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In the Internet era, data mining is an important means to seize users. However, data exist on different 

platforms, which are incompatible with each other, and user privacy is easily leaked when mining data. 

To address this issue, a distributed data mining method based on differential privacy is proposed. The 

method aggregates frequent itemset data from the top m items of branch nodes through a central node. 

Noise is added using the Laplace mechanism. The decision tree algorithm is used as a data classification 

method to set privacy budgets, optimize count queries, and perform importance attribute filtering. The 

experimental results showed that the maximum data mining accuracy of the improved algorithm was 0.72, 

which was an average improvement of 0.1 compared with other algorithms. When facing more complex 

datasets, the decrease in accuracy was relatively small. The minimum relative error of the improved 

algorithm was 0.1, which was an average improvement of 0.115 over other algorithms. The minimum 

privacy leakage probability was 0.04%, with an average reduction of 0.08%. The improved algorithm had 

an average improvement of 0.28 in data classification accuracy and an average reduction of 0.06% in 

privacy leakage probability when classifying data. When the depth of most decision trees was 4, the 

maximum classification accuracy was 0.8. From this, the improved algorithm can significantly improve 

the accuracy of data mining and classification, significantly reduce the privacy budget required for data 

mining and classification, reduce the probability of privacy leakage, and greatly improve the security of 

user data. 

Povzetek: V prispevku opisana metoda temelji na diferencialni zasebnosti in odločitvenih drevesih za 

porazdeljeno rudarjenje podatkov. Dosega boljšo klasifikacijo, zmanjšuje verjetnost razkritja zasebnosti 

ter izboljšuje varnost in učinkovitost analize podatkov. 

 

1 Introduction 
Internet technology is increasingly penetrating into 

people's lives. Especially since the 21st century, relying 

on the popularity of smart phones, mobile Internet has 

become an integral part of daily life [1-2]. A large 

amount of data has been generated in the Internet, which 

contains countless explicit or implicit information. 

Previously unknown data have huge potential value [3]. 

Data mining is to find the required data from a large 

amount of data, search for the patterns contained in 

these data, and classify these data according to the 

pattern, obtaining the potential value existing in the data 

[4]. However, existing data mining often neglects the 

user privacy, leading to issues such as privacy breaches 

and online fraud, which seriously endanger the safety of 

users' lives and property. Amoozad Mahdiraji et al. 

proposed a hybrid data mining method that combined 

rule extraction and service operation benchmarks to 

extract differences and similarities among bank 

customers. This method used two-step K-means 

clustering quality analysis and average distance 

evaluation method to determine the number of clusters. 

The best-worst method and total area method were used 

for clustering ranking. The experimental results showed  

 

that this method could accurately identify frequent 

behaviors of customers [5]. Bhuyan et al. proposed a 

collaborative computing method for data mining based on 

optimization models to address privacy protection issues in 

data mining. This method adopted a fuzzy multi-objective 

optimization model to generate fuzzy constraints based on 

the optimization privacy requirements. The experimental 

results showed that this method could meet the personal 

privacy requirements of different users in the network and 

had high flexibility [6]. Dhinakaran and Prathap proposed 

a new fruit fly whale optimization algorithm that combined 

association rule algorithms to prevent user information 

from being stolen by attackers. This algorithm used an 

adaptive k-anonymity method to convert raw data into 

encrypted data. Then, it was combined with a bio-inspired 

algorithm to reduce the low performance when processing 

large datasets. The experimental results showed that the 

algorithm provided real-time protection for data privacy, 

with high robustness [7]. Gai et al. proposed a local 

differential privacy protection aggregation scheme based 

on random response to reduce the risk of privacy leakage 

during power grid data collection. This scheme introduced 

a random response function based on local differences to 

dynamically aggregate power grid data. The experimental 

results showed that this scheme could effectively protect 
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users' personal privacy, while having lower data 

transmission and computing costs [8]. 

Zhao et al. proposed a label differential privacy 

frequency prediction method for item set local 

differential privacy in order to shorten the balanced 

variance and bias of data mining. This method 

introduced Hadamard encoding into a set of values and 

encoded the items as fixed vectors, applying 

perturbations to the vectors. The frequency prediction 

based on padding sampling and the frequency 

prediction based on Hadamard transform were 

combined. The experimental results showed that this 

method could obtain accurate frequency item sets and 

their frequencies, and the calculation speed was greatly 

improved [9]. Singh and Gupta proposed a new K-

anonymity model based on differential privacy to 

improve privacy and security during data sharing. This 

model divided data into sensitive and non-sensitive 

categories. The differential privacy and machine 

learning method were used to perform various tasks and 

specified multi-party communication protocols. The 

experiment showed that the model outperformed other 

algorithms in accuracy, F1 score, and recall, with 

improvements of 16%, 12%, and 11%, respectively 

[10]. Lin et al. proposed a privacy protection learning 

framework based on graph neural networks to improve 

the privacy protection ability of network graph learning. 

