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In the Industry 4.0 era, the Industrial Internet of Things (IIoT) has transformed manufacturing by 

facilitating seamless connectivity and real-time data exchange between physical devices and systems. This 

transformation has bolstered efficiency, productivity, and decision-making in industrial settings. 

However, the increased connectivity also brings heightened cybersecurity risks. Securing the IIoT 

environment is critical to safeguard critical infrastructure, data, and operations against cyber threats. As 

IIoT adoption expands across sectors, ensuring system security and resilience becomes imperative to 

maintain operational continuity and preserve trust. This paper proposes a deep learning-based approach, 

leveraging the CIDDS, BOT-IoT, and Edge_IIoTset datasets, to fortify IIoT and manufacturing systems 

against cyber threats. Multilayer Perceptron (MLP) is identified as the top-performing model, achieving 

an accuracy of 99.26%, precision of 98.74%, and recall of 98.86% on the CIDDS dataset. Similar superior 

performance was observed on the BOT-IoT (99.52%, 99.52%, and 99.99%) and Edge_IIoTset (99.93%, 

99.93%, and 99.99%) datasets, making MLP a robust solution for anomaly detection in industrial IoT 

environments. 

Povzetek: Članek predstavi MLP kot najučinkovitejši model za zaznavanje vdorov v IIoT, ki na treh realnih 

podatkovnih zbirkah preseže druge algoritme po točnosti, odzivnosti in robustnosti. 

 

1 Introduction 
The Industrial Internet of Things (IIoT) is central to 

Industry 4.0, driving the transformation of industrial 

processes through advanced digital technologies. The 

Industrial Internet of Things (IIoT) has transformed 

manufacturing by enabling low-latency communication 

and real-time data exchange between interconnected 

devices and systems. It encompasses interconnected 

sensors, devices, and instruments across sectors like 

manufacturing, energy, and healthcare [1], [2]. IIoT 

boosts productivity, efficiency, and sustainability while 

opening new business avenues[1], [3]. 

However, IIoT's extensive integration also invites 

significant security risks. Cyberattacks threaten data 

integrity, confidentiality, and service availability[4]. The 

dynamic and diverse IIoT landscape complicates 

traditional security methods reliant on predefined 

rules[5], [6]. Advanced security solutions are urgently 

needed to counter evolving cyber threats[7], [8], [9]. 

The Industrial Internet of Things (IIoT) orchestrates 

intelligent devices spanning various industrial domains, 

collecting and processing data. Its architecture, 

comprising perception, network, and processing layers, 

faces unique security hurdles, demanding robust Intrusion 

Detection Systems (IDS) [10], [11].  

 

 

 

Embedding Machine Learning (ML) within IDS 

elevates detection accuracy, flexibility, and scalability. 

ML enables IDS to learn from data, identify crucial 

features, and construct models adept at recognizing both 

known and unknown threats[12], [13]. Furthermore, ML 

facilitates IDS adaptation to the  

 

intricacies of Fog/Edge computing, a burgeoning 

approach bringing computation closer to IIoT data 

sources[14], [15], [16]. 

The figure 1 shows An Exploratory Visualization of 

IIoT. Here are the key contributions of the paper 

summarized: 

• Proposes a deep learning-based approach to 

strengthen Industrial IoT (IIoT) and manufacturing 

systems against cyberattacks. 

• Highlights the importance of data-driven solutions 

for evolving security threats. 

• Leverages insights from real-world data by 

analyzing benchmark datasets like CIDDS, BOT-

IoT, and Edge_IIoTset. 

• Identifies Multilayer Perceptron (MLP) as the most 

effective deep learning algorithm for this 

application. 

Figure 1 provides an exploratory visualization of the 

Industrial Internet of Things (IIoT), capturing key 
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elements of the interconnected infrastructure and their 

relationship with emerging security challenges. 

 

Figure 1: An exploratory visualization of the industrial 

internet of things (IIoT) 

The remainder of this paper is arranged as follows. In 

Section II, we discuss an in-depth examination of 

intrusion detection studies in the Industrial Internet of 

Things (IIoT), focusing on Deep/Machine Learning. Next 

section explores the innovative architecture proposed in 

detail. Then, it meticulously presents and compares 

results, culminating in insightful conclusions. Lastly, the 

concluding section offers valuable suggestions for future 

research in the ever-evolving realm of IIoT security. 

2 Related works 
In this section, we thoroughly review and analyze 

previous studies that are relevant to our research focus. 

These studies propose novel methods aimed at improving 

security in IoT settings, with a particular emphasis on 

using machine learning techniques to develop intrusion 

detection systems (IDSs) suited for IoT environments. 

A pioneering study [17] introduces the IDS-SIoEL 

framework, employing Ensemble Learning with 

AdaBoost and feature selection techniques. Achieving 

exceptional performance on BoT-IoT, Edge-IIoT, and 

IoT-23 datasets, it boasts a remarkable 99.9% accuracy, 

recall, and precision. With swift learning and detection 

times, this model offers robust security solutions for 

diverse smart city applications. 

The study published in 2022 [18] analyzes the 

feasibility of implementing a Host-Intrusion Detection 

System (HIDS) based on Deep Learning (DL-HIDS) 

across diverse commercial IoT devices. Findings 

demonstrate significant promise with up to 99.74% 

accuracy and minimal inference time. It emphasizes the 

necessity of customizing IDS for individual device 

classes due to their diverse architectures, providing 

valuable insights for securing IoT environments. 

