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A multi-layer generative model is proposed as a means of enhancing the accuracy of large-scale data 

analysis. This model addresses the problem of limited feature extraction capability and insufficient 

association with label information in existing topic models. The model is divided into three main 

modules: text encoding, autoencoder inference, and layer-by-layer learning. The model combines a 

hierarchical Bayesian model with a deterministic upward random downward network structure. It uses 

a Poisson Gamma Belief Network as a decoder to capture hierarchical implicit features in text data 

during text encoding, autoencoder inference, and layer-by-layer learning. Random Gradient Monte 

Carlo sampling is used for posterior inference to improve the model efficiency. In addition, the Fisher 

information matrix is used to adaptively adjust the learning rate of different levels and topic 

parameters, and a layer-by-layer learning strategy is introduced to construct a learning network. 

Based on this, text data and label information are combined for feature extraction. The results 

demonstrated that the test error rates of the designed model on the 20News, RCV1, and IMDB datasets 

were 16.52%, 18.72%, and 11.67%, respectively, all of which were the lowest. Additionally, the testing 

time was the shortest, at 0.020s, 0.017s, and 0.015s, respectively, indicating a high level of accuracy 

and efficiency. In addition, the perplexity levels on the 20News, RCV1, and Wiki datasets were 590.23, 

953.12, and 982.67, respectively, significantly lower than those of other comparison models. Given this, 

the designed model has high data analysis and interpretation capabilities and relatively high 

computational efficiency, which can provide scientific tools for accurately analyzing large-scale data 

in batches. 

Povzetek: Predstavljen je izboljšan variacijski avtoenkoder, ki združuje globoko učenje in verjetnostno 

statistiko za analizo obsežnih in kompleksnih podatkov.

1 Introduction 

The advancement of computer technology has made 

feature information extraction play an important role in 

the development of computer information analysis 

systems. It can directly associate information features 

with subsequent system tasks through supervised learning 

and obtain label information [1-3]. Deep Learning (DL) 

and Probabilistic Statistical Models (PSM) have 

demonstrated strong potential in processing complex data. 

In text data processing, the combination of DL and PSM 

can improve the prediction accuracy and computational 

efficiency of the model, and enhance the understanding of 

text data. Variational Autoencoder (VAE) is a 

machine-generated model that maps input data to latent 

space through an encoder, and then converts latent 

variables back into raw data through a decoder [4-6]. 

Traditional VAE often faces certain difficulties in  

 

processing high-dimensional complex data, with 

deficiencies in inference efficiency and computational 

complexity. To address these challenges, it is essential to 

fully leverage the logical interpretation capabilities of 

PSM and enhance the efficiency of large-scale data 

processing [7-9]. 

The field of Variational Self-Coding (VSC) has 

witnessed a steady progression of research in recent years. 

Mansour R F et al. proposed an unsupervised DL-VAE 

model for COVID-19 detection and classification. This 

model utilized an adaptive Wiener filtering strategy for 

data preprocessing to improve the image quality of the 

model. This type of model had higher accuracy and better 

performance than traditional models in 

multi-classification tasks [10]. Pinheiro Cinelli et al. 

analyzed the potential generation factors of VAE in the 

data generation process and analyzed the learning 

characteristics of VAE under unsupervised conditions. 
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On this basis, two different image datasets were used for 

training and sample generation, and the characteristics of 

VAE under different optimization conditions were fully 

analyzed [11]. Duan et al. proposed a prediction model 

that combines VAE and dynamic factor models for 

modeling financial data noise and predicting stock returns. 

The feature of this model was to use the prior posterior 

learning method to approximate the optimal posterior 

factor model through future information for stock return 

prediction. Additionally, it employed a variance 

estimation technique to assess the potential spatial 

distribution of VSC, thereby establishing a risk model. 

This model has shown good practical application 

performance in the stock market [12]. 

In terms of PSM, Collins et al. analyzed the 

complexity of the production process of titanium alloy 

materials. A yield stress prediction equation containing 

random variables was designed to address the significant 

variability in composition, microstructure, and 

mechanical properties during the titanium alloy electron 

beam additive manufacturing process. They introduced 

the cumulative distribution function into the physical 

model and calibrated the experimental data using 

simulation techniques. This model had better predictive 

performance than traditional models [13]. Petersen et al. 

analyzed the distribution center and variability of data 

information and explored regression, time series, and 

spatial models through nonlinear methods that conform to 

density function constraints. They used data instances to 

analyze the effectiveness of probability models in 

practical applications [14]. 