This framework adopted edge local differential privacy 

and utilized the common characteristics of real-world 

graphs to calibrate the noise introduced from dispersed 

graphs. Experiments showed that this framework could 

effectively protect node feature privacy and edge privacy, 

improving the generalization ability of neural networks 

[11]. Wang et al. proposed a new local differential privacy 

mechanism to prevent servers from stealing users' private 

data. This mechanism adopted a three plane framework to 

protect cross silo data and used machine learning models 

for decentralized training of the data. Experiments showed 

that this mechanism could provide effective privacy data 

protection and expose user data statistics [12]. 

In summary, existing research methods have explored 

issues such as accuracy and user privacy protection in 

distributed scenarios from multiple perspectives, and have 

achieved certain results. However, existing methods have 

been unable to meet the increasing demand for data mining 

accuracy. Therefore, the study adopts differential privacy 

to optimize data mining and classification methods, 

innovatively dividing different platforms into multiple 

nodes for data mining. The decision tree method is used to 

classify data and optimize counting query results. The 

optimization method aims to improve the accuracy of data 

mining and classification, and reduce the probability of 

user privacy exposure. 

Based on relevant research at home and abroad, Table 

1 summarizes the themes, main index, methods, and 

shortcomings of relevant research. 

 
Table 1 Summary of relevant research information 

Author Research theme Main index Method Insufficient 

Amoozad Mahdiraji et 

al. [5] 

Customer Information 
Differential 

Extraction 

Accuracy and precision 
K-means and the best-most 

method 
Too long calculation time 

Bhuyan et al. [6] 
Data Privacy 

Protection 

Privacy exposure 

probability 

Collaborative computing and 
fuzzy multi-objective 

optimization 

Higher parameter 

requirements 

Dhinakaran et al. [7] 
User Information 

Protection 

Computational speed 
and information 

exposure probability 

k-anonymization method and 

bio-inspired algorithm 
Poor generalization ability 

Gai et al. [8] Privacy Protection 
Running cost and risk 

of data leakage 
Stochastic response functions 

and dynamic aggregation 
Multi-stage computation 

time is too long 

Zhao et al. [9] 
Reducing Bias in 

Data Mining 

Calculation speed and 

precision 

Local differential privacy and 

Adama transform 
Low overall robustness 

Singh et al. [10] 
Privacy Security for 

Data Sharing 
Accuracy and recall 

K-anonymization models 
based on differential privacy 

Faster model performance 

degradation when the scene 

is complex 

Lin et al. [11] 
Graph Learning 

Privacy Protection 
Risk of privacy leakage Edge local differential privacy Longer learning time 

This study 
Data mining and 

privacy protection 

Data mining accuracy 
and privacy breach 

probability 

Frequent item set data 
aggregation and decision tree 

algorithms 

/ 

In Table 1, the current research has a high ability 

to protect privacy data when facing attacks, but some 

methods have certain bottlenecks in terms of calculation 

speed and detection efficiency in dealing with new 

threats and more complex scenarios. Therefore, this 

study uses differential privacy to optimize data mining 

and classification methods, innovatively dividing 

different platforms into multiple nodes for data mining. 

The decision tree method is introduced to classify data 

and optimize counting query results. The method can 

effectively improve the accuracy of data mining and 

classification and reduce the probability of user privacy 

exposure. 

 

 

2 Methods and materials 
2.1 Distributed frequent item set mining 

method based on differential privacy 
Traditional privacy protection models such as data 

desensitization, anonymization, and homomorphic 

encryption mainly protect individual information by 

masking or blurring some data [13]. However, it is easy to 

change the original data structure, affecting the value of 
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extracted information. Meanwhile, its security can only 

rely on assumptions about the attacker's ability, which 

cannot effectively define the model's ability to protect 

privacy.  

