
Informatica 38 (2014) 125–133 125

Optimizing the Classification Cost using SVMs with a Double Hinge Loss
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The objective of this study is to minimize the classification cost using Support Vector Machines (SVMs)
Classifier with a double hinge loss. Such binary classifiers have the option to reject observations when
the cost of rejection is lower than that of misclassification. To train this classifier, the standard SVM
optimization problem was modified by minimizing a double hinge loss function considered as a surrogate
convex loss function. The impact of such classifier is illustrated on several discussed results obtained with
artificial data and medical data.

Povzetek: Predstavljena je optimizacija cene klasificiranja z metodo strojnega učenja SVM.

1 Introduction

Support Vector Machines (SVMs) are becoming one of the
most popular pattern recognition schemes due to their re-
markable generalization performance. This is motivated by
the application of Structural Risk Minimization principle
[1, 2]. Because of their good performance in terms of accu-
racy and generalization, SVMs are frequently used in very
complex two-class classification problems.

Even though the generalization performance of support
vector classifiers, misclassifications cannot be completely
eliminated and, thus, can produce severe penalties. The
expected error of a prediction is a very relevant point in
many sensitive applications, such as medical diagnosis or
industrial applications.

To improve the reliability of classifiers, new machine
learning algorithms have been introduced such us con-
formal prediction determining levels of confidence [3].
Hence, classifications with less confidence than a given
threshold may be rejected. This also motivates the intro-
duction of a reject option in classifiers, by allowing for a
third decision r (Reject) when the conditional probability
that an example belongs to each class is close to 1/2 .

Rejecting ambiguous examples has been investigated
since the publications of [4, 5] on the error reject trade-
off. A notable attempts to integrate a reject rule in SVMs
has been presented in [6]. The authors developed an SVM
whose reject region is determined during the training phase.
They derived a novel formulation of the SVM training
problem and developed a specific algorithm to solve it.
Some works have proposed rejection techniques using two
thresholds on the output of the SVM classifier and produce
a reject region delimited by two parallel hyperplane in the

feature space [7, 8]. Other works used mixture of classifiers
[9]. This approach is computationally highly expensive.

Recently, some remarkable works have proposed SVM
classifier with a reject option using a double hinge loss
function. This option was proposed in [10, 11, 12, 13].
The formulation in [10, 11, 12] is restricted to symmetric
losses. In [13], the authors have proposed a cost-sensitive
reject rule for SVM using an asymmetric double hinge loss.
This formulation is based on probabilistic interpretation of
SVM published in [14, 15] providing accurate estimation
of posterior probabilities. It also generalizes those sug-
gested in [11, 12] to arbitrary asymmetric misclassification
and rejection costs. In all these model classifiers, the reject
region is defined during the training phase.

In this paper, we develop the training criterion for a gen-
eralized SVM with a double hinge loss and then compare
the performance of symmetric and asymmetric classifica-
tion. The optimal classification cost and the error-reject
tradeoff have been highlighted through several illustrated
tests.

Note that the minimal classification cost must corre-
spond to a good error-reject tradeoff. It is desirable that
most of the rejected patterns would have been erroneously
classified by the ideal Bayes classifier.

The remainder of this paper is structured as follows. Af-
ter problem setting in section 2, section 3 recalls Bayes rule
with rejection. In section 4, SVM classifier with rejection
is developed using the generalized double hinge loss func-
tion. After this, the training criterion is detailed. In Section
5, the implementation is tested empirically. Il shows re-
sults comparing the considered classifiers. Finally, Section
6 briefly concludes the paper.
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2 Problem setting

Let us consider a binary classification problem in which
each example belongs to one of two categories. A discrim-
inant f : X 7→ R classifies an observation x ∈ X into one
of two classes, labeled +1 or -1 . Viewing f(x) as a proxy
value of the conditional probability P = P(Y = 1|X =
x), one is less confident for small values of | f(x) | corre-
sponding to P around 1/2. The strategy used in this work
is to report sgn(f(xi)) = +1 or −1 if |f(xi)| exceeds a
threshold δi and no decision otherwise.

In binary problems, the two types of errors are:

- FP: False Positive, where examples labeled −1 are cate-
gorized in the positive class, incurring a loss Cn

- FN: False Negative, where examples labeled +1 are cat-
egorized in the negative class, incurring a loss Cp.