In DL, Lauriola et al. analyzed the application of DL 

in Natural Language Processing (NLP) and focused on 

the influence of DL models in different tasks. This study 

started from various aspects such as software, hardware, 

and popular corpora of NLP, and then explored the 

limitations of NLP in the current context. They analyzed 

the application effect of DL models in NLP from the 

perspective of limitations [15]. Atz et al. 

 

Table 1: Comparison of perplexity, error rate, and computation time. 

Model Perplexity Error Rate Calculate Time (Test Time) 

LDA High (800+) High (>30%) Long (>1s) 

DocNADE Medium (700+) Moderate (25-30%) Medium (0.5-1s) 

DLDA Medium (700+) Medium (20-25%) Long (>1s) 

AVITM Medium (650-700) Medium (15-20%) Faster (<0.5s) 

sDAM Low (590.23) Low (11.67%) Fast (0.015-0.020s) 

 

analyzed the application of geometric DL models in 

chemical analysis modeling. This analysis mainly utilized 

neural network architecture to process chemical molecule 

symmetry information. It further investigated the 

potential applications of geometric DL in drug discovery, 

chemical synthesis prediction, and quantum chemistry. 

The geometric DL model had a wide range of application 

prospects [16]. 

In recent years, research on VAE has mainly focused 

on unsupervised learning applications and expanded to 

fields such as image processing and financial modeling. 

PSM has been deeply applied in complex system 

modeling, data distribution, and other aspects. DL is 

commonly used in information analysis such as NLP and 

medical diagnosis. 

At present, VAE cannot efficiently process 

large-scale data in data analysis. Furthermore, the full 

integration of DL and PSM into VAE remains an ongoing 

process. Therefore, this study innovatively combines the 

DL, PSM, and VAE to form a Deep Autoencoding Topic 

Model (DAM), which improves the processing efficiency 

of large-scale data. 

Compared with existing models such as Linear 

Discriminant Analysis (LDA), DocNADE, Direct Linear 

Discriminant Analysis (DLDA), Autoencoding 

Variational Inference for Topic Models (AVITM), etc., 

the proposed model performs relatively better in 

perplexity, error rate, and computation time. Among them, 

the LDA model, as a classic topic model, has a high 

overall error rate and confusion. The DLDA and 

DocNADE models incorporate techniques such as 

autoregression and DL but still have shortcomings in 

terms of confusion and computational efficiency. The 

AVITM model, like the model studied and designed in 

this study, also includes self-coding techniques. However, 

the level of confusion is still insufficient. Given this, the 

proposed model has a perplexity of 590.23, an error rate 

of 11.67%, and a testing time of only 0.015-0.020 

seconds. Overall, there has been an improvement in 

reasoning ability, accuracy, and computational efficiency. 

Due to the combination of the Poisson Gamma Belief 

Network (PGBN), the model can perform fast inference 

and capture deeper-level feature information. 

The research mainly has three parts. Part 1 designs a 

DL Self-Coding Theme Model (SCTM) based on tag 

information. Part 2 validates the performance of the 

model. Part 3 draws research conclusions. 
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2 Methods and materials 

2.1 DL self-coding theme model design 
To address such problems, it is necessary to fully utilize 

the logical interpretation capability of PSM and improve 

efficiency in large-scale data processing. However, this 

cannot be achieved without first addressing the issue of  

 

Figure 1: DAM and AVITM model structures. 

 

forming logically smooth data analysis and processing 

[17-19]. Therefore, this study proposes the DAM. This 

model combines a hierarchical Bayesian model with a 

"deterministic upward random downward" network 

structure to provide more accurate topic representations 

for data. This model can be divided into three main 

modules: text encoding, autoencoder inference, and 

layer-by-layer learning. In the encoding and decoding 

process of the model, a PGBN model is used as the 

decoder to capture hierarchical implicit features in text 

data. The AVITM algorithm mainly uses separate and 

shallow LDA for decoding [20-22]. This study is 

different, using a deep generative model for decoding. 

The DAM and AVITM models are shown in Figure 1. 

In PGBN, the generative model utilizes multiple hidden 

layers to recursively model high-dimensional sparse data.  

 

Figure 2: Structure of DLD model. 