Therefore, a Distributed Data Frequent Item set Mining-

Differential Privacy (DDFIM-DP) is proposed to ensure 

that inserting and deleting information in the dataset 

does not affect the data mining results. Noise 

interference is added to the dataset to protect user privacy 

while outputting correct results [14]. In distributed 

scenarios, the diversity of data sources is high, and there is 

a significant difference in the size of datasets from 

different sources. Therefore, the DDFIM-DP algorithm 

selects the largest dataset as the central node and the 

remaining datasets as branch nodes. The running process 

of DDFIM-DP algorithm is shown in Figure 1. 

Index 

mechanism

The first m frequent 

item sets

Support count

Add noise

Support count 

aggregation

Central node

Center node 

support count

Approximate fit
Are all frequent 

item sets sent?

Branch 

node

Yes

No

 

Figure 1: Data mining process of DDFIM-DP algorithm 

 

In Figure 1, the central node first determines the 

required top n frequent item sets for each node. Each 

branch node selects m frequent item sets based on the 

exponential mechanism, where m needs to be greater 

than n. The support count of m frequent item sets is 

calculated. After calculation, noise interference is add 

to the support count to protect data privacy. Then, the 

processed support count is sent to the central node. The 

central node sends support count requests for the first m 

frequent item sets to the branch nodes again. If there are 

still unsent ones, the branch nodes send the remaining 

support counts. The second time adds noise to the 

grouping to reduce the impact of noise on data mining. 

The central node performs calculations on the support 

count values of all nodes and returns a single value. For 

errors caused by noise interference in the calculated 

data, the support count values of the central node are 

used to fit the global support count and improve the data 

value. 

When calculating the frequent item sets of the 

entire scene, each branch node needs to provide the 

frequent item sets separately. However, if the support 

counts of all frequent item sets are calculated, it will 

significantly reduce the calculation speed and increase 

the computational cost [15]. At the same time, there 

may be a frequent item set that ranks in the top n items 

in the entire scene, but ranks less than n on branch 

nodes. Therefore, the top m frequent item sets sent by 

branch nodes need to have m greater than n to further 

improve the accuracy of data mining. When protecting 

data privacy, association rule mining algorithm is used 

to extract the set of frequent item sets C1 with support 

greater than the minimum support threshold in each node. 

Then, exponential mechanism is used to select the top m 

frequent item sets. Laplacian mechanism is used to add 

noise interference to reduce the privacy leakage. The 

exponential mechanism uses the support count in set C1 as 

the availability function. The output probability of a 

frequent item set in set C1 is shown in equation (1) [16]. 
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In equation (1), iP  represents the output probability 

of frequent item sets.   represents the allocated privacy 

budget. iq  represents the availability function. After 

calculating the support counts of each set, the Laplace 

mechanism is also used to add noise interference to them. 

The core of the Laplace mechanism is to improve data 

security and achieve privacy protection by adding noise 

obtained using Laplace distribution to the query results. 

The Laplace mechanism requires choosing the right 

privacy budget and sensitivity to make the data as usable 

as possible while protecting privacy. Adding noise will 

affect the size and order of the support count values, 

directly affecting the aggregation of count values at the 

central node. Therefore, it is necessary to use post-

processing method to reorder the count values. The 

quadratic programming calculation is shown in equation 

(2). 
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In equation (2), 
'

iSc  represents the support count 

after adding i -th noise. 
''

iSc  represents the i -th 

support count after post-processing. Although the post-

processing rearranges the order, it reduces the gap 

between the support counts and lowers the availability of 

the count value. Therefore, it is necessary to segment the 

item set. Each segment is individually post-processed. The 

noise count value with the smallest support change in each 

segment is used as the constraint condition to improve the 

difference between the support counts [17-18]. The 

frequent item set generation process for each branch node 

is shown in Figure 2. 

Branch node 

data set

Privacy budget

Example Set the 

minimum threshold

The Apriori algorithm is 

used to generate dataset C

Index mechanism

The first m item set

Add noise

Post-processing

Support count of m items 

before adding noise

 

Figure 2: Process of generating frequent item sets for branch nodes 

 

In Figure 2, all frequent item sets for each branch 

node are input, and the privacy budget values are set. 

