- (i) accepts temperature set-point variables from control
agents, (ii) computes new environmental states based on
EnergyPlus model and (iii) passes them to sensing agents.
One routing agent was instantiated for variable mapping
between the simulation environment - BCVTB and JADE
agents.

5 Results

5.1 Energy Expenditure Estimation
The activity-monitoring agent processed the collected ac-
celeration data for respective occupant returning the esti-
mation of current energy expenditure. Results in terms of
MAE for each occupant are presented in Figure 2. We can
observe that the agent performs with low error in case of
low- and moderate-intensity activities (rest, home chores,
walking) and slightly underestimates more vigorous activi-
ties (cycling and running). This shortcoming can be solved
by employing activity recognition as a part of activity-
monitoring agents and utilising multiple regression models
according to the specific activity.

5.2 Maintaining Comfort and Energy
Consumption

We performed 41 simulations on the synthetic data-set ex-
plained in section 4. A simulation starts with PMVref =
0.10 and each further simulation has PMVref incremented
for 0.01 until the value PMVref=0.40 (41st simulation
run). Note that 80% of energy consumed by a person was
transformed to heat as defined in simulation model.

Simulation of part of a day (200 minutes) is presented
on Figure 3. It shows the controller’s performance when
the intensity of the activity changes significantly. Between
the 2200th and 2220th minutes, the occupants’ intensity
of activity decreases from 2.2 MET to 1.3 MET. PMV de-
creases immediately and the controller starts increasing the
Tin as seen around the 2220th minute. It increases the
Tin until the PMV reaches value 0 in the 2230th minute,
where a small overshot can be seen (0.5◦C difference be-
tween the values of Tin in 2230th and 2250th). Afterwards,
the controller handles small changes of PMV due to small
changes in the intensity of activity. Between the 2260th and
2320th minutes, the intensity of activity changes rapidly for
approximately 1 MET. We can observe that the controller
could not handle such changes on time, so in that period
the PMV fluctuates between +1 and -1. In the next pe-
riod (until the 2340th minute), the controller increases the
temperature and PMV is stabilised. Finally, in the period
between the 2340th and 2380th minutes, we can observe
more efficient handling of PMV since the PMV is not fluc-
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Figure 2: True MET vs. Estimated MET for each occupant. The utilised regression model performs with low MAE on
low and moderate activities and slightly underestimates the vigorous activities.

tuating greatly. It changes between +0.2 and +0.7, which
denotes a slightly warm sensation.

Each simulation run returns the energy consumed for
HVAC and the average value of PPD during occupancy.
The average value PPD is computed using Equation 7.
The individual time-step is denoted with k, the number of
time-steps with N , and occ(k) represents the occupancy
state (0 or 1) as returned by the occupancy detection agent.

PPD =

N∑
k=1

PPD(k) ∀k, occ(k) = 1 (7)

The obtained comfort/consumption plane is presented in
Figure 4. Simulation results for one occupant are presented
with the same marker. The right-most marker of each se-
ries is a simulation result when PMVref is 0.1. Higher
values of PMVref shift result markers to the left, giving
the left-most marker when PMVref is 0.4. Lower values
of PPD and energy denotes better comfort experience and
lower energy consumption. We can observe that Person
C obtains the lowest values for both objectives, thus pro-
ducing the best result. This is related to the person’s low
home presence rate (56%), as shown in Table 3. A low “At
Home” rate implies lower energy consumption and 0 hours
of vigorous actives implies that the control system did not
need to handle severe PMV changes. The worst results
are obtained for persons A and D, who have a lower “At
Home” rate, but a higher EErate. A higher EErate results
in higher PPD, in this case above 20%, which indicates a
low overall comfort rate. Persons B and E return average
results. Their “At Home” rate is higher, which indicates
high energy consumption for low PMVref values com-
pared to other persons. High-intensity activities of Person
B, compared to Person E, result in a worse overall comfort
experience.

Figure 5 compares different parameter configuration for
Person E, again simulated for 41 PMVref values. The es-

timated EE_rate and the clo_rate is a result of the estimated
EErate and estimated clorate. The fixed EE_rate and the
clo_rate denote 1.2 MET and 1 clo fixed during the en-
tire simulation run, as seen in related work [2]. The fixed
clo_rate is a result of the estimated EErate and the fixed
clorate. The fixed EE_rate is a result of the fixed EErate
and estimated clorate.