 

The network applies Dirichlet prior constraints on the 

topic weights at each layer, thereby making the topic 

weights normalized. All theme weight elements must be 

greater than 0, and the sum of all elements must be 1, 

which can ensure the simplification of the model 

inference process. The generative model with hidden 

layers can be represented as formulas (1) to (3). 
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In formula (1), ( )L

n  is the weight of the hidden 

layer, L  is the number of hidden layers, and r  is the 

shape parameter of the gamma distribution, then formula 

(2) exists. 
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  is the factor loading matrix and ( )1
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l

nc
+  

is the scale parameter in formula (2), then formula (3) 

exists. 
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The Depth Linear Discrimination (DLD) can be 

expressed as formula (4). 
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DLD is a representative supervised subspace 

analysis method, as shown in Figure 2. 

To process large-scale data, this study adopts 

Stochastic Gradient Monte Carlo (SGMC) as a posterior 

inference algorithm, which adaptively improves inference 

efficiency in a layered manner. SGMC is a technique that 

utilizes random gradient information for sampling, 

enabling efficient parameter estimation on large-scale 

data. The sampling process can be specifically expressed 

as formula (5). 
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In formula (5), t  is the step size, tB  is the 

variance of the random gradient estimation noise, and 

( )2 tD z  is the positive definite condition. The 

calculation for ( )tH z  and ( )tz  is formula (6). 
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In formula (6),   is the ratio between the size of 

the dataset and the size of the subset. Under this 

framework, formula (7) needs to be satisfied. 
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In formula (7), ( )G z  is the Fisher Information 

Matrix (FIM), calculated as in formula (8). 
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In formula (8),   represents the observed and 

local variables. FIM can provide adaptive learning rates 

in gradient computation, achieving faster convergence in 

the inference process by adaptively adjusting the learning 

rates of different levels and topic parameters. It calculates 

( )D z  by providing a step size to improve computational 

efficiency. Since the topic weights are vectors on the 

probability normalization plane, it is necessary to convert 

the original variables into a form suitable for the 

probability normalization plane through parameterization. 

Furthermore, by adjusting the Weibull distribution 

parameters, the gradient instability during the sampling 

process is eliminated, and the efficiency of large-scale 

data processing is improved in the form of reducing 

computational complexity. After parameterization 

conversion, the sampling process evolves into formula 

(9). 
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In formula (9),  
  represents the constraint. To 

update parameters more effectively during the inference 

process, this study introduces a method of adaptive step 

size for each layer of the topic. This method utilizes FIM 

to adaptively adjust the learning rate of different levels 

and thematic parameters. In each iteration, it uses 

sampling methods to approximate local variables, updates 

them layer by layer, and optimizes the estimation results 

of global and local variables. To further achieve fast 

inference, the VSC method is adopted to design a 

self-variational coding network. This model can project 

observation data into a hidden space, avoiding the 

iterative process during the testing phase and significantly 

improving inference speed. To effectively handle sparse 

text representations, this study introduces Weibull 

distribution as the probability distribution of latent 

variables. The parameter changes of gamma distribution 

scale are shown in Figure 3. 
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Figure 3: Parameter changes of gamma distribution scale. 
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When the shape parameters of Weibull are not large 

enough or not close enough to 0, the estimated Weibull 

distribution can be more approximate to a given large 

gamma distribution. The distance between the Weibull 

distribution and the target gamma distribution is shown in 

Figure 4. 

The initial step is to ascertain the shape and scale 

parameters of the Weibull distribution. These parameters 

are then employed to generate latent variable 

representations, thereby establishing a mapping from 

observed data to the parameters of the Weibull 

distribution. By combining bottom-up deterministic 

transmission with top-down stochastic transmission, the 

accuracy of inference is improved. Through this Up and 

Down Variational Coding Network (UDVCN), the 

information transmission between the upper and lower 

layers can be effectively utilized during the inference 

process. Unlike traditional models, UDVCN not only 

considers  
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Figure 4: The distance between Weibull distribution and 

target gamma distribution. 

 

the bottom-up information flow but also takes into 

account the prior information of the generated model, 

achieving more accurate posterior estimation in the 

inference process. 

The expression of UDVCN is shown in formula 

(10). 
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Figure 5: Self-coded variational inference algorithm. 
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This mechanism of information transmission allows 

the model to more efficiently capture low-level features 

and higher-level abstract features in the data, making the 

inference process more stable and efficient. To jointly 

solve the theme parameters of the decoding network and 

the neural network parameters of the encoding network, 

this study introduces a mixed stochastic gradient and 

VAE inference algorithm to improve the posterior 

inference speed. The algorithm flow is shown in Figure 5. 