The Apriori algorithm is used to generate frequent item 

set C1 for each node. The exponential mechanism is 

used to select the top m frequent item sets, the support 

count of item sets is calculated, and noise interference 

is added to the count result. The last is to perform post-

processing on the count. In order to avoid frequent item 

sets with the top n global terms ranking lower than m in 

branch nodes, resulting in item set omissions and reducing 

data mining accuracy, it is necessary to supplement the 

item set support count, that is, to mine candidate frequent 

item sets. The mining process is shown in Figure 3. 
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Figure 3: Mining of candidate frequent item sets 
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In Figure 3, the aggregated support counts of each 

branch node and the central node are arranged. The 

frequent item sets of the top m items are selected to form 

set C2. The central node sends set C2 to each branch 

node. The branch node is compared with the set C2. C2 

contains the support count of frequent item sets that it 

has sent before. When adding noise, in order to improve 

the accuracy of data mining, an exponential mechanism 

is used for grouping and adding noise. It divides 

adjacent item sets into groups with the same number of 

item sets in each group. The number of item sets in each 

group is shown in equation (3). 
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In equation (3), q  represents the availability 

function. S  represents the existing item sets of support 

count terms. t  represents the number of item sets in 

each group. iSc  represents the support count before 

adding noise. gavg  represents the average support 

count in group g . tG  represents the grouping scheme. 

  represents the privacy budget allocated. In the central 

node, due to the large amount of data, it is necessary to 

approximate the data distribution of the central node to 

conform to the global data distribution. This data 

distribution is used to optimize all support counts and 

improve data mining accuracy. The grouping effect of the 

central node is shown in equation (4). 
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In equation (4), Sz  represents the frequent item set 

of the top m items in the central node.   is the difference 

between the support count of existing item sets and the 

support count of the newly added item sets. ( )group   

represents the grouping scheme for item sets with a 

threshold of  . ( )var i  represents the variance of the 

frequent item set count value in group i . 

 

2.2    Data classification based on differential 

privacy and decision tree method 
After completing the data mining work on various 

platforms, it is necessary to classify the mined data 

information and determine the optimal classification 

method to ensure the usability of subsequent data query 

results. To address this issue, the research adopts the 

Distributed Decision Tree Algorithm-Differential privacy 

(DDTA-DP). The algorithm calculates and sends 

information from third-party servers where each node is 

located. Each branch node jointly constructs a decision tree 

for data classification while ensuring user privacy. The 

running process of the DDTA-DP algorithm is shown in 

Figure 4. 
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Figure 4: The running process of the DDTA-DP algorithm 

 

In Figure 4, the privacy budget allocated to each 

node in the decision tree is first set, and a maximum tree 

depth threshold is set. When the threshold is reached, 

the decision tree begins to construct leaf nodes. The 

result of the first count query is added with noise and 

optimized to support count values. Based on the 

optimized calculation values, the importance of 

attributes is determined, and the more important 

attributes are extracted. The query results of important 

attributes are optimized by adding noise and count 

values again. Whether the query results meet the criteria 

for stopping the decision tree leaf nodes is judged. If it 

satisfied, the decision tree construction stops. The 

global gain of the data is calculated to determine the 

optimal classification parameters. Finally, based on 

recursive thinking, the DDTA-DP algorithm is used to 

construct the decision tree. The decision tree 

construction process in the DDTA-DP algorithm is the 

process of counting and querying all data. There are two 

places where user privacy is easily leaked during the 

query process. Therefore, the privacy budget is divided 

into two parts, one for the first counting query and 

another for the important attribute query. 

When performing node count queries, the size of 

the query results for each data is different. The small 

result indicates that noise has a greater impact on it and 

requires more privacy budget. In the DDTA-DP 

algorithm, an adaptive privacy budget allocation 

method is proposed, where deeper nodes in the decision 

tree allocate more budget. The calculation is shown in 

equation (5) [19]. 
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In equation (5), K  represents the number of privacy 

budget allocations. The number of layers where the node 

is located is the same as the number of privacy shares it 

receives. maxde  represents the maximum decision tree 

depth. de  represents the number of layers where the node 

is located. In the de -layer, the privacy budget for the first 

count query score is shown in equation (6). 
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In equation (6), 1  represents the privacy budget 

allocated to all nodes during the first count query. In the 

de -layer nodes, the privacy budget count allocated to 

important attribute count queries is calculated, as shown in 

equation (7). 
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In equation (7), 2  represents the privacy budget of 

all node important attribute count queries. Adding noise to 

count queries can improve data security, but it can also 

reduce query accuracy. Therefore, it is necessary to 

perform noise correction on the query results. The 

optimized algorithm running process is shown in Figure 5. 

