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Curved river sections have complex water flow characteristics and difficulties in maneuvering ships 

through bends, which pose significant challenges to path planning and ship navigation control. The 

current path research algorithms still have limitations in dealing with curved and complex waterways. 

Given this, a convolutional neural network control model based on a hybrid controller and near-end 

strategy optimization is proposed. This model realizes the path and navigation planning of ships in 

curved river sections through the hybrid controller. This model utilizes convolutional neural networks 

to extract channel image features of curved river sections and plans the path through proximal 

strategy optimization algorithms. In the experiment, high-performance computer processors were used 

to accelerate the model’s training, and the model was validated in a simulation environment. The 

results showed that when the research model reached 200 iterations in the simulated curved river 

section, the average reward value was 0.0323, 19.36% higher than the average reward value of other 

algorithms. The average instantaneous reward of the research model in path planning was 7.95, which 

was 3.69 and 1.58 higher than the proximal policy optimization model and the convolutional neural 

network model based on proximal policy optimization, respectively. The success rate of path planning 

in complex curved river sections was 82%, significantly higher than the other two algorithms, 

verifying its effectiveness and superiority in complex path planning tasks. Therefore, this study 

contributes to improving the safety, efficiency, and economic benefits of ship navigation, and 

promoting the intelligent and automated growth of the shipping industry 

Povzetek: Razvili so hibridni model globokega učenja, ki združuje konvolucijske nevronske mreže 

(CNN) in optimizacijo bližnje strategije (PPO), za načrtovanje poti in nadzor navigacije ladij v 

ukrivljenih rečnih odsekih.

1  Introduction 

With the advancement of national strategies such as 

“Transportation Power” and “Yangtze River Economic 

Belt”, the importance of the Yangtze River Golden 

Waterway is increasingly prominent [1]. In recent years, 

with the opening of the 12.5-meter-deep water channel in 

the Yangtze River, the trend of large-scale ships has 

significantly accelerated, and the number of ships 

entering the Yangtze River has increased significantly [2]. 

However, as a typical section of this waterway, the 

curved section of the Yangtze River has a complex and 

variable water flow environment, and the channel is 

narrow and curved [3], which to some extent limits the 

navigation capacity of ships. When ships navigate in 

these areas, they need to deal with sharp turns, narrow 

passages, and variable water flows [4], which puts high 

demands on traditional navigation and control systems.  

 

The traditional Ship Navigation Control (SNC) system 

mainly relies on experienced captains and crew members  

to operate. However, when facing complex and 

constantly changing curved river sections, it is often 

difficult to make optimal decisions, leading to accidents. 

Therefore, it is imperative to address the urgent need to 

develop effective and reliable autonomous navigation 

solutions for ships navigating dynamic and uncertain 

curved river sections. 

Deep Learning (DL) is an algorithm that allows 

computers to simulate the learning and thinking processes 

of the human brain [5]. Alaba S Y et al. proposed a 

normalized difference vegetation index method based on 

long short-term memory DL. The method analyzed and 

predicted the time series data of normalized difference 

index by introducing the long short-term memory DL 

algorithm, and used grid search optimization to improve 

the prediction performance of the model. The 
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experimental results showed that the prediction 

performance of the method was higher than the current 

state-of-the-art methods, and the root mean square error 

was smaller, which is suitable for environmental 

monitoring climate change assessment [6]. Kumar et al. 

proposed a Convolutional Neural Network (CNN) 

hierarchical DL network for detecting leaf diseases. This 

method introduced intuitionistic fuzzy local binary 

patterns to extract leaf features and then used CNN for 

disease detection and classification. The evaluation 

results showed that this method helped prevent leaf 

diseases, thereby increasing potato yield [7]. Uyulan et al. 

proposed a diagnostic model for severe depression based 

on electroencephalography and CNN. This method 

combined computational neuroscience and deep CNN 

architecture to model and analyze the collected EEG data 

in major frequency bands to differentiate patients with 

severe depression. The model achieved classification 

accuracy of 89.33% and 92.66% on the data, significantly 

improving diagnostic speed and accuracy [8]. Minagawa 

et al. proposed a method for diagnosing skin tumors using 

Deep Neural Networks (DNNs). This method trained 

DNNs using images from the International Skin Image 

Dataset and the Shinshu Dataset in Japan and compared 

them with the diagnostic results of Japanese 

dermatologists. This indicated that DNN could improve 

the accuracy of dermatologists in detecting skin tumors in 

non-local populations in clinical practice [9]. Rezaee K et 

al. proposed a UAV crowd sensing and DL-based path 

selection method for emergency medical vehicles. The 

method analyzed the collected public transport video 

frames by DL, extracted the characteristic paths on 

different routes, and calculated the most suitable route for 

the paramedic vehicle to transfer the patient, avoiding 

congested places in the traffic. Experimental results 

showed that the method was more accurate and 

computationally efficient than current state-of-the-art 

methods [10]. 