During the model training process, a Layer-by-layer 

Learning Strategy (LLS) is used to construct the learning 

network. LLS is an effective method for optimizing the 

structure of DL models. This strategy allows for the 

gradual inference of the optimal width for each layer of 

the network starting from an initial set width, thereby 

achieving more accurate model training. This strategy 

does not require specifying the width of each layer. Given 

the width of the first layer, the model will spontaneously 

infer the width of each layer. After the training of the 

previous layer is completed, the algorithm will stage the 

gamma non-negative binomial process and model the 

hidden integer data of the new layer. This adaptive 

strategy can effectively reduce useless network 

parameters, improve the training efficiency and 

prediction accuracy of the model. Through LLS, the 

optimal structure of the network can be effectively 

inferred given the initial layer width. The process of LLS 

is shown in Figure 6. 
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Figure 6: Layered learning algorithm. 

 

Overall, this study uses the Weibull distribution to 

approximate the gamma distribution, and then determines 

the parameters of the Weibull distribution by minimizing 

the distance between the Weibull distribution and the 

gamma distribution. Then, through UDVCN, the 

posterior distribution of the latent variable is quickly 

estimated. To further improve computational efficiency, 

global variables are randomly updated in each iteration, 

while local variables are sampled through inference 

networks to achieve efficient parameter updates. 

 

2.2 SCTM based on tag information 
The designed DAM can effectively infer thematic data, 

project the original text towards multiple layers of 

random hidden space, and generate label information 

closely related to the text. Traditional models are unable 

to closely correlate feature extraction with label 

information. Therefore, this study combines modeling 

text with label information to improve classification and 

recognition performance. This study further improves 

DAM to form a supervised deep attention topic model. 

This model can perform text classification while 

generating text and combine text data with label 

information. The operating principle of traditional 

autoencoder models is to first extract text features 

unsupervised, and then train a classifier using data 

features [23-24]. However, its limitation is that feature 

information extraction is difficult to correlate with label 

information, resulting in low classification performance. 

To address this issue, this study combines text modeling 

with label information to enhance classification and 

recognition capabilities. In text datasets with labeled 

information, label generation is based on category 

distribution. All labels are closely related to category 

probabilities. In the DAM designed for this research, the 

hidden representations of the various layers are randomly 

connected, and the themes of the different layers display 
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varying levels of features. The first layer of features is 

directly related to data generation. Therefore, to strongly 

correlate the label information with the learning ability of 

each layer, this study concatenates the features of each 

layer to form the final text features, as shown in formula 

(11). 

( ) ( )1
, ,

L

n n ns   =
 

       (11) 

In formula (11), ( )L

n  is the feature of each layer. 

After determining the connection, label information can 

directly affect different layers. After concatenating the 

features, they are projected onto the label probability 

space through nonlinear methods. This is because linear 

methods can only simply project features onto label 

probabilities. Nonlinear methods can project the features 

of each layer onto a shared hidden space through 

multi-layer perceptron, and then concatenate them to 

obtain a joint modeling of text data and label information. 

The calculation after projection and concatenation is 

given by formula (12). 

 

( ) ( )( ) ( ) ( )( )1 1, ,
l LL L

n n ns g g  =
  

 (12) 

In formula (12), ( )
1

L
g  is the projection process of 

the multi-layer perceptron. On this basis, a confidence 

lower bound for joint modeling can be obtained, and the 

expected values can be calculated through variational 

inference to optimize the model parameters. The setting 

of prior and posterior distributions ensures the robustness 

of the model, and non-negativity is ensured through 

logarithmic parameterization, while the backpropagation 

algorithm is used to update the model parameters. The 

final model formed is as shown in formulas (13) to (15). 

 

( ) ( )( ) ( ) ( ) ( )( )1 1 1ln 1 exp
l l ll l

n nm mg W b  = + +
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Formula (13) is the first layer parameter of the 

multi-layer perceptron, and the second layer parameter is 

given by formula (14). 

 

( ) ( ) ( )( )2 2ln 1 exp
l ll
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Based on formula (14), the third layer parameters 

can be obtained, namely formula (15). 

 

( ) ( )2 3 3ln 1 expn m n mg s W h b = + +
 

 (15) 

Establishing a strongly correlated DAM can 

effectively combine text generation and label information, 

improve text classification performance, and enhance 

feature discrimination ability. 

3 Results 

In this study, the Deep Boltzmann Machine model 

(OR-softmax), LDA, Autoregressive Distribution 

Estimation model based on forward deep neural network 

(DocNADE), Deep Poisson Factor Analysis (DPFA), 

AVITM, DLDA model using Gibbs sampling inference 

(DLDA-Gibbs), DLDA model using TLASGR-MCMC 

inference (DLDA-TLASGR), and research model (sDAM) 

are introduced for horizontal model comparison. Table 1 

shows the comparison data of model perplexity and 

testing time. 