Another significant contribution comes from a study 

[1] tackling modern network and Industrial Internet of 

Things (IIoT) security challenges by designing an 

advanced Intrusion Detection System (IDS). Leveraging 

deep learning technologies, the proposed methodology 

optimizes network configurations, resulting in a robust 

IIoT anti-intrusion detection system. Demonstrating 

superior performance, the IDS showcases heightened 

detection rates, minimal false positives, and robust data 

correctness, aligning with privacy laws. 

The paper [19] propose a deep learning ensemble 

model using Deep Neural Networks (DNN) and Long 

Short-Term Memory (LSTM) for cybersecurity in IoT 

environments. The ensemble approach achieves a 99.34% 

accuracy in detecting complex cyber-attacks, with low 

latency, making it suitable for real-time anomaly detection 

in smart environments. 

In response to security challenges in the Industrial 

Internet of Things (IIoT), a groundbreaking solution is 

introduced by a paper [20], presenting PK-IDS, a cutting-

edge hybrid IDS for Edge-Based IIoT. Seamlessly 

integrating K-NN and PCA, it achieves remarkable 

results: 99.10% accuracy, 98.4% detection rate, and 2.7% 

false alarm rate (NSL-KDD); 98.2% accuracy, 97.6% 

detection rate, and 2.9% false alarm rate (Bot-IoT). This 

addresses intricate security challenges in edge-based IIoT 

environments. 

The authors of  [21] present a hybrid SDN-based deep 

learning framework combining Convolutional Neural 

Networks (CNN) and Bidirectional Long Short-Term 

Memory (Bi-LSTM) to secure Internet of Medical Things 

(IoMT) devices. With a detection accuracy of 99.97%, the 

system offers scalability and efficiency, effectively 

addressing cyber threats in healthcare IoT environments. 

Additionally, addressing security concerns in the 

Internet of Things (IoT), a paper [22] presents an Access 

Key Agreement (AKA) scheme, RDAF-IIoT, designed to 

boost security within IoT, particularly in industrial 

environments. Validated for resilience against security 

attacks, the scheme exhibits superiority, showcasing 

lower computational and communication costs compared 

to similar security frameworks, along with enhanced 

security features. 

In another study [23], the focus shifts to addressing 

the growing cybersecurity threats to the Internet of Things 

(IoT), particularly in Industrial IoT (IIoT) applications. 

Proposing an effective Intrusion Detection System (IDS), 

the study employs machine learning algorithms such as 

K-Nearest Neighbors, Random Forest, and Logistic 

Regression for comprehensive evaluation on the 

TON_IoT dataset. The Classification and Regression 

Tree (CART) algorithm outperforms others, 

demonstrating the proposed framework's efficiency in 

mitigating IoT/IIoT intrusion risks. 

The article  [10] highlights the pivotal role of an 

Intrusion Detection System (IDS) in safeguarding the 

Industrial Internet of Things (IIoT), introducing a hybrid 

IDS architecture incorporating machine learning. The 

proposed innovations showcase heightened detection 

accuracy, decreased training time, and enhanced network 

security, well-suited for the edge scenario of IIoT. 

The authors of [24] apply Hyperparameter 

Optimization for the XGBoost algorithm (HO-XGB) to 

improve network intrusion detection using the CSE-CIC-

IDS 2018 dataset. The optimized model, fine-tuned with 

parameters like learning rate and max depth, significantly 

enhances intrusion detection accuracy and efficiency, 

outperforming traditional methods in real-time network 

security. 
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Furthermore, a study [25] addresses escalating 

security concerns in the IoT environment by proposing a 

Machine Learning (ML)-enabled Intrusion Detection 

System (IDS). Focusing on the modified Random Forest 

(RF) algorithm, the proposed IDS demonstrates 

effectiveness in safeguarding diverse IoT networks and 

applications, emphasizing its significance in addressing 

current security challenges. 

This paper [26] conducts a comprehensive survey on 

the existing state and security challenges within the 

Internet of Things (IoT). Scrutinizing security principles 

across the Perception, Network, and Application layers, 

researchers discuss countermeasures to layer-specific 

security challenges and introduce future directions, 

emphasizing the integration of advanced networking 

protocols to surmount prevailing research challenges in 

IoT security. 

Moreover, this research [27] focuses on anomaly 

detection in the complex and massive data generated by 

Industrial IoT (IIoT). Algorithms for machine learning, 

such as logistic regression,  and decision trees are 

compared for their anomaly detection capabilities using 

three IIoT benchmark datasets[27]. 

 Additionally, this survey delves into the synergy of 

AI and ML in Industry 4.0, particularly focusing on fault 

detection, cyber-security, and human-machine interaction 

[28]. It emphasizes cloud/fog/edge architectures for 

efficient data utilization and training and identifies open 

research issues in these domains[28]. 

The study [29] on IoT Networks presents an advanced 

Intrusion Detection System (IDS) using an ensemble of 

machine learning algorithms, including Logistic 

Regression (LR), Decision Trees (DT), and Random 

Forest (RF). Validated on real-world datasets, the IDS 

achieves high accuracy in detecting attacks, providing a 

robust solution for securing IoT networks. 

Lastly, the paper [30] highlights the effectiveness of 

machine learning (ML) in crafting Intrusion Detection 

Systems (IDSs) for IoT security. With empirical analysis 

illustrating substantial improvements in ML-based IDS 

accuracy with high-quality data and models, it 

underscores the pivotal role of data preprocessing and 

model quality in achieving accurate intrusion detection 

within IoT environments. 