We also assume that the decision r incurs a loss, Rn
and Rp for rejected examples labeled −1 and +1, respec-
tively. This formulation corresponds to [13] . For symmet-
ric classification [10, 11, 12], we have Cp = Cn = 1 and
Rp = Rn = r with 0 ≤ r ≤ 1/2. The expected losses per-
taining to each possible decision d are displayed in Figure
1, assuming that all costs are strictly positive. The lower
riskR is:

R(d) = min{CpP (x), Cn(1− P (x)),
RpP (x) +Rn(1− P (x))} (1)

where P (x) denotes P (Y = 1|X = x). According to
(1), one can see in Figure 1 that rejecting a pattern is a
viable option if and only if the point G is located above the
segment AB. In other terms, if and only if Rp

Cp
+ Rn

Cn
< 1

corresponding to 0 ≤ r ≤ 1/2 in [10, 11, 12].
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Figure 1: Expected losses against posterior probabilities

3 Bayes rule with rejection
From Figure 1, we deduce that Bayes classifier d∗ defined
as the minimizer of the riskR(d) can be expressed simply,
using two thresholds:

P+ =
Cn −Rn

Cn −Rn +Rp
, (2)

P− =
Rn

Cp −Rp +Rn
, (3)

corresponding to symmetric thresholds P− = r and P+ =
1− r in [10, 11, 12].

As Bayes decision rule is defined by conditional proba-
bilities, many classifiers first estimate the conditional prob-
ability P̂ (Y = 1|X = x), and then plug this estimate in
Eq.4 to build the decision rule.

f∗(x) =

 +1 if P̂ (Y = 1|X = x) > P+ ,

−1 if P̂ (Y = 1|X = x) < P− ,
0 otherwise .

(4)

where f∗(x) corresponds to the decision d∗, minimizer of
the risk (1).

4 SVM classifier with Reject option
(SVMR)

To minimize the empirical counterpart of the risk (1) com-
putationally not feasible, one could replace it by surro-
gate loss functions. The most popular are the hinge loss
motivated by [1] leading to sparse solutions [13, 12] and
the logistic regression model offering ability to estimate
the posterior probability P̂ (Y = 1|X = x) = 1/(1 +
exp(−yf(x))) and then a good choice of the thresholds δi.
In this study, P̂ (Y = 1|X = x) have to be accurate only in
the neighborhood of P+ and P− (see equation 4).

4.1 Double hinge loss
The generalized double hinge loss introduced in [13] is a
convex and piecewise linear loss function that is tangent to
the negative log-likelihood loss at δ+ = log(P+/(1−P+))
and at δ− = log(P−/(1 − P−)) (see Figure 2). This pro-
posal retains the advantages of both loss functions men-
tioned above: the sparsity of the hinge loss and the abil-
ity of the neg-log-likelihood loss to estimate the posterior
probability P+ and P−, respectively at the tangency points
δ+ and δ−. So the decision rule can be expressed as:

f(x) =

 +1 if f(x) > δ+ ,
−1 if f(x) < δ− ,
0 otherwise .

(5)

These thresholds are symmetric in [10, 11, 12], δ+ =
−δ− = δo and the recommended value of δo belongs to
the interval [r, 1 − r]. To express the generalized double



Optimizing the Classification Cost using. . . Informatica 38 (2014) 125–133 127

  0

1.1

2.3

δ
+δ

− 0

W
(+

1,
  f

(x
))

f(x)

Figure 2: Double hinge loss function for positive exam-
ples, with P− = 0.35 and P+ = 0.6 (solid: double hinge,
dashed: likelihood)

hinge function [13], we consider firstly the standard logistic
regression procedure where ϕ is the negative log-likelihood
loss:

ϕ(y, f(x)) = log(1 + exp(−yf(x))) . (6)

that is ϕ(+1, f(x)) = log(1 + exp(−f(x))) for positive
examples and ϕ(−1, f(x)) = log(1 + exp(f(x))) for neg-
ative examples. Let us work on Figure 3 corresponding to
positive examples (yi = +1).
W = a1f(x) + g1 is the first slop (right to left) of

W (+1, f(x)) where a1 = d[ϕ(+1,f(x))]
d[f(x)] |δ+ = −(1− P+).
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Figure 3: Double hinge loss function for positive examples,
with P− = 0.4 and P+ = 0.7 (solid: double hinge, red
dashed: likelihood)

At the tangency point δ+, we have ϕ(+1, f(x)) =
W (+1, f(x)), hence g1 = −p+log(P+)−(1−P+)log(1−
P+) = H(P+).