Perplexity in the table refers to the uncertainty of the 

model with respect to the data. The lower the Perplexity, 

the better the model’s data processing ability. In the 

20News, RCV1, and Wiki datasets, the Perplexity of 

sDAM under the 128-64-32 structure is 590.23, 953.12, 

and 982.67, which is the lowest compared to other 

models. This indicates that sDAM with the deepest 

network structure has the strongest data interpretation 

ability. From the perspective of testing time, sDAM 

under the 128-64-32 structure has the lowest testing time 

in all three datasets, at 0.21 s, 0.72 s, and 0.85 s, 

respectively. This indicates that the model has the 

shortest computation time and the highest efficiency. 

Therefore, the research model can demonstrate the 

highest data interpretation ability under appropriate 

network structure, and can achieve high information 

interpretation completion while efficiently responding to 

urgent tasks. 

Figure 7 shows the adaptive step size variation of the 

proposed DAM on three datasets: 20News, RCVI, and 

Wiki, where the step size of a single layer is the average 

of all topic steps within the layer. The step size of 

high-level data is relatively large, and the larger the 

dataset, the smaller the step size. The Wiki theme has the 

largest volume and the smallest step size. The smaller the 

step size, the more stable the model, indicating that the 

research model is actually more stable when 
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Table 2: Comparison of model confusion and testing time. 

Model Structure 

Perplexity Test time (s) 

20News RCV1 Wiki 20News RCV1 Wiki 

OR-softmax 128-64-32 610.75 1018.64 1040.23 3.45 8.91 10.12 

DPFA 128-64-32 658.12 1054.23 1071.65 20.45 34.89 35.75 

LDA 128 887.32 1042.93 1070.45 4.25 11.52 12.45 

DocNADE 128 606.83 973.19 1011.47 0.46 0.95 1.11 

AVITM 128 678.25 1075.62 1099.83 0.27 0.73 1.51 

DLDA-Gibbs 128 618.92 979.45 1010.23 4.92 13.02 13.76 

DLDA-Gibbs 128-64 614.53 977.84 1006.83 9.12 18.95 20.13 

DLDA-Gibbs 128-64-32 610.47 975.23 1004.67 10.78 23.95 24.32 

DLDA-TLASGR 128 620.25 975.45 1008.23 4.92 13.03 13.75 

DLDA-TLASGR 128-64 605.13 969.57 995.34 9.14 18.92 20.12 

DLDA-TLASGR 128-64-32 599.78 964.43 994.12 10.78 23.92 24.31 

sDAM 128 608.35 962.19 986.41 0.65 1.28 0.85 

sDAM 128-64 595.67 957.84 984.53 0.42 0.98 1.09 

sDAM 128-64-32 590.23 953.12 982.67 0.21 0.72 0.85 
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Figure 7: Adaptive step size variation. 
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(a) Top down structure: 

first layer

 

(b) Top down structure: 

second layer

 

(c) Top down structure: 

Third layer

 

(d) Bottom up structure: 

first layer

 

(e) Bottom up structure: 

second layer

 

(f) Bottom up structure: 

third layer

 

Figure 8: Application effect of handwritten dataset. 

facing large-scale data. 

 

 

 

 

 

 

 

  



40   Informatica 48 (2024) 31–46                                                                L. G. Zou et al. 

 

 

 

Figure 8 shows the application effect of DAM on 

handwritten dataset. Figures (a) to (c) show the top-down 

stochastic network inference structure (Structure 1). 

Figures (d) to (f) show the bottom-up deterministic 

network inference structure (Structure 2). According to 

the three-layer structure of the designed multi-layer 

perceptron, it is divided into three layers. Regarding 

Structure 1, Figure 8 (a) serves as the first layer and only 

learns local points, representing the most basic details in  

handwritten digit images, mainly capturing low-level 

feature information. As the second layer, Fig.8 (b) has 

learned some contour shapes, and the information 

features are gradually becoming more apparent, but still 

unclear. As the third layer, Figure 8(c) can already 

distinguish obvious numerical forms. This information 

feature representation is a further combination of the first 

two layers of features, demonstrating its ability to capture 

advanced information features. Overall, Structure 1 can 

successfully capture information features. For Structure 2, 

Figure 8 (d) serves as the first layer and only learns local 

points, capturing low-level feature information. The 

information capture situation is similar to Figure 8 (a). As 

the second layer, although the captured information 

features in Figure 8 (e) have increased, the information 

features are still not clear. As the third layer, although 

some information features have been captured in Figure 8 

(f), the information  

 

(a) Column 1

 

(b) Column 2

 

(c) Column 3

 

Figure 9: Interpolation effect. 