The next table summarizes some related works 

focusing on different methodologies for enhancing 

Intrusion Detection Systems (IDS) in IoT and IIoT 

environments. Each work employs various machine 

learning and deep learning techniques across different 

datasets. The results highlight the accuracy achieved by 

these methods, demonstrating the effectiveness of models 

such as ensemble learning, hybrid frameworks, and 

optimized algorithms for improving security in IoT 

networks. 

 

 

 

 

 

 

Table 1: Comparative analysis of related works on 

intrusion detection systems (IDS) in IoT and IIoT 

environments 

Paper  Year  Method  Dataset  
 Results 
(Accuracy)  

[17]  2023  
 Ensemble Learning 
(AdaBoost, Random 
Forest)  

 BoT-IoT, 
Edge-IIoT, 
IoT-23  

 99.9% Accuracy  

 [23]  2023  
 Hybrid IDS 
Framework 
(Machine Learning)  

 NSL-KDD, 
BoT-IoT  

 99.10% (NSL-
KDD), 98.2% 
(BoT-IoT)  

 [22]  2023  
 Access Key 
Agreement (AKA) 
Scheme  

 Simulated 
IIoT 
Environment  

 High 
computational 
efficiency and 
lower 
communication 
costs  

 [25]   2024  
 Modified Random 
Forest Algorithm  

 TON-IoT, 
UNSW-
NB15  

 High 
performance 

[18]  2022  
 Optimized Deep 
Learning (HIDS)  

 Edge-IIoTset  
 Accuracy 
exceeding 99%  

 [19]  2024  
 Deep Learning 
Ensemble (DNN, 
LSTM)  

 IoT 
Environment  

 99.34% (binary 
classifier), 
98.26% 
(multiclass 
classifier)  

 [24]  2024  
 Hyperparameter-
Optimized XGBoost 
(HO-XGB)  

 CSE-CIC-
IDS2018  

 Best performance 

 [21]  2024  
 CNN + BiLSTM 
Hybrid Framework  

 IoT-
Healthcare 
Dataset  

 99.97% Accuracy  

 [25]  2023  
 ML-Enabled 
Intrusion Detection 
System  

 TON-IoT, 
UNSW-
NB15  

 99.5% (TON-
IoT), 98.7% 
(UNSW-NB15)  

3 Methodology 
The methodology section details the structure of our 

Intrusion Detection System (IDS), comprising three key 

components.  The components of the Intrusion Detection 

System (IDS) methodology outlined here involve a 

systematic process: 

Our model employs a systematic, three-step approach 

for detecting anomalies. First, we meticulously 

preprocess the data, removing noise, outliers, and 

inconsistencies to ensure data quality. We then carefully 

select and engineer features that hold the key to 

distinguishing normal behavior from anomalies. This data 

preparation stage sets the foundation for effective 

learning. 

Next, we select an appropriate anomaly detection 

algorithm, considering factors like the specific problem 

and data characteristics. KNN, Decision Tree, MLP, and 

SVM are among the algorithms we evaluate. Once 

chosen, the algorithm trains on a labeled dataset, learning 

the patterns of normal behavior. Its performance is then 

rigorously validated on a separate dataset to ensure 

accurate anomaly detection. 
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Finally, we deploy the trained model into the real 

world to identify anomalies in real-time. We closely 

monitor its performance, analyzing its outputs for 

potential issues or false positives. This continuous 

feedback loop empowers us to refine the model 

iteratively, adjusting parameters or exploring new 

algorithms as needed. This three-step process, from 

meticulous data preparation to ongoing refinement, 

ensures our anomaly detection model delivers reliable 

results. 

Figure 2 illustrates the core components of the 

Intrusion Detection System (IDS) proposed in this study. 

 

Figure 2: Components of the intrusion detection system 

(IDS) 

The methodology section details the structure of our 

Intrusion Detection System (IDS), comprising three key 

components: data preprocessing, algorithm selection, and 

real-time deployment. 

3.1 Data preprocessing 

The data preprocessing phase is critical to preparing the 

datasets for effective model learning and ensuring high-

quality input. This phase involved several key steps: 

Noise and Outlier Removal: We initially removed 

noise and irrelevant data points from the datasets to 

improve overall data quality. Outliers were detected and 

eliminated using the Isolation Forest algorithm, which is 

well-suited for identifying anomalies in high-dimensional 

data. 

Handling Missing Data: Missing values were handled 

using mean imputation for continuous variables and mode 

imputation for categorical variables. This ensured that no 

significant information was lost during preprocessing. 

Feature Engineering and Selection: To reduce the 

dimensionality of the datasets and improve model 

performance, we employed Recursive Feature 

Elimination (RFE). RFE recursively eliminated less 

important features by evaluating model performance 

based on feature subsets, helping us identify the most 

relevant features. A Random Forest classifier was used to 

rank the feature importance, and the top 20 features were 

selected for further model training. 

Data Normalization: We applied RobustScaler for 

normalization, which scaled the features based on 

interquartile ranges, ensuring that the impact of outliers 

was minimized and the data was transformed into a format 

suitable for machine learning algorithms. 

Handling Class Imbalance: Given the imbalanced 

nature of the datasets, especially the BOT-IoT dataset, we 

applied the Synthetic Minority Over-sampling Technique 

(SMOTE). SMOTE generated synthetic examples of the 

minority class, balancing the class distribution and 

improving the model’s ability to detect underrepresented 

attack types. This technique enhanced recall rates for 

anomaly detection and improved the generalization of the 

model. 