The second slop of W (+1, f(x)) is W = a2f(x) + g2
where a2 = d[ϕ(+1,f(x))]

d[f(x)] |δ− = −(1 − P−) and g2 =

−P−log(P−)− (1− P−)log(1− P−) = H(P−).
For a1f(x) + g1 = 0, we have f(x) = τ+ = H(P+)

1−P+
and

for a1f(x) + g1 = a2f(x) + g2, we have f(x) = ρ+ =
H(P−)−H(P+)

P+−P− . The double hinge function for positive ex-
amples is then expressed as:
W (+1, f(x)) = −(1− P−)f(x) +H(P−) if f(x) < ρ+

−(1− P+)f(x) +H(P+) if ρ+ ≤ f(x) < τ+
0 otherwise,

(7)
The same strategy of calculation leads to the double hinge
function for negative examples: W (−1, f(x)) = P+f(x) +H(P+) if f(x) > ρ− ,

P−f(x) +H(P−) if τ− ≥ f(x) > ρ−
0 otherwise.

(8)

where τ− = −H(P−)
P−

and ρ− = ρ+ = ρ. The double hinge
loss ψr introduced in [10, 11, 12] is a scaled version of the
loss W . It is given by ψr(yf(x)) = 1− 1−r

r yf(x) if yf(x) < 0
1− yf(x) if 0 ≤ yf(x) < 1

0 otherwise
(9)

hence,

ψr(yf(x)) =
1

H(r)
W

(
y,
H(r)

r
f(x)

)
.

where H(r) = H(P−) and H(P−) = H(P+) in the sym-
metric case. Note that, although minimizing ψr(yf(x)) or
W will lead to equivalent solutions for f . With minimizing
ψr(yf(x)), the decision rule recommended by [11] classi-
fies an example when |f(x)| > δo = 1

2 , while in [13], an
example is classified when |f(x)| > r

H(r) log
r

1−r . The last
decision rule rejects more examples when the loss incurred
by rejection is small and fewer examples otherwise. The
two rules are identical for r = 0.24.

4.2 Training Criterion
As in standard SVMs, we consider the regularized empir-
ical risk on the training sample. Introducing the double
hinge loss (7-8) results in an optimization problem that is
similar to the standard SVMs problem.

4.2.1 Primal problem

LetCo a constant to be tuned by cross-validation, we define
D = Co(P+ − P−), Bi = Co(1− P+) for positive exam-
ples and Bi = CoP− for negative examples. The primal
optimization problem reads

minf,b
1
2‖f‖

2
H+∑n

i=1Bi |τi − yi(f(xi) + b)|+ +
D
∑n
i=1 |ρ− yi(f(xi) + b)|+

(10)
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where | · |+ = max(·, 0). The (squared) norm of f is a
regularization functional in a suitable Hilbert space. The
primal problem (10) is best seen with introduction of slack
variables ξ and η shown in Figure(3).

minf,b,ξ,η
1

2
‖f‖2H +

n∑
i=1

Biξi +D

n∑
i=1

ηi ,

Sc yi(f(xi) + b) ≥ τi − ξi, i = 1, . . . , n
yi(f(xi) + b) ≥ ρ− ηi, i = 1, . . . , n
ξi ≥ 0 , ηi ≥ 0, i = 1, . . . , n.

(11)

4.2.2 Dual problem

The Lagrangian of (11) is given by:
L(f, b, ξ, η, α, β, υ, ω) = 1

2‖f‖
2 +

∑n
i=1Biξi

+D
∑n
i=1 ηi −

∑n
i=1 αi [yi(f(xi) + b)− τi + ξi]

−
∑n
i=1 βi [yi(f(xi) + b)− ρ+ ηi]

−
∑n
i=1 υiξi −

∑n
i=1 ωiηi

(12)

with:
υi ≥ 0, ωi ≥ 0, αi ≥ 0, βi ≥ 0, and i = 1, . . . , n.