 

features are still not clear and cannot distinguish the full 

picture of the information. The overall information form 

is far less than in Figure (c). Overall, Structure 2 has 

stronger feature capture ability. 

Figure 9 shows the interpolation effect of hidden 

space on the MNIST dataset. The image gradually 

transitions from the leftmost row to the rightmost row. 

Under model interpolation, the numerical changes are 

smooth, and the samples formed in the middle of the 

interpolation process are interpretable, allowing for a full 

observation of the changing state. This indicates that the 

model has better inference performance. 

Figures 10 (a) and (b) show the changes in the 

model as the network structure changes. The two graphs 

show a consistent trend of change, that is, the deeper the 

network architecture of the model, the smaller the change 

in test error rate. Figure 10(c) shows the variation of 

model error rate with sample size in the 20News dataset. 

As the sample data increases, the error rate of the model 

generally shows a downward trend. In the comparison 

results, sDAM has the lowest error rate, showing a 

decreasing trend in the range of 25% to 0%, and when the 

sample size reaches 12,000, the error rate is almost 0%. 

The table compares the model testing error rate and 

testing time on the 20News, RCV1, and IMDB datasets. 

On the 20News dataset, the sDAM-N model has the 

lowest test error rate at only 16.52%, while the 

FNN-BOW model has the lowest test error rate at 32.1%. 

Among all the comparison models, the sDAM-N model 

has the highest accuracy. On the RCV1 dataset, the 

sDAM-N model still has the lowest test error rate at only 

16.52%, while the LDA model has the highest. On the 

IMDB dataset, the sDAM-N model still has the lowest 

error rate with an error rate of 11.67%, while the AVITM 

model has the highest error rate. On all three datasets, the 

sDATM-N model has the lowest error rate. On the 20 

News, RCV1, and IMDB datasets, the sDAM-N model 

has the shortest testing time, only 0.020 s, 0.017 s, and 

0.015 s, while the DLDA model has the longest testing 

time, at 1.18 s. Overall, the sDAM-N model has the 

lowest error rate and shortest computation time on all 

datasets, indicating its highest computational efficiency 

and accuracy. In the process of changing the size of the 
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dataset, the overall calculation accuracy and calculation 

time of the model are relatively stable, indicating that the 

model has stability and accuracy.
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Figure 10: Error rate changes with sample size. 

 

Table 3: Horizontal comparison. 

Model 
Error rate Test time 

20News (%) RCV1 (%) IMDB (%) 20News(s) RCV1(s) IMDB(s) 

LDA 24.850 25.120 22.370 0.730 0.310 0.560 

DLDA 21.540 19.760 17.630 1.350 0.850 1.180 

DocNADE 24.010 21.500 18.320 0.042 0.027 0.037 

OR-softmax 23.050 21.020 19.250 0.780 0.260 0.620 

AVITM 25.190 24.890 22.610 0.027 0.020 0.022 

DAM 23.720 22.440 20.890 0.029 0.022 0.024 

FNN-BOW 32.100 27.560 20.450 0.021 0.018 0.020 

FNN-tfidf 25.010 18.720 17.520 0.022 0.015 0.017 

AVITM 19.640 17.980 16.730 0.024 0.019 0.021 

Med LDA 19.230 17.100 14.720 0.308 0.122 0.278 

wv-LSTM 18.520 15.620 14.320 - - - 

sDAM-N 16.520 14.230 11.670 0.020 0.017 0.015 

 

Table 4: Accuracy comparison analysis. 

Model Data set Perplexity 
Error rate 

(%) 

Accuracy 

(%) 

Recall 

(%) 

F1 score 

(%) 

AVITM 20News 953.12 16.52 83.45 79.23 81.29 

LDA 20News 750 32.1 75.2 70.5 72.78 

sDAM-N 20News 590.23 12.52 88 82.5 85.1 

LDA IMDB 1100 40 70 65 67.5 
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sDAM-N IMDB 982.67 11.67 90 88 89 

AVITM IMDB 1150 35 60 58 59 

 

Table 5: Cross validation experiment. 