 

Figure 5: Noise optimization of count query results 
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In Figure 5, firstly, the decision attribute, scale, 

privacy budget, and other parameters of the dataset are 

input. The query results after adding noise are judge to 

find which constraint condition is satisfied. The query 

results that meet the constraint condition is post-

processed, and the value range of the query results is 

limited. Next, the noise that satisfies the constraint 

conditions is summed up. The sum of noise values is 

normalized and scaled proportionally to correct the 

query results. Finally, the optimized query results are 

output [20]. According to the constraint conditions, it is 

determined that the count query result satisfies equation 

(8). 

 

1

, ,...
d

ci a ci a ci

a A a A
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 
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In equation (8), ciCo  represents the number of 

classes ci  in the dataset. ,a ciCo  represents the number 

of classes ,a ciCo  in the query results when a certain 

attribute value is a . Another constraint satisfied by the 

decision tree is shown in equation (9). 

 

D ci
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Si Co
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In equation (9), DSi  represents the total number of 

records in the dataset. class  represents the class label 

attribute in the dataset. To improve the accuracy of 

counting query results, it is necessary to find the value 

of total noise that is closest to ciCo . The total noise 

value needs to satisfy equation (10). 

 

'

,min a ci ci
A

a A
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In equation (10), A  represents a certain attribute.   

represents the set of decision attributes. 
'

,a ciCo  represents 

the number of ci  classes when attribute A  has a value of 

a . The sum of noise values is normalized, as shown in 

equation (11) [21]. 
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In equation (11), 
'

ciCo  represents the sum of noise 

values. Next, the normalized values of all class labels are 

subjected to interval constraints, as shown in equation (12). 
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In equation (12), b  represents the value of attribute 

A  at this time. When using decision trees to classify data, 

the SelectAttrs algorithm is used to determine the 

importance of each attribute, eliminate unimportant 

attributes, reduce query computation load, and improve 

computation speed. The operation process of the 

SelectAttrs algorithm is shown in Figure 6. 
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Figure 6: Operation flow of SelectAttrs algorithm 

 

In Figure 6, firstly, the importance level of all 

attributes is calculated. Then, the average and standard 

deviation of the importance level of all attributes are 

calculated. The relationship between the importance 

level and standard deviation of each attribute is 

compared, dividing the attributes into important and 

non-important categories. In the subsequent calculation, 

non-important attributes are removed to reduce the 

counting query range. Finally, the set of important 

attributes is output. In order to reduce the bias caused by 

importance classification, the correction coefficient is used 

to adjust attributes, as shown in equation (13). 
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In equation (13), x  represents the number of 

attribute values. The attribute importance is shown in 

equation (14) [22]. 
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In equation (14), iD  represents a dataset with 

horizontal distribution. 

1

i

N

j j

D

D=
 represents the 

proportion of iD  in all datasets. ( ),iIn D A  

represents the information gain of A  in iD . The 

important attribute satisfies equation (15). 

( )Im A   − (15) 

In equation (15),   represents the average value of 

the set of known important attributes.   represents the 

standard deviation of the set. 

 

3 Results 
3.1 Experimental analysis of frequent itemset 

mining method for distributed data 
The experiment uses three publicly available datasets, 

Kaggle, UCI KDD, and Accidents, with average record 

lengths of 27, 52, and 33.6, respectively. Multiple 

computers are used to simulate each node for simulation 

experiments. 30% of the data in each dataset is allocated to 

the central node, while the remaining data is evenly 

distributed to each branch node. The comparative 

algorithms used in the experiment include Apriori, K-

means, and DDFIM-DP algorithm without post-processing 

(Pre DDFIM-DP). The data mining accuracy of different 

algorithms varies with the privacy budget, as shown in 

Figure 7. 
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Figure 7: The variation trend of data mining accuracy of different algorithms with privacy budget 

 

In Figure 7 (a), as the privacy budget gradually 

increased, the data mining accuracy of all algorithms 

also increased. At the same privacy budget, the mining 

accuracy of DDFIM-DP algorithm was significantly 

higher than other algorithms. The DDFIM-DP 

algorithm achieved maximum accuracy with a privacy 

budget of 0.6, and its maximum accuracy was 0.04, 

0.07, and 0.21 higher than other algorithms, 

respectively. In Figure 7 (b), the DDFIM-DP algorithm 

achieved a significant increase in privacy budget for 

maximum accuracy. Because the average record length 

in the UCI KDD dataset is about twice that of Kaggle, the 

data is divided into more segments. The maximum 

accuracy of the DDFIM-DP algorithm was 0.11, 0.13, and 

0.25 higher than other algorithms, respectively. The 

accuracy of the K-means algorithm was the lowest. 