3.2 Algorithm selection and training 

In the second phase, we selected suitable machine 

learning algorithms to detect anomalies. The algorithms 

considered were K-Nearest Neighbors (KNN), Decision 

Tree (DT), Multilayer Perceptron (MLP), and Support 

Vector Machine (SVM). Each algorithm was evaluated 

based on the characteristics of the datasets, with a 

particular focus on computational efficiency and 

detection accuracy. 

Training Process: The models were trained on labeled 

datasets using cross-validation (Stratified k-fold cross-

validation) to ensure robust performance across different 

data splits. This technique helped minimize overfitting 

and provided a more accurate assessment of each model's 

generalization performance. 

Hyperparameter Tuning: For each algorithm, we 

fine-tuned the hyperparameters using grid search. In the 

case of MLP, parameters such as the number of hidden 

layers, activation function, and learning rate were 

optimized to achieve the best performance. 

3.3 Real-time deployment and monitoring 

The third phase involved deploying the trained model into 

real-world industrial environments to identify anomalies 

in real-time. The model was monitored closely to assess 

performance in detecting new attacks or unusual 

behaviors. 

Anomaly Detection in Real-Time: The trained model 

was integrated into the IIoT system to provide real-time 

anomaly detection. It was designed to alert administrators 

to potential security threats based on deviations from 

learned normal behaviors. 

Performance Monitoring and Feedback: A 

continuous feedback loop was established, where the 

model's outputs were analyzed to identify any issues, such 

as false positives or missed anomalies. This feedback loop 

allowed us to iteratively refine the model, adjusting 

hyperparameters or exploring alternative algorithms as 

needed. 

This comprehensive, three-step methodology—

covering meticulous data preprocessing, thorough 

algorithm selection and training, and ongoing real-time 

monitoring—ensures a robust and reliable Intrusion 

Detection System for IIoT environments. 
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4 Experiments 

4.1 Datasets 

In evaluating Intrusion Detection Systems (IDSs) with 

Machine Learning (ML) models, researchers frequently 

rely on diverse datasets to gauge performance. This study 

opts for two prominent IoT-based IDS datasets—Bot-IoT 

and Edge-IIoTset—tailored for IoT applications. These 

datasets, along with CIDDS, furnish extensive traffic 

data, enhancing the assessment of IDS models amidst 

evolving attack landscapes. The table below outlines the 

key characteristics of these datasets. 

Table 2 : Key characteristics of BOT-IOT, EDGE-

IIOTSET, AND CIDDS datasets 

Feature Bot-IoT Edge-IIoTset CIDDS-001 

Purpose 

Detect botnet 

activities and 

anomalous 

IoT 

interactions 

Detect 

cyberattacks in 

industrial IoT 

(IIoT) 

environments 

Evaluate anomaly-

based intrusion 

detection systems 

Content 

Network 

traffic 

captures from 

diverse IoT 

devices, 

labeled as 

normal or 

botnet activity 

Sensor data, 

Modbus flow 

information, 

labeled as 

normal or 

attack type 

Flow records 

capturing network 

traffic features, 

labeled as normal or 

attack 

Attack 

Types 

Botnet attacks 

(credential 

stuffing, data 

exfiltration, 

etc.) 

DoS/DDoS, 

information 

gathering, 

man-in-the-

middle, 

injection, 

malware 

Various intrusion 

attempts (e.g., port 

scans, denial-of-

service) 

Features 

Varies 

depending on 

dataset 

version, 

typically 

includes 29 

features. 

61 extracted 

features from 

various 

sources (logs, 

traffic, 

resources, 

alerts) 

53 flow-based 

features 

(source/destination 

IP, ports, packet 

size, etc.) 

Size 
73 million 

inputs 

Not explicitly 

mentioned, 

described as 

"large-scale" 

1.3M normal flows, 

120k attack flows 

(compressed: 30 

GB, uncompressed: 

130 GB) 

4.1.1 BoT-IoT Datasets: 

The Bot-IoT[31] The Bot-IoT dataset, curated by UNSW 

Canberra Cyber experts, comprises 73 million instances 

of botnet attacks in IoT networks, demonstrating various 

attack methods such as data exfiltration, keylogging, and 

DDoS. Featuring both normal and simulated IoT traffic, 

it aids researchers and professionals in evaluating and 

improving IoT network security by validating intrusion 

detection techniques. 

4.1.2 Edge_IIoTset dataset 

The Edge_IIoTset Dataset[32] provides meticulously 

curated sensor data and communication patterns from 

various industrial environments, specifically tailored for 

Network-based Intrusion Detection Systems (NIDS) 

research. With a focus on anomalies and potential 

intrusions, it offers valuable context for evaluating and 

improving NIDS effectiveness in securing industrial IoT 

networks. Researchers and practitioners can utilize its rich 

contextual information to develop and validate robust 

security solutions for the ever-evolving landscape of 

industrial IoT. 

4.1.3 CIDDS datasets 

The CIDDS [33] (Coburg Intrusion Detection Data Sets) 

Dataset, created by researchers at Hochschule Coburg, 

Germany, is tailored for assessing anomaly-based 

intrusion detection systems. Simulating a small business 

network environment, it contains both normal and 

malicious activities, including various attacks like port 

scans and denial of service. This dataset aids in evaluating 

intrusion detection methods' effectiveness across diverse 

network scenarios. 

4.2 Algorithm hyperparameters 

We evaluated the following machine learning models, and 

the key hyperparameters for each were as follows: 

Multilayer Perceptron (MLP): A 3-layer network 

with 64, 32, and 16 neurons in the hidden layers, 

respectively. The activation function used was ReLU, the 

optimizer was Adam, and the learning rate was set to 

0.001. The MLP model was trained for 100 epochs with a 

batch size of 32. 