Model Data set 

First fold 

error rate 

(%) 

Second fold 

error rate 

(%) 

Fourth fold 

error rate 

Fourth fold 

error rate 

Fifth fold 

error rate 

(%) 

Average 

error 

rate (%) 

sDAM-N 20News 16 15.8 16.2 16.1 16.3 16.1 

sDAM-N RCV1 16.5 16.7 16.8 16.4 16.6 16.62 

sDAM-N IMDB 11.5 11.8 11.6 11.4 11.7 11.62 

 

Table 6: Ablation experiment. 

Model 
Error rate 

(%) 
Perplexity 

Accuracy 

(%) 
Recall (%) 

F1 score 

(%) 

sDAM-N 16.52 590.23 83.45 79.23 81.29 

SDAM-N (Remove Hierarchical 

Learning) 
20.4 620 76.5 72 74.2 

SDAM-N (with FFIM removed) 18.8 610 80 75 77.4 

SDAM-N (remove both) 25 700 70 65 67.5 

 

The error rate of the sDAM-N model on the IMDB 

dataset is only 11.67%, while the error rates of LDA and 

AVITM are 40% and 35%, respectively. Its error rate on 

the 20News dataset is only 12.52%, while the error rates 

of LDA and AVITM are 32.1% and 16.52%, respectively. 

In terms of accuracy, the sDAM-N model has an error 

rate of up to 90% on the IMDB dataset, while the error 

rates of LDA and AVITM are 70% and 60%, respectively. 

The error rate on the 20News dataset is as high as 88%, 

while the error rates of LDA and AVITM are 75.2% and 

83.45%, respectively. From the F1 score, the sDAM-N 

model has an F1 score of 85.1 on the IMDB dataset and 

89 on the 20News dataset, both higher than the LDA and 

AVITM models. Overall, in terms of model accuracy, the 

sDAM-N model designed for research has the highest 

precision, superior overall performance in processing text 

data, and better application effects in scenarios that 

require balancing accuracy and recall. 

The results of five-fold cross validation show that 

the sDAM-N model exhibits relatively stable error rates 

under different data segmentation, indicating that the 

model's performance in handling different datasets is 

reliable. Among them, on the 20News dataset, the 

average error rate of the sDAM-N model is 16.10%, and 

the data fluctuation between folds does not exceed 0.30%, 

indicating that the model has strong generalization ability. 

On the RCV1 dataset, the average error rate of the 

sDAM-N model is 16.62%, which is similar to the data 

on the 20News dataset, indicating the stable performance 

of the model on diverse datasets. On the IMDB dataset, 

the average error rate of the model is 11.62%. 

Furthermore, the difference between folds is not 

significant, indicating that the model has an excellent 

capacity for processing high-dimensional sparse text data 

and exhibits high accuracy. Overall, the sDAM-N model 

is stable when facing different types of data. 

The importance of FIM and hierarchical learning 

structure in the sDAM-N model can be seen through 

ablation research. Specifically, the removal of the 

hierarchical learning structure results in an increase in the 

error rate of the sDAM-N model from 16.52% to 20.40%. 

This indicates that the hierarchical learning structure 

facilitates the extraction of data features in a layered 

manner, whereby each layer of the network can capture 

the diverse hierarchical features of the data more  

 

Table 7: Progressive testing of dataset size. 

Dataset size 

(number of 

samples) 

sDAM-N  LDA AVITM  

Computing 

time (s) 

Memory 

usage (MB) 

Computing 

time (s) 

Memory 

usage (MB) 

Computing 

time (s) 

Memory 

usage (MB) 

1000 0.02 50 0.03 60 0.05 70 

5000 0.05 100 0.1 150 0.15 200 

10000 0.12 200 0.25 300 0.3 400 
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20000 0.25 400 0.6 600 0.6 800 

50000 0.6 800 1.5 1200 1.2 1600 

 

comprehensively, thus ensuring optimal model 

performance. After removing the FIM, the error rate of 

the model increases from 16.52% to 18.8%. The FIM can 

effectively adjust the update speed of parameters at 

different levels by providing adaptive learning. This 

module helps to improve the convergence performance 

and robustness of the model. The lack of this module can 

lead to problems such as insufficient convergence speed 

of the model. After removing both the FIM and the 

hierarchical learning structure, the error rate of the 

sDAM-N model increases to 25%. Therefore, the 

improved structure is necessary for the sDAM-N model, 

as it helps improve the model's parameter optimization 

and feature capture capabilities. 