The Kuhn-Tucker conditions imply:

∂L

∂b
= 0 ⇒

n∑
i=1

(αi + βi)yi = 0

∂L

∂f
= 0 ⇒

n∑
i=1

f(·) = (αi + βi)yik(·, xi)

∂L

∂ξi
= 0 ⇒ Bi − υi − αi = 0⇒ 0 ≤ αi ≤ Bi

∂L

∂ηi
= 0 ⇒ D − ωi − βi = 0⇒ 0 ≤ βi ≤ D

(13)

for i = 1, . . . , n. Thanks to these conditions, we can
eliminate f , ξ and η from the Lagrangian.


L(α, β) = 1

2 (α+ β)TG(α+ β)− τTα− ρTβ
Sc yT (α+ β) = 0

0 ≤ αi ≤ Bi, i = 1, . . . , n
0 ≤ βi ≤ D, i = 1, . . . , n

(14)
where τ = (τ1, . . . , τn)T et ρ = (ρ1, . . . , ρn)T are the
threshold vectors of Rn, G is the n × n influence matrix
with general term Gij = yiyjk(xi, xj) and k(., .), is the
reproducing kernel of the Hilbert spaceH. Let γ = α+ β,
the problem (14) can be rephrased as:


maxα,γ − 1

2γ
TGγ + (τ − ρ)Tα+ ρT γ ,

Sc yT γ = 0 ,
0 ≤ αi ≤ Bi, i = 1, . . . , n ,
0 ≤ γi − αi ≤ D, i = 1, . . . , n

(15)

The problem (15) is a quadratic problem under box con-
straints. Compared to the standard SVM dual problem, one
has an additional vector to optimize, but we will show that
α is easily recovered from γ.

4.2.3 Solving the problem

To solve the dual (15), the strategy used in the active set
method [17] is considered. Firstly, the training set is par-
titioned in support and non support vectors. the training
criterion is optimized considering this partition. Then, this
optimization results in an updated partition of examples in
support and non-support vectors. These two steps are iter-
ated until predefined level of accuracy is reached. Table (1)
shows how the training set is partitioned into five subsets
defined by the constraints in (15).

The outcomes of the membership of example i to one
of the subsets described above has the following conse-
quences on the dual variables (α, γ):


i ∈ I0 ⇒ αi = 0 γi = 0 ;
i ∈ Iτ ⇒ 0 ≤ αi ≤ Bi γi = αi ;
i ∈ IB ⇒ αi = Bi γi = Bi ;
i ∈ Iρ ⇒ αi = Bi Bi < γi < Bi +D;
i ∈ ID ⇒ αi = Bi γi = Bi +D .

(16)

Hence, provided that the partitioning is known, γi has to be
computed only for i ∈ Iτ ∪ Iρ. Furthermore, αi is either
constant or equal to γi.

We saw that, assuming that the examples are correctly
partitioned, problem 15 can be solved by considering a con-
siderably smaller problem, namely the problem of com-
puting γi for i ∈ Iτ ∪ Iρ. Let Ic = {IB , ID} and
Ih = {Iτ , Iρ}. The problem (15) becomes:

L(γ) =
1

2
γTGγ − (S)T γ

Sc : yT γ = 0
0 ≤ γi ≤ C, i = 1, . . . , n and Ci = Bi +D

(17)

The relation between the parameters of the preceding for-
mulation and the initial parameters of the problem (11) can
be obtained after formulating the Lagrangian of the dual
(17)

{
L(γ, λ, µ, ν) =
1
2γ

TGγ − ST γ + λγT y − νT γ + µT (γ − CIn)
(18)

where the Lagrange multipliers λ, µ, ν must be positive or
null and I

n, a vector of 1. This Lagrangian can be com-
pared with the Lagrangian of the primal (11) reformulated
as follows:

L = 1
2‖f‖

2 −
∑n
i=1 γiyif(xi)−

∑n
i=1 γiyib

+
∑n
i=1 αi(τ − ρ) +

∑n
i=1 γiρ

+
∑n
i=1 ξi(Bi − αi − υi)

+
∑n
i=1 ηi(D − βi − ωi)