K-Nearest Neighbors (KNN): The number of 

neighbors (k) was set to 5, and the distance metric used 

was Euclidean distance. 

Support Vector Machine (SVM): An RBF kernel was 

employed, with a C parameter of 1.0 and gamma set to 

'scale' to adjust automatically based on the dataset. 

Decision Tree (DT): The maximum depth of the tree 

was set to 10, and the criterion used for splitting was Gini 

impurity. 

4.3 Cross-validation technique 

To ensure that the models generalized well and to avoid 

overfitting, we used Stratified k-Fold Cross-Validation 

with k=10. Stratified cross-validation was employed to 

ensure that the class distribution (i.e., the proportion of 

normal and attack samples) remained consistent across 

each fold. This technique provided a robust evaluation of 

model performance across different data splits and 

ensured that the results were reliable. 
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4.4 Dataset bias and challenges 

4.4.1 Class imbalance in BOT-IoT dataset 

One of the major challenges associated with the BOT-IoT 

dataset is class imbalance. The dataset contains a 

significant number of normal samples compared to attack 

instances, leading to a situation where the model could 

become biased toward predicting the majority class 

(normal traffic) while underperforming in detecting the 

minority class (attack traffic). In cybersecurity contexts, 

such biases can result in a higher number of false 

negatives, where actual attacks go undetected, which can 

have serious consequences. 

4.4.2 SMOTE for addressing class imbalance 

To address the issue of class imbalance in the BOT-IoT 

dataset, we employed the Synthetic Minority Over-

sampling Technique (SMOTE). SMOTE works by 

generating synthetic samples for the minority class (i.e., 

attack instances), which helps balance the distribution of 

the dataset. Specifically, SMOTE synthesizes new attack 

instances by interpolating between existing samples, 

ensuring that the model is exposed to more representative 

attack data during training. 

This technique helped mitigate the bias toward the 

majority class (normal traffic) and improved the model's 

ability to detect attack traffic, as reflected in the improved 

recall and F1-scores during evaluation. 

4.4.3 Other dataset challenges 

Edge-IIoTset and CIDDS also presented challenges in 

terms of diverse feature types, such as network traffic 

features, sensor data, and Modbus flow information. 

These datasets required careful preprocessing and feature 

selection (detailed in the Methodology section) to ensure 

that the most relevant features were used for training. 

While class imbalance was less of an issue in Edge-

IIoTset and CIDDS, challenges like varying feature 

distributions and data sparsity still required careful 

handling during model training and evaluation. 

4.4.4 Performance improvements 

The application of SMOTE in balancing the BOT-

IoT dataset had a noticeable impact on performance 

metrics, particularly for models like MLP and SVM. By 

balancing the class distribution, the recall for attack 

instances increased, improving the model's overall ability 

to detect cyberattacks. This improvement is especially 

critical for intrusion detection systems (IDS), where the 

cost of false negatives (missed attacks) is high. 

4.5 Performance measures 

In assessing models, research literature utilizes diverse 

performance metrics, including precision, recall, 

accuracy, F1-measure, and Matthew’s correlation 

coefficient, derived from confusion matrices. 

Accuracy: The correctness of the model's predictions 

is often evaluated through accuracy measures[34]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (1) 

Precision (Positive Predictive Value): Measures the 

accuracy of positive predictions by evaluating how many 

of the predicted positive instances are truly positive[35]. 

Precision =
TP

TP+FP
 ,   (2) 

Recall (Sensitivity, True Positive Rate): Indicates the 

percentage of true positives that the model successfully 

detected by gauging the model's capacity to collect all 

pertinent cases[35]. 

Recall =
TP

TP+FN
     () 

F1_Score: Provides a balanced metric between recall 

and accuracy by representing the harmonic mean of the 

two[34]. 

F1Score =
 2⋅Precision⋅Recall

Precision+Recall
   () 

MCC evaluates binary model performance by 

considering true/false positives/negatives, offering a 

balanced assessment of classification accuracy [36]. 

MCC =
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
  () 

5 Results 
In this study, we analyze the results and findings derived 

from the two primary benchmark datasets previously 

mentioned. We assess the performance of the following 

machine learning algorithms: SVM, MLP, KNN, DT, and 

XGBoost. Various performance metrics including 

precision, recall, accuracy, MCC, F1-measure, and 

training time are utilized in the research literature to gauge 

the effectiveness of these models. 

To evaluate the performance of the proposed model, 

we use the following metrics: 

Accuracy (ACC): The proportion of true results (both 

true positives and true negatives) among the total number 

of cases. Accuracy measures the overall correctness of the 

model's predictions. 

Precision: The proportion of true positive predictions 

among all positive predictions made by the model, 

representing the model’s ability to avoid false positives. 

Recall (Sensitivity): The proportion of true positive 

cases that are correctly identified by the model, 

emphasizing the model's capacity to capture actual 

positive instances. 

F1-Score: The harmonic mean of precision and recall, 

providing a balanced metric when precision and recall are 

of equal importance. 

Matthews Correlation Coefficient (MCC): A more 

comprehensive metric that takes into account true and 

false positives and negatives, providing a balanced 

measure even in cases of class imbalance. 