Scalability analysis shows that the sDAM-N model 

performs well in handling large-scale data and can 

effectively cope with the increasing amount of data. From 

1,000 samples to 50,000 samples, the computation time 

increases from 0.020s to 0.600s, with a relatively 

moderate growth rate. Compared with LDA and AVITM 

models, it has the advantage of computation time, 

indicating that it still performs stably when processing 

large-scale data. In terms of memory usage, from 1,000 

samples to 50,000 samples, the computation time of the 

sDAM-N model has increased from 50MB to 800, which 

still has significant advantages compared to the LDA and 

AVITM models. This indicates that the sDAM-N model 

is still efficient in resource utilization in large-scale data 

environments. Overall, the sDAM-N model still has good 

efficiency and stability when facing large-scale datasets, 

and has promising application prospects. 

4 Discussion 

The designed sDAM model has shown significant 

superiority on multiple datasets. The error rates of sDAM 

on the 20News, RCV1, and IMDB datasets are 16.520%, 

14.230%, and 11.670%, respectively, significantly lower 

than LDA's 24.850%, 25.120%, and 22.370%, and 

DocNADE's 24.010%, 21.500%, and 18.320%, 

respectively. This is attributed to the feature learning 

mechanism and multi-level structure adopted by the 

sDAM model, which can effectively extract potential 

relationships from text data. In terms of computation time, 

sDAM has test times of 0.020 seconds, 0.017 seconds, 

and 0.015 seconds on the 20News, RCV1, and IMDB 

datasets, respectively. In comparison, LDA has test times 

of 0.730 seconds, 0.310 seconds, and 0.560 seconds, 

while DLDA has longer test times. This is because 

sDAM effectively utilizes the FIM to dynamically adjust 

the learning rate and accelerate the model's adaptation 

speed during training. In terms of perplexity, the value of 

sDAM is 590.23, significantly lower than LDA's 887.32 

and DocNADE's 606.83, indicating the information 

extraction and topic construction capabilities of the 

sDAM model. 

Overall, the testing period, perplexity, and error rate 

of the sDAM model have advantages, indicating that the 

overall efficiency of the sDAM model is higher. This is 

based on the research using PGBN and FIM. The PGBN 

serves as the decoder for the model, which can help the 

model capture the hierarchical implicit features of text 

data. It utilizes recursive modeling to perform 

high-dimensional sparse processing on the data, 

enhancing modeling accuracy, and ensuring the 

normalization of topic weights. This reduces interference 

between topic features, simplifies the inference process, 

and improves inference efficiency. The FIM can 

adaptively adjust the learning rate in gradient calculation, 

allowing different levels and topic parameters to be 

updated at the optimal step size. By dynamically 

adjusting the learning step size of each layer, the 

convergence speed and accuracy of the model can be 

improved. 

In practical applications, sDAM models may 

encounter difficulties when confronted with data sparsity 

issues, particularly when dealing with highly specialized 

textual data such as that found in the medical or legal 

domains. Due to the scarcity of data, the model may not 

be able to capture sufficient information, which can have 

a certain impact on the model's generalization ability. 

Nevertheless, the sDAM model retains considerable 

potential for application across a range of fields, 

including sentiment analysis and spam detection. In 

particular, it can be utilized in the context of social 

customer feedback, media analysis, and market research. 

The sDAM model can effectively extract and analyze 

potential themes in data information, helping businesses 

gain insights into consumer needs. 

5 Conclusion 

In light of the challenges posed by the exponential growth 

in text data, this paper presented a novel approach to data 

processing, namely the design of an sDAM that integrates 

a DL algorithm with a PSM model. This integration 

enabled the extraction of features from text data and label 

information. The results showed that the research model 

exhibited the lowest Perplexity under the 128-64-32 

network structure, with values of 590.23, 953.12, and 

982.67, which were significantly lower than other models. 

The testing times were 0.21s, 0.72s, and 0.85s, all of 

which were the lowest. The results of the application to 

the handwritten dataset indicated that the research model 
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produced a good interpolation effect on the dataset's 

hidden space, manifesting as smooth graphical changes. 

This suggested that the model's inference effect was 

relatively smooth and interpretable. From a horizontal 

comparison, the testing error rates of the research model 

on the 20News, RCV1, and IMDB datasets were 16.52%, 

14.23%, and 11.67%, respectively, which were the lowest 

compared to other models. The testing time of the model 

on different datasets was the shortest, at 0.020 s, 0.017 s, 

and 0.015 s. Overall, the research model had the highest 

computational efficiency and accuracy, and was more 

stable and performed better than other models under 

changes in the dataset. Although the research model has 

effectively addressed the challenges of large-scale data 

processing, its limitation lies in the lack of feasibility 

validation when dealing with specific data categories. 

Therefore, further analysis of special data is the future 

direction. 
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