(19)

by replacing the variable f by γ, the problem (19) becomes: L(γ, b, ξ, η) =
1
2γ

TGγ + bγT y − ST γ
+ξT (α+ υ −B) + ηT (γ + ω −DI

n)
(20)
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I0 saturated part of the loss I0 = {i|yi(f(xi) + b) > τ}
Iτ first hinge of the loss Iτ = {i|yi(f(xi) + b) = τ}
IB first slop of the loss IB = {i|ρ < yi(f(xi) + b) < τ}
Iρ second hinge of the loss Iρ = {i|yi(f(xi) + b) = ρ}
ID second sop of the loss ID = {i|yi(f(xi) + b) < ρ}

Table 1: Partitioning the training set

To reveal the relations between the primal and dual vari-
ables, we will check the KKT conditions stipulating the
cancellation of the gradient of the Lagrangian (20) accord-
ing to the primal variable γ in the different subsets.

Table 2 describes the properties of each set regarding the
original variables and the Lagrange multipliers.

4.2.4 Algorithm

Let us assume the repartition in each set (I0, Ih and Ic) to
be known. Only the values of γ belonging to Ih remain
unknown, they will then be given by the solution of the
following optimization problem whose dimension is lower
than initial dimension. After slightly abusing notations, we
define: γh = γ(Ih), yh = y(Ih), Ghh = G(Ih, Ih), cC =∑

(i∈IB)Biyi +
∑

(i∈ID) Ciyi and
Sh =
(τ(Iτ )T ρ(Iρ)

T )T −G(Ih, ID)(B(IB)TDI(ID)T )T .
The problem (17) becomes:{

L(γh) =
1

2
γThGhhγh − STh γh

Sc yTh γh + cC = 0
, (21)

The Kuhn-Tucker conditions gives us the system to be
solved to find the values of γ that are still unknown.{

Ghhγh = Sh − yTh λ
yTh γh = −cC

, (22)

After resolving this system, a component of γ violating the
primal or dual constraints must be moved to the suitable set.
The process is iterated until all box constraints are satisfied.

During the learning process, the time consuming step
is the resolution of the linear system (22). For this, we
used the incremental strategy outlined in [18] whose com-
plexity is close to O(n2) The presented SVMR compu-
tational complexity is comparable to that of the standard
SVM [18]. The only computational overhead is that the
presented SVMR uses 5 categories of examples while SVM
uses three.

5 Results and discussions
Data:
To evaluate the performance of the SVMR classifiers, three
types of data have been used:

– synthetic data generated with a classical dataset with
two gaussianly distributed classes with similar vari-
ances but different means chosen to create many am-
biguous examples.

– as medical decision making is an application domain
for which rejection is of primary importance, data re-
lated to medical problems will be considered. Electro-
CardioGram (ECG) records from (www.physionet.org
/physiobank/database/mitdb) are used. Each tape is
accompanied by an annotation file. in which ECG
beats have been labeled by expert cardiologists. Since
this study is to evaluate the performance of a bi-
nary classifier with a reject option, we followed the
AAMI recommended practice [19] to form two heart-
beat classes: (i) the positive class representing the
ventricular ectopic beats (V); (ii) the negative class
representing the normal beats (N), including Normal
beats, Left Bundle Branch Block beats (LBBB) and
Right Bundle Branch Block beats (RBBB). In agree-
ment with [19], records containing paced beats (102,
104, 107, 217) and 23 records with no V beat or less
than 40 V beat were excluded leaving 21 records of in-
terest. We have stored each beat by a 7-feature vector.
The feature extraction is described in [20]

– For experimenting with large data, the forest
CoverType database from UCI repository was also
used. (http://kdd.ics.uci.edu/databases/covertype/).
We consider the subproblem of discriminating the
positive class Cottonwood (2747 examples) against
the negative class Douglas-fir (17367 examples).

Tests:
The first series of experiments are done with the ECG data
to explain the effectiveness of the classification with rejec-
tion. We selected record 214 and 221 containing together
3546 of N beats and 652 of V beats. As no cost matrix is
provided with this data, we assume that Rp = Rn = r as
in [10, 11, 12] and P+ = 1 − Cp

Cn
P− = 1 − θP− where

θ = 1 in [10, 11, 12] and θ ≥ 1 in [13]. Often, in prac-
tice, especially in medical applications, FN errors are more
costly than FP errors (θ > 1). Figures 4 and 5 show re-
spectively an example of the reject region produced by the
SVMR classifier for θ = 1 and for θ > 1. In Figure 5,
the SVMR classifier encourages the rejection of more FN
examples because they are more costly than FP examples.