5.1.1 Revisiting results: insights from the 

CIDDS dataset 

The following table (3) presents the performance metrics 

of various machine learning algorithms on the CIDDS 

dataset. Metrics include accuracy (ACC%), precision, F1-

score, recall, Matthews correlation coefficient (MCC), 

and training time in seconds. SVM achieves an accuracy 

of 93.77%, followed by K-NN with 96.66%, MLP with 



Multilayer Perceptron-Based Defense Mechanisms for Securing Industrial… Informatica 49 (2025) 57–68 63 

 

99.26%, and DT with 98.00%. Precision, recall, and F1-

score indicate high model performance across all 

algorithms, with values close to 1. Matthew’s correlation 

coefficient values range from 0.9122 to 0.9931, 

suggesting strong correlations between predicted and 

actual values. Training time varies among the algorithms, 

with MLP being the fastest at 10.23 seconds. 

The Fig.  3 is a graphical metrics representation on 

the CIDDS dataset showcases the performance of 

machine learning algorithms. Accuracy varies from 

93.77% for SVM to 99.26% for MLP, with MLP leading 

in precision at 98.74%. F1-score demonstrates consistent 

high performance, particularly with MLP achieving 

98.80%. Recall rates are generally high, ranging from 

93.1% for SVM to 98.86% for MLP. Matthew’s 

correlation coefficient (MCC) values, ranging from 

91.22% to 99.31%, indicate strong correlations between 

predicted and actual values. 

Table 3: Performance metrics of machine learning 

algorithms on CIDDS dataset 

ML 

algorith

m 

ACC

% 

Precisio

n% 

F1-

score

% 

Recall

% 

MCC 

% 

Trainin

g Time 

(s) 

SVM 0,9377 0,901 0,941 0,931 0,9622 75,94 

K-NN 0,9666 0,9263 0,9342 0,943 0,9626 12,56 

DT 0,98 0,979 0,979 0,979 0,9122 27,5 

MLP 0,9926 0,9874 0,988 0,9886 0,9931 10,23 

 

 
Figure 3: Performance metrics comparison of machine 

learning algorithms on CIDDS dataset 

5.1.2 Revisiting Results: Insights from the 

BOT-IoT Dataset 

The table (1) displays the performance metrics results of 

various machine learning algorithms on the BOT-IoT 

dataset. Metrics include accuracy (ACC %), precision, 

F1-score, recall, Matthew’s correlation coefficient (MCC 

%), and training time in seconds. SVM achieves an 

accuracy of 98.15%, followed by K-NN with 99.13%, 

MLP with 99.52%, and DT with 93.4%. Precision, recall, 

and F1-score indicate high model performance across all 

algorithms, with values close to 1. Matthew’s correlation 

coefficient values range from 0.9122 to 0.97, suggesting 

strong correlations between predicted and actual values. 

Training time varies among the algorithms, with SVM 

being the fastest at 34.78 seconds. 

Table 2: The BOT-IoT dataset's performance metrics 

results 

ML 

algorithm 

ACC 

% 

Precision 

% 

F1-

score% 

Recall 

% 

MCC 

% 

Training 

Time (s) 

SVM 0,9815 0,9915 0,9915 0,995 0,92 34,78 

K-NN 0,9913 0,9933 0,9933 0,999 0,92 56,43 

DT 0,934 0,953 0,934 0,963 0,9122 27,3 

MLP 0,9952 0,9952 0,9952 0,9999 0,97 48,34 

 

 
Figure 4: Performance metrics comparison of machine 

learning algorithms on BOT-IoT dataset 

 

The graphical representation of performance metrics 

on the BOT-IoT dataset depicts key evaluation measures 

for machine learning algorithms. Accuracy ranges from 

93.4% for DT to 99.52% for MLP, with MLP achieving 

the highest precision at 99.52%. F1-score shows 

consistent high performance across all algorithms, 

particularly with MLP achieving 99.52%. Recall rates are 

generally high, ranging from 96.3% for DT to 99.9% for 

MLP. Matthews correlation coefficient (MCC) values, 

ranging from 91.22% to 97%, highlight strong 

correlations between predicted and actual values.  

5.1.3 Revisiting results: insights from the 

Edge_IIoTset dataset 

This next table presents the performance metrics results 

of various machine learning algorithms on the 

Edge_IIoTset dataset. Metrics include accuracy (ACC 

%), precision, F1-score, recall, Matthew’s correlation 

coefficient (MCC %), and training time in seconds. SVM 

achieves an accuracy of 99.4%, followed by K-NN with 

99.1%, MLP with 99.93%, and DT with 94.9%. Precision, 

recall, and F1-score indicate high model performance 

across all algorithms, with values close to 1. Matthew’s 

correlation coefficient values range from 0.931 to 0.992, 

suggesting strong correlations between predicted and 

actual values. Training time varies among the algorithms, 

with MLP being the fastest at 11 seconds. 
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Table 3: The Edge_IIoTset dataset's performance metrics 

results 

ML 

algorith

m 

ACC 

% 

Precisio

n % 

F1-

score

% 

Recall 

% 

MC

C % 

Trainin

g Time 

(s) 

SVM 0,994 0,984 0,999 
0,999

6 
0,96 58,42 

K-NN 0,991 0,991 0,997 
0,999

9 

0,96

1 
13,61 

DT 0,949 0,941 0,989 0,966 
0,93

1 
137,2 

MLP 
0,999

3 
0,9993 0,999 

0,999

9 

0,99

2 
11 

 

 
Figure 5: Performance metrics comparison of machine 

learning algorithms on Edge_IIoTset dataset 
  

The graphical representation illustrates the 

performance metrics of machine learning algorithms on 

the Edge_IIoTset dataset. Accuracy ranges from 94.9% 

for DT to 99.93% for MLP, with MLP achieving the 

highest precision at 99.93%. F1-score demonstrates 

consistent high performance across all algorithms, 

particularly with MLP achieving 99.9%. Recall rates are 

generally high, ranging from 96.6% for DT to 99.99% for 

MLP. Matthew’s correlation coefficient (MCC) values, 

ranging from 93.1% to 99.2%, indicate strong correlations 

between predicted and actual values. 