Because the K-means algorithm uses random responses to 

protect privacy, data are severely affected by noise 

interference, resulting in a significant decrease in usability. 

The relative error of different algorithms varies with 

privacy budget, as shown in Figure 8. 
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Figure 8: Comparison of relative errors of different algorithms 

 

In Figure 8 (a), the relative error of all algorithms 

gradually decreased with the increase of privacy budget. 

At the same privacy budget, the relative error of the 

DDFIM-DP algorithm was the lowest, averaging 0.02 

and 0.21 lower than the Pre DDFIM-DP and Apriori 

algorithms, respectively. In Figure 8 (b), the relative 

error of the DDFIM-DP algorithm was on average 0.01 

and 0.26 lower than that of the Pre DDFIM-DP and 

Apriori algorithms. In Figure 8 (c), the relative error of 

the DDFIM-DP algorithm was on average 0.006 and 

0.075 lower than that of the Pre DDFIM-DP and Apriori 

algorithms. The relative error of the DDFIM-DP algorithm 

is lower, because it performs support optimization 

operations to reduce the impact of noise. The relative error 

of the Apriori algorithm is significantly higher, because it 

requires high computing power and cannot effectively 

eliminate noise interference when the number of terminals 

is limited. The comparison of privacy budget and privacy 

leakage probability for each algorithm in different datasets 

is shown in Figure 9. 
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Figure 9: The privacy budget and privacy leakage probability of each algorithm in different datasets 

 

In Figure 9 (a), the DDFIM-DP algorithm had the 

lowest privacy leakage probability, and the required 

privacy budget to reach the lowest point was also low. 

The privacy leakage probability was 0.04% at 1.0 

privacy budget, which was 0.07%, 0.09%, and 0.10% 

lower than the other three algorithms, respectively. In 

Figure 9 (b), the privacy budget required for the DDFIM-

DP algorithm to achieve the minimum privacy leakage 

probability was 0.2 higher than before. Because the 

average record length of the UCI KDD dataset is longer, it 
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requires more noise to be added, and the cost of 

removing noise at the central node is also higher. The 

minimum privacy leakage probability of DDFIM-DP 

algorithm was 0.11%, 0.16%, and 0.13% lower than the 

other three algorithms, respectively. 

 

3.2 Experimental analysis of data 

classification based on differential privacy 

and decision tree method 
The simulation experiment adopts the DDTA-DP 

algorithm, logistic regression algorithm (Logistic), ID3 

algorithm, and Privacy Protected ID3 algorithm (PP-ID3) 

for comparative analysis. The experimental dataset 

consists of two open datasets, Iris and Wine, with 

categories of 2, 5, and 7, respectively. The experiment uses 

multiple computers to simulate each node for simulation 

experiments. 30% of the data in each dataset is allocated to 

the central node, and the remaining data is evenly 

distributed to each branch node. The maximum tree depth 

for the experiment is set to 5. Each experiment is 

conducted 20 times. The final results are averaged. The 

data classification accuracy of different algorithms is 

shown in Figure 10. 
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Figure 10: The variation trend of data classification accuracy of different algorithms with privacy budget 

 

In Figure 10 (a), the data classification accuracy of 

the DDTA-DP algorithm increased with the increase of 

privacy budget, reaching a maximum of 0.82 at a 

privacy budget of 0.9, which was close to the ID3 

algorithm without privacy protection. It was 0.33 and 

0.24 higher than other two algorithms, respectively. In 

Figure 10 (b), the data classification accuracy of the 

DDTA-DP algorithm was the highest at 0.74, which was 

0.31 and 0.22 higher than the maximum accuracy of other 

algorithms, respectively. Because the DDTA-DP 

algorithm optimizes count queries while filtering 

important attributes, it can effectively reduce the 

interference of noise. The relationship between 

classification accuracy and decision tree depth of different 

algorithms is shown in Figure 11. 
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Figure 11: The relationship between classification accuracy and decision tree depth of different algorithms 

 
In Figure 11 (a), the maximum accuracy of the 

DDTA-DP algorithm reached 0.8 at a maximum tree 

depth of 4. The maximum accuracy of the logistic 

regression algorithm also achieved at a tree depth of 4. 

PP-ID3 showed its maximum accuracy at a tree depth 

of 2. The maximum accuracy of different algorithms 

increases first and then decreases. Because when the 

tree depth is small, the privacy budget is sufficient. 

However, the decision tree is too low, resulting in 

insufficient training and affecting classification accuracy. 