We can observe that using fixed values for EErate and
clorate makes the regulation underestimate the PPD and
consumes much more energy compared to the estimated
values of EErate and clorate.

The fixed clorate implies higher energy consumption,
but a similar range of PPD. In such a case, the energy
consumed for heating when the occupant is asleep is higher
due to lower clothing insulation (1 clo) compared to the es-
timated value clorate, which is 2 clo when sleeping. A sim-
ilar effect occurs when a person exercises. If the clorate is
fixed, the energy consumed for cooling when the occupant
exercises is higher due to higher clothing insulation (1 clo)
compared to estimated value clorate, which is 0.5 clo when
the occupant exercises.

The fixed EErate also makes the regulation underesti-
mate the PPD and consume more energy than the esti-
mated values of EErate and clorate. Energy consumption
is lower than the fixed values of both EErate and clorate.
In that case, clothing insulation reduces the energy con-
sumption for heating (when occupant sleeps) and for cool-
ing (when occupant exercises).

6 Conclusion and discussion
This paper presents the multi-agent system for HVAC,
which regulates the occupant’s comfort according to activ-
ity level, clothing rate, and occupant’s presence. We argue
that our dynamic treatment of occupants’ comfort enables
better comfort and lower energy consumption than activity-
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Figure 3: A section of a day, when a person performs low-intensity activities. Top figure: PMV value, Middle figure:
indoor temperature, Bottom figure: EErate
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Figure 4: Comfort/consumption plane: the X axis represents the energy in GJ, consumed by HVAC; the Y axis represents
the comfort experience - PPD, expressed in %. Each marker presents a result of a simulation run for different PMVref
and for different person
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Figure 5: Comfort/consumption plane: The X axis represents the energy in GJ, consumed by HVAC; the Y axis represent
the comfort experience - PPD, expressed in %. Each marker presents a result of a simulation run for different PMVref
and for a different assumption of the occupant’s parameters configuration

and clothing-independent treatment of comfort presented in
related work.

The multi-agent system consists of three virtual sensing
agents. The first is the activity-monitoring agent, which,
in contrast to other related research where activity level
is assigned a static value, dynamically estimates the hu-
man energy expenditure of the occupant, utilising sensor
agents such as smartphone accelerometer data. Second, the
clothing detection agent utilises the environmental sensors
(weather) and activity-motoring agent to predict the value
of clothing isolation, which is adopted in related work as
a static value. Third, the comfort estimation agent utilises
data from the activity-monitoring agent, the environmen-
tal sensing agents (weather, indoor temperature, humid-
ity), and clothing detection agent to estimate the occupant’s
comfort.

The control agent utilises the information from the sens-
ing agents and virtual sensing agents to regulate comfort
(to reach the comfort equilibrium) by maintaining the in-
door temperature.

We have shown that our multi-agent system can ef-
ficiently regulate the comfort for people with certain
lifestyles. We have analysed the trade-off between com-
fort and energy consumption, which is highly affected by
heating objects or energy released by an occupant.

Future work will consist of adapting human energy ex-
penditure estimation model to the specific person [29] and
predicting the human energy expenditure, since the estima-
tion contributes to delay in temperature regulation. We will
implement the presence classification agent that will pre-
dict the occupant’s time of arrival. Moreover, it is crucial
to improve the control algorithm in order to achieve the
quicker response needed to eliminate the delay in regula-
tion.
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Towards human energy expenditure estimation us-
ing smart phone inertial sensors. In Ambient Intel-
ligence, volume 8309 of Lecture Notes in Computer
Science, pages 94–108. Springer International Pub-
lishing, 2013.

[14] JM Lee, Y Kim, and GJ Welk. Validity of consumer-
based physical activity monitors. Medicine and sci-
ence in sports and exercise, February 2014.

[15] H. Mubarak and P. Gohner. An agent-oriented ap-
proach for self-management of industrial automation
systems. In Industrial Informatics (INDIN), 2010 8th
IEEE International Conference on, pages 721–726,
July 2010.

[16] L. Klein, J. Kwak, G. Kavulya, F. Jazizadeh,
B. Becerik-Gerber, P. Varakantham, and M. Tambe.
Coordinating occupant behavior for building energy
and comfort management using multi-agent systems.
Automation in Construction, 22:525–536, 2012.

[17] A. Dounis and C. Caraiscos. Advanced control sys-
tems engineering for energy and comfort manage-
ment in a building environment—a review. Renew-
able and Sustainable Energy Reviews, 13(6):1246–
1261, 2009.
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