All previous classifiers comparatives studies have been
based on the error rates obtained, but error rate is not the
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Set Initial constraints Primal constraints Dual constraints
I0 yi[f(xi) + b] > τi ξi = ηi = 0 µ = 0, ν = Gγ + by − τ 6= 0
Iτ yi[f(xi) + b] = τi ξi = ηi = 0 µ = 0, ν = Gγ + by − τ = 0
IB ρ < yi[f(xi) + b] < τi ξi 6= 0, ηi = 0 ν = 0, µ = −Gγ − by + τ = ξ
Iρ yi[f(xi) + b] = ρ ξi 6= 0, ηi = 0 ν = 0, µ = Gγ + by − ρ = 0
ID yi[f(xi) + b] < ρ ξi 6= 0, ηi 6= 0 ν = 0, µ = −Gγ − by + ρ = η

Table 2: Situation of the constraints for the five types of examples
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Figure 4: Scatter plot showing the reject region induced
by the reject thresholds in correspondence to the costs of
misclassifying and rejecting samples. Positive cases are
represented by black asts and negative cases by red cir-
cles. The lines +0.5 and −0.5 correspond respectively to
δo and −δo and the line 0 corresponds to f(x) = 0 or
P (Y = 1 | X = x) = 0.5.

only measurement that can be used to judge a classifier’s
performance. In many applications, the classification cost
is a parameter witch will be considered since Bayes classi-
fiers with or without rejection aim to minimize the classifi-
cation cost.

For illustration, we compare the reject rates obtained
with the SVMR classifiers proposed in [10, 11, 12] where
the reject threshold δo ∈ [r, 1− r] and the SVMR classi-
fier proposed in [13] where the reject thresholds are δ+ =
log(P+/(1 − P+)) and δ− = log(P−/(1 − P−)) respec-
tively for positive and negative examples. For this purpose,
we consider the symmetric classification, P+ = 1 − P−.
Figure 6 and 7 obtained with synthetic data and ECG data
(record 214 and 221) show that in all cases, the decision
rule [13] rejects fewer examples when the loss incurred by
rejection is high and more examples otherwise. The rule in
[10, 11, 12] considers the reject threshold δo = 1 − r as
the largest value of δo and then rejects more examples for
all reject costs. For δo = r, this rule rejects less frequently
especially when r close to zero, it becomes almost with no
rejection. For the middle value δo = 0.5 seen as a compro-
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Figure 5: Scatter plot showing the reject region induced by
the reject thresholds in correspondence to the costs of mis-
classifying and rejecting samples. Positive cases are rep-
resented by black asts and negative cases by red circles.
The lines +0.32277 and −0.8473 correspond respectively
to δ+ and δ− and the line 0 corresponds to f(x) = 0 or
P (Y = 1 | X = x) = 0.5.

mise among r and 1 − r, the rule [10, 11, 12] and the one
proposed in [13] are identical at r = 0.24.

As pointed out in [5], the advantage of classifying with
rejection can be judged by the error-reject tradeoff. Since
the error rate E and the reject rate R are monotonic func-
tions of r. We compute the tradeoff E versus R from
E(r) and R(r) when r varies between 0.5 and 0.12 and
the threshold δo = 0.5 recommended in [11, 12]. Figure 8
shows the error reject tradeoff for the rule proposed in [13]
(black curves) and for the rule proposed in [10, 11, 12] (red
curves). The obtained results differ due to the size of the
rejection region induced by the rules. From these results,
we can conclude another interesting parameter that is the
error-reject ratio defined in [5] that is 4E4R (dashed lines).
For high reject costs (0.4 ≤ r ≤ 0.5), the rule [13] indi-
cates an error-reject ratio of -0.58, -0.84 and -0.42 respec-
tively for synthetic data, ECG data and forest data. This
means that 58%, 84% and 42% respectively of the rejected
patterns would have been erroneously classified. Using the
rule proposed in [10, 11, 12] with δo = 0.5, the error-reject
ratios obtained are -0.15 for synthetic data, -0.23 for ECG
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Figure 6: Comparison of the reject rate versus the reject cost r obtained with the SVMR in [13] (black curves) and with
the SVMR introduced in [10, 11, 12] (red curves). These results are obtained with synthetic data.
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Figure 7: Comparison of the reject rate versus the reject cost r obtained with the SVMR in [13] (black curves) and with
the SVMR introduced in [10, 11, 12] (red curves). These results are obtained with medical data.