When the tree depth is large, the model is fully trained, but 

the privacy budget is excessively segmented. The model is 

greatly affected by noise interference, which also reduces 

the classification accuracy. In Figure 11 (b), the 

classification accuracy changes of the three algorithms 

were the same as before. However, due to the dataset 

having more attribute categories, the decrease in 

classification accuracy was relatively small. The 
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probability of privacy leakage during data classification 

is shown in Figure 12. 
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Figure 12: The relationship between privacy leakage probability and privacy budget in data classification 

 

In Figure 12 (a), the DDTA-DP algorithm had the 

lowest privacy leakage probability, with a minimum 

leakage probability 0.04 and 0.09 lower than the logistic 

regression algorithm and PP-ID3 algorithm, 

respectively. The DDTA-DP algorithm also required 

less privacy budget to solve the minimum leakage 

probability. In Figure 12 (b), the DDTA-DP algorithm 

had the minimum privacy leakage probability, which 

was 0.03 and 0.10 lower than the logistic regression 

algorithm and PP-ID3 algorithm, respectively. In order to 

analyze the computational complexity of DDFIEM-DP 

algorithm and DDTA-DP algorithm, the time required by 

the two algorithms to process the same amount of data 

under the same hardware conditions is measured by 

experiments. It is compared with the traditional K-means 

and Apriori algorithm. The time complexity comparison 

results of the three algorithms are shown in Table 2. 

 

 

Table 2: Comparison of time complexity of three algorithms 

Sample size Model type 
Average processing time 

(ms) 
Standard deviation (ms) 

Time complexity O(n2) 

evaluation 

1000 

DDFIEM-DP 18.4 2.1 Lower 

DDTA-DP 22.5 2.9 Lower 

K-means 29.6 3.6 Normal 

Apriori 30.4 3.5 Normal 

2000 

DDFIEM-DP 72.6 5.2 Lower 

DDTA-DP 114.2 7.7 Lower 

K-means 136.8 9.4 Normal 
Apriori 142.5 8.9 Normal 

3000 

DDFIEM-DP 169.8 8.3 Lower 

DDTA-DP 254.6 11.9 Normal 
K-means 276.3 13.1 Higher 

Apriori 268.4 12.5 Higher 

4000 

DDFIEM-DP 315.8 12.3 Lower 
DDTA-DP 396.5 18.5 Normal 

K-means 472.9 20.8 Higher 

Apriori 469.2 20.1 Higher 

In Table 2, when the sample size was 1000, 2000, 

3000, and 4000, the average processing time of 

DDFIEM-DP algorithm was 11.2ms, 64.2ms, 106.5ms, 

and 157.1ms lower than K-means, respectively, while 

DDTA-DP algorithm was 7.1ms, 22.4ms, and 76.4ms 

lower, respectively. Both algorithms had lower standard 

deviation than K-means and Apriori, lower 

computational complexity, and faster computational 

efficiency than traditional algorithms. The time 

complexity of all four methods increased accordingly 

with the increase of sample size, but the DDFIEM-DP 

and DDTA-DP algorithms increased more slowly than 

K-means and Apriori. Decision tree algorithms are able 

to satisfy the requirements of differential privacy by 

adding noise to data analysis and modelling without 

compromising personal privacy. Meanwhile, it can 

effectively process high-dimensional data and have high 

classification accuracy while ensuring privacy and security. 

In large-scale sample computation, decision tree algorithm 

can effectively reduce prediction time complexity and 

improve prediction efficiency. Due to excessive noise in 

deep nodes, further increasing the complexity of the model 

will reduce prediction accuracy. The study compares the 

DDTA-DP algorithm with the current state-of-the-art 

Random Forest (RF) algorithm and Gradient Boosting 

Decision Tree (GBDT). As shown in Table 3, the results 

of the experimental statistical test p-values are also 

analyzed. 
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Table 3: Comparison of data classification performance of different algorithms 

Arithmetic 
Classification 

accuracy 

Probability of 

privacy breach (%) 

Running time 

(ms) 
P 

DDTA-DP 0.82 0.049 72.6 0.004 

RF 0.74 0.082 84.9 0.002 

GBDT 0.79 0.074 89.2 0.004 

In Table 3, the classification accuracy of DDTA-

DP algorithm was 0.08 and 0.03 higher than that of RF 

and GBDT, respectively. The privacy leakage 

probability was 0.033% and 0.025% lower than that of 

the two algorithms, and the running time was 12.3ms 

and 16.6ms lower than that of the two algorithms, 

respectively. The P-value of all three algorithms was 

less than 0.05, indicating that the experiment complied 

with statistical principles. 