Figure 6 illustrates the performance metrics of 

several machine learning algorithms, evaluated across 

three datasets: CIDDS, BOT-IoT, and Edge_IIoTset. The 

subfigures (a) to (d) compare metrics such as accuracy, 

precision, recall, and the Matthews Correlation 

Coefficient (MCC) among algorithms like SVM and 

MLP. Notably, MLP consistently demonstrates superior 

precision, recall, and MCC across all datasets, 

showcasing its effectiveness in intrusion detection tasks. 

SVM, on the other hand, achieves commendable 

accuracy, particularly excelling in classifying instances 

correctly. This figure highlights the comparative strengths 

of each algorithm in detecting and managing cyber threats 

in IIoT environments. 

Fig.  6. (a) Accuracy (ACC %): Across all datasets, 

The SVM model demonstrates strong accuracy across 

datasets, achieving 93.77% on CIDDS, 98.15% on BOT-

IoT, and 99.4% on Edge_IIoTset. It demonstrates the 

ability of SVM to effectively classify instances into 

correct categories. 

Fig.  6. (b) Precision (%) measured for each dataset: 

MLP exhibits superior precision across datasets, with 

values of 98.74% for CIDDS, 99.52% for BOT-IoT, and 

99.93% for Edge_IIoTset. This indicates MLP's 

capability to provide precise positive predictions. 

Fig.  6. (c) Recall (%) across datasets: MLP 

demonstrates outstanding recall rates across all datasets, 

with values of 98.86% for CIDDS, 99.99% for BOT-IoT, 

and 99.96% for Edge_IIoTset. It highlights MLP's 

effectiveness in capturing true positive instances. 

Fig.  6. (d) MCC (%) demonstrating balanced 

classification performance: MLP achieves the highest 

MCC values for all datasets, with values of 99.31% for 

CIDDS, 97% for BOT-IoT, and 99.2% for Edge_IIoTset. 

MCC considers true and false positives and negatives, 

providing a balanced measure of classification 

performance. 
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Figure 6: The performance metrics of machine learning algorithms on three distinct datasets: CIDDS, BOT-oT, and 

Edge_IIoTset 

 

Comparing the performance metrics across the 

CIDDS, BOT-IoT, and Edge_IIoTset datasets, it becomes 

evident that MLP consistently outperforms other machine 

learning algorithms. MLP exhibits superior accuracy, 

precision, and recall rates across all datasets, indicating its 

effectiveness in correctly classifying instances and 

minimizing false positives. Additionally, MLP achieves 

high F1-scores and Matthew’s correlation coefficient 

values, highlighting its ability to strike a balance between 

precision and recall while maintaining strong correlations 

between predicted and actual values. Moreover, MLP 

demonstrates computational efficiency by requiring 

relatively shorter training times compared to other 

algorithms. Thus, MLP emerges as the best model choice 

for handling diverse and complex datasets, making it 

suitable for tasks requiring high precision and recall rates 

in industrial IoT environments. 

6 Discussion 
The results show that the MLP model consistently 

outperforms other models, including SVM, KNN, and DT, 

in terms of accuracy, precision, and recall across all 

datasets. Specifically, MLP achieved a 99.26% accuracy 

on the CIDDS dataset, while KNN and DT only reached 

96.66% and 98%, respectively. 

In comparison to ensemble methods like Random 

Forest or AdaBoost, MLP continues to show superiority in 

terms of precision and recall. However, ensemble methods 

may offer benefits in terms of reducing variance and 

improving robustness, which could be valuable in certain 

IIoT scenarios where variability in data is high and 

frequent model retraining may be required. 

The superior performance of MLP can be attributed to 

its ability to capture complex non-linear patterns in the 

data through its multilayer architecture. This ability is 

particularly crucial in detecting multi-stage and 

sophisticated cyberattacks in IIoT environments, where 

other models like SVM and KNN might struggle with 

high-dimensional, noisy, or imbalanced data. The use of 

deep learning helps in identifying subtle anomalies that 

could otherwise be missed by traditional models. 

MLP also excels in terms of computational efficiency 

due to its parallel processing capabilities, making it well-

suited for real-time anomaly detection. However, it is 

important to note that the training time for MLP was 

higher compared to KNN and SVM, which might present 

challenges in resource-constrained IIoT environments 

where real-time responsiveness is critical. A hybrid 

approach that combines MLP for offline analysis with 

lighter models for real-time intrusion detection could offer 

a balanced solution to address this challenge. 

Despite its advantages, further evaluation of the MLP 

model in real-world IIoT environments is needed to assess 

its scalability and performance in dynamic industrial 

settings. Potential issues like false negatives, which are 

particularly costly in cybersecurity, should be addressed 

by optimizing decision thresholds or exploring ensemble 

learning approaches to reduce the chances of undetected 

intrusions. Additionally, real-time deployment may face 

challenges due to latency and computational overhead, 

which future work could mitigate by optimizing MLP's 

architecture or incorporating federated learning 

approaches to distribute the computational load. 