data and -0.22 for forest data. This means that only 15%,
23% and 22% respectively of the rejected patterns would
have been erroneously classified. Hence, it is clear that the
rule [13] should lead to a better classification cost.

The last series of tests was carried out using all the se-
lected ECG records. The mean results obtained are re-
ported in Figures 9 and 10. The error against the reject
decreases until a quasi constant rate (Figure 9) . Another
interesting plot in the same figure represents the error reject
ratio. The inflection point in this plot is interesting since it
indicates the most important variation of the error against
the variation of the reject rate. Two statistical parameters
are also used to highlight the performance of the reject rule
[13]. The sensitivity and positive predictivity are computed
by

Se =
TP

TP + FN
; Pp =

TP

TP + FP

where True Positive (TP) are the samples labeled +1 cate-
gorized in the positive class. Figure 10 (top) indicates the
variation of the classification cost given by

Cc = [CpFN + CnFP + rRrej ]/Ntot (23)

whereRrej is the number of rejected patterns andNtot, the
total number of examples. The same Figure shows that the
optimal classification cost Cc corresponds to a good error-
reject tradeoff (see Figure 9). Figure 10 (bottom) shows
that the positive predictivity is close to 99.8%. In the same
figure, it is shown that we obtained more than 98, 2% of
sensitivity with no rejection and more than 99% of sensi-
tivity for the minimal classification cost with rejection con-
sidering Rp = Rn = r and Cn = 1 and θ = 1.2. In the
same figure, it is clearly shown that the optimal classifica-
tion cost is not obtained for r=0.5 (simple Bays rule) but for
a rejection rate equal to 1.8%. In any application, one must
choose the error rate and the rejection rate corresponding
to the minimal classification cost. It is the goal of using a
cost sensitive classifier.

For a better appreciation of such reject schemes, it
should be desirable to perform tests on data accompanied
by real cost matrix.

Even though the considered classifier based on sparse
probabilistic interpretation of SVM, providing an accu-
rate estimation of posterior probabilities, it should be in-
teresting to assign confidence values to each classification.
This can be considered by introducing conformal predic-
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Figure 8: Error versus reject tradeoff obtained using synthetic data (a), ECG data (b) and forest data (c); with [13] (black
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Figure 9: Top: Error rate vs. Reject rate. Bottom: Variation
of the error rate against the variation of the reject rate

tion whose relationship with rejection is clearly relevant,
whether the rejection related to the ambiguity of examples
or that related to their atypical characters.

6 Conclusion
This paper presents a cost-sensitive reject rules for SVMs
using a double hinge loss. The solution inspired by the
probabilistic interpretation of SVM, owns the advantage of
the hinge loss function which leads to a consistent solution
and the advantage of negative log-likelihood loss which al-
lows a good estimation of posteriori probabilities in the
vicinity of the decision thresholds. Note that these dynamic
reject thresholds follow the cost of rejecting a sample and
the cost of misclassifying a sample. This viewpoint aims to

  0   5 30 60

0.02

0.05

0.08

C
os

t  
   

   
   

 
(A

rb
it

ra
ry

 u
ni

t)

1.8 5 30 60
98

99

100

 

 

Se
 , 

 P
p 

(%
)

Reject rate (%)

Figure 10: Top: Classification cost against Reject Rate.
Bottom: Sensitivity (black curve) and positive predictivity
(red curve) against reject rate.

minimize the classification cost.
A possible improvement of this study is to estimate the

level of confidence of the classifier by introducing the con-
formal prediction. This will be a crucial advantage, espe-
cially for medical applications, the risk of clinical errors
may be controlled by an acceptable level of confidence for
a given decision.
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