 

4 Discussion 
With the continuous development of mobile 

Internet, data mining has become an important means to 

seize users. However, due to the large number of 

separate platforms for data, there are problems such as 

user privacy leakage. To address this problem, this 

study proposes a constant item set data mining based on 

differential privacy and data classification using 

decision trees. Through experimental analyses, the good 

performance of the method in terms of data mining 

accuracy and user privacy protection is verified. The 

data mining accuracy of this algorithm gradually 

increased with the increase of privacy budget, which 

was higher than Apriori algorithm and K-means 

algorithm. Due to traditional methods that protect 

personal information by masking or blurring certain 

data, this can easily lead to data loss. Moreover, the 

larger the dataset, the higher the likelihood of data loss. 

The privacy budget of the DDFIM-DP algorithm is 0.2, 

and the mining accuracies in the two datasets are 0.49 

and 0.42, respectively. Because the smaller the privacy 

budget, the more noise needs to be added, which 

seriously reduces the accuracy of the results. On the 

other hand, DDFIM-DP adds noise to the data and uses 

a central node to approximate the global support count, 

which can effectively improve data utilization. The 

mining accuracy of the Pre DFIM-DP algorithm without 

post-processing increases slowly, with a privacy budget 

of 0-0.6 and a growth rate 17.2% lower than that of the 

DDFIM-DP algorithm. This is because post-processing 

can effectively improve the accuracy of supporting 

counting. DDFIM-DP grouping adds noise through an 

exponential mechanism. The grouping method can 

effectively reduce noise interference. As the decision 

tree iterates, the dataset is continuously partitioned. 

Excessive additional noise may mask the counting 

query results. Therefore, more privacy budget needs to 

be allocated to reduce noise interference. The data 

classification accuracy of the DDTA-DP algorithm 

increased with the increase of the privacy budget, and 

approached the convergence state when the privacy 

budget was 0.9. Increasing the privacy budget can 

effectively reduce the interference of noise in the deep 

decision tree on the counting query results and improve 

the accuracy of data classification. The complexity of the 

decision tree algorithm is positively correlated with the 

depth of the tree. The classification accuracy of the DDTA-

DP algorithm increased first and then decreased with the 

increase of the depth of the tree. Therefore, further 

increasing the complexity of the model does not improve 

its performance. 

 

5 Conclusion 
Aiming at the low accuracy and poor privacy protection 

effect of traditional algorithms in data mining and 

classification in distributed scenarios, a frequent item set 

data mining method based on differential privacy was 

proposed. The research results showed that the DDFIM-

DP algorithm had a maximum accuracy of 0.72, which was 

0.04, 0.07, and 0.21 higher than other algorithms, 

respectively. Faced with datasets with longer average 

record lengths, the mining accuracy of the DDFIM-DP 

algorithm decreased even less, which was 0.11, 0.13, and 

0.25 higher than other algorithms, respectively, indicating 

a stronger ability to remove noise interference. Under the 

same privacy budget, the relative error of DDFIM-DP 

algorithm was lower, with a minimum value of 0.1, which 

was 0.02 and 0.21 lower than other algorithms, 

respectively, because DDFIM-DP optimized support and 

reduced the impact of noise. The privacy leakage 

probability of the DDFIM-DP algorithm was close to the 

lowest value of 0.04% in the 1.0 budget, and the lowest 

leakage probabilities were 0.07%, 0.09%, and 0.10% lower 

than other algorithms, respectively. When performing data 

classification, the accuracy of the DDTA-DP algorithm 

increased with the increase of privacy budget, with a 

maximum accuracy of 0.82, which was 0.33 and 0.24 

higher than other algorithms, respectively. The 

classification accuracy of the DDTA-DP algorithm 

increased first and then decreased with the maximum tree 

depth of the decision tree. When the tree depth was 4, the 

maximum classification accuracy of the DDTA-DP 

algorithm was 0.21 and 0.29 higher than other algorithms, 

respectively. The privacy leakage probability of the 

DDTA-DP algorithm was 0.04 and 0.09 lower than that of 

the logistic regression algorithm and PP-ID3 algorithm, 

respectively, with less privacy budget. There are still some 

issues in this study. Information gain cannot accurately 

measure the contribution of attributes to data classification. 

Future research will better measure relevant indicators. 
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