While the presented performance metrics, such as 

accuracy and precision, demonstrate strong overall 

performance, it is crucial to consider the impact of false 

negatives in IIoT environments. False negatives occur 

when an attack is not detected, which can be particularly 

costly in industrial settings, leading to potential 

disruptions, operational failures, or even severe security 

breaches. 
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To mitigate the risk of false negatives, we propose 

several strategies: 

Adjusting Decision Thresholds: Fine-tuning the 

decision thresholds of the classifier can lower the rate of 

false negatives by prioritizing sensitivity (recall) over 

precision in critical security scenarios. 

Ensemble Methods: Leveraging ensemble techniques 

like Random Forest or boosting algorithms (e.g., 

AdaBoost, XGBoost) can help improve the detection 

capabilities by combining the strengths of multiple weak 

classifiers, leading to a more sensitive system. 

Cost-Sensitive Learning: Implementing cost-sensitive 

learning models can assign a higher penalty to false 

negatives, ensuring that the model focuses on minimizing 

missed detections, particularly in cybersecurity contexts 

where the cost of undetected attacks is high. 

6.1 Real-world applicability and 

deployment 

While the MLP model demonstrates strong performance 

metrics in experimental settings, deploying it in real-world 

IIoT environments poses several practical challenges: 

6.1.1 Scalability 

IIoT environments typically involve vast networks of 

connected devices that generate large amounts of real-time 

data. Scaling an MLP-based intrusion detection system to 

handle this volume of data is non-trivial. In practice, 

distributed computing or edge computing architectures 

can be used to process data closer to its source, reducing 

the load on centralized servers. This approach allows for 

more scalable and efficient detection of anomalies across 

large-scale IIoT networks. 

6.1.2 Latency 

In real-time industrial environments, low latency is critical 

to detecting and responding to cyberattacks before they 

impact operations. Although MLP provides high 

accuracy, its inference time can be slower compared to 

simpler models like Decision Trees or KNN. To ensure 

real-time detection, optimization strategies such as 

reducing the number of layers or neurons in the MLP, or 

employing lightweight models for initial anomaly 

detection, can help lower the latency without sacrificing 

detection accuracy. 

6.1.3 Computational overhead 

MLP models are computationally intensive, especially 

when applied to large datasets or in environments with 

limited resources, such as edge or fog computing. To 

address this, techniques like model pruning, quantization, 

or offloading computations to specialized hardware (e.g., 

GPUs or FPGAs) can be used to reduce computational 

overhead while maintaining model performance. 

Additionally, deploying the MLP model in a distributed 

manner across multiple edge nodes can balance the 

computational demands. 

6.2 Hypothetical case study: MLP 

deployment in a smart factory 

To illustrate the practical integration of the MLP model, 

consider a smart manufacturing facility where various 

machines, sensors, and devices are connected through an 

IIoT network to monitor production processes in real-

time. 

6.2.1 Edge-based deployment 

The MLP model could be deployed at the edge of the 

network, near the data sources (e.g., sensors and industrial 

machines), to detect anomalies in network traffic in real 

time. Each edge node would process a subset of the 

network traffic, allowing for faster detection and reduced 

network congestion. The system would flag suspicious 

behavior, such as unauthorized access or unusual data 

flows, and alert administrators before any significant 

damage occurs. 

6.2.2 Scalability considerations 

In large industrial environments with thousands of 

connected devices, a distributed MLP deployment would 

be necessary. Each edge node would independently run an 

instance of the MLP model, analyzing traffic locally and 

sending detection results to a central server for 

aggregation and final decision-making. This distributed 

approach ensures that the IDS can scale efficiently across 

the entire facility while maintaining high detection 

accuracy. 

6.2.3 Real-time monitoring 

The MLP model would continuously monitor network 

traffic, allowing it to identify deviations from expected 

patterns of behavior. In the event of a detected anomaly, 

the system could automatically trigger predefined 

responses, such as isolating compromised devices or 

blocking network traffic from suspicious sources. This 

proactive approach minimizes downtime and ensures 

uninterrupted production. 

6.3 Conclusion on real-world integration 

To deploy the MLP model in real-world IIoT 

environments, challenges related to scalability, latency, 

and computational overhead must be addressed. Solutions 

like edge computing, distributed architectures, and 

hardware acceleration can enable the effective 

deployment of MLP-based intrusion detection systems in 

industrial settings. Future work should focus on 

optimizing MLP models for real-time environments, 

ensuring they can scale and respond to evolving cyber 

threats in large, dynamic IIoT networks. 

7 Conclusion 
In conclusion, this study emphasizes the critical need to 

secure Industrial Internet of Things (IIoT) environments 

in the context of Industry 4.0. While IIoT facilitates 

unprecedented connectivity and efficiency in 

manufacturing, it also introduces significant cybersecurity 
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challenges. Leveraging deep learning techniques, 

particularly the Multilayer Perceptron (MLP), presents a 

promising avenue for fortifying IIoT systems against 

cyber threats. Through extensive analyses on benchmark 

datasets, MLP consistently demonstrates superior 

performance metrics, including accuracy, precision, 

recall, and efficiency. Its ability to effectively classify 

instances and maintain strong correlations between 

predicted and actual values makes it an ideal choice for 

anomaly detection in industrial IoT environments. Moving 

forward, future research can explore the integration of 

MLP-based models into IIoT infrastructures to enhance 

security and optimize manufacturing processes further. 

Additionally, ongoing efforts in developing advanced 

deep learning algorithms tailored for specific IIoT 

applications can contribute to bolstering cybersecurity and 

resilience in the industry 4.0 landscape. 
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