There are also many studies on SNC. Tang et al. 

designed an automatic tracking control system for 

estimating the curvature of a narrow waterway with small 

curvature through an observer. They manipulated the 

unmanned fleet to flexibly pass-through narrow 

waterways in series through the control system. The 

effectiveness of the system in controlling unmanned 

vessels through narrow waterways within the laboratory 

has been verified [11]. Z. Zeng et al. proposed an 

adaptive sampling tree algorithm for underwater vehicle 

path planning. The algorithm fused a point selection 

sampling strategy and an information heuristic search 

process as an algorithmic framework and introduced a 

fast exploration random tree algorithm to sample the path 

region. Simulation results showed that the algorithm had 

higher performance, path planning solution speed, and 

stability than current underwater vehicle planning 

algorithms [12]. J. Zhang et al. presented an adaptive 

surface path planning method based on heterogeneous 

autonomous underwater robots. The method incorporated 

meta-heuristics to balance global and local path 

exploration of underwater paths by integrating two 

optimizers, used conditional convergence factors to avoid 

the problem of the method falling into a local optimum, 

and considered the effects of sea currents at different 

locations. The validation results showed that the method 

converged well and had significant advantages in 

underwater path planning in complex marine 

environments [13]. Yu et al. proposed an economically 

efficient and safety driven path planning method for 

unmanned ships. This method utilized the Internet of 

Things, artificial intelligence simulation technology, and 

geographic information systems, combined with maritime 

transportation navigation assistance and decision support 

systems, to reduce human errors related to maritime 

accidents. This method improved navigation safety and 

operational efficiency in curved river sections and 

seaports [14]. J. Wang et al. proposed a path planning 

method for unmanned surface ships based on the 

Artificial Potential Field Method (APFM) and GPS. The 

method employed a signal strength detection process to 

ascertain the occurrence of signal interference in the 

surrounding area. This was followed by the utilization of 

the APFM to determine the position of the source of the 

interference. Finally, the path was re-planned based on 

the combined force around the target. The experimental 

results showed that this method could effectively solve 

the interference of the positioning system on the path 

planning and improve the efficiency of planning [15]. 

The literature review table summarized in this 

research is shown in Table 1. 

 

 
Table 1: Summary table of literature reviews. 

Research Literature 
Research 

worker 
Key findings Latent deficiency 

DL 

Algorithms 

6 
Alaba S Y et 

al. 

A normalized vegetation prediction 

method based on long and 

short-term memory was designed to 

improve the prediction performance 

with less error 

Limited applicability for 

Normalized Vegetation 

Index (NVI) predictions 

only 

7 Kumar A et Proposed CNN-based leaf disease May not be able to handle 
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In summary, the DL algorithm is extensively utilized 

in life. There have been many studies on the navigation of 

ships in curved river sections by researchers, but there is 

still relatively little research on the autonomous 

navigation of ships in curved sections. To improve the 

navigation efficiency and safety of ships in curved river 

sections, a more intelligent and dynamic control strategy 

is needed. Based on this, this study proposes a ship 

navigation path planning model for curved river sections, 

namely the HC-PPO-CNN. It is expected to address the 

complex navigation challenges in curved river sections 

and improve the safety and efficiency of water 

transportation. 

The innovation of this study lies in (1) The first 

point is to combine Proximal Policy Optimization (PPO) 

and CNN model for path planning, extract channel image 

al. detection combined with fuzzy local 

patterns to enhance disease detection 

capability 

complex and diverse 

disease types 

8 
Uyulan C 

et al. 

Using EEG with CNN for 

depression diagnosis, CNN is 

effective in differentiating depressed 

patients with high accuracy rates 

Reliance on EEG data, 

possible data bias 

9 
Minagawa A 

et al. 

Using DNNs for skin tumour 

diagnosis, DNNs improve diagnostic 

accuracy for non-native skin 

tumours 

Only applicable to specific 

populations, need to 

expand sample 

 10 
Rezaee K et 

al. 

Designing DL and UAV-based 

crowd-aware medical path selection, 

DL to improve the accuracy and 

efficiency of medical vehicle path 

selection 

Effectiveness in severe 

weather conditions to be 

verified 

Vessel 

navigation 

control 

11 Tang C et al. 

Designed an automatic tracking 

control system for narrow 

waterways with small curvature, 

which can flexibly control 

unmanned vessels through narrow 

waterways. 

Experiments are limited to 

the laboratory 

environment 

12 Z. Zeng et al. 

Designed adaptive sampling tree 

algorithm for underwater vehicle 

path planning with higher 

performance, path planning solving 

speed and stability 

Validation of applicability 

to other environments is 

required 

13 J. Zhang et al.  

Designed an adaptive surface path 

planning method for heterogeneous 

autonomous underwater robots to 

improve the efficiency of path 

planning for complex marine 

environments by fusing 

meta-heuristic methods 

Unable to handle 

boundary identification in 

extreme weather 

14 Yu H et al. 

Economic efficiency and 

safety-driven system-driven vessel 

path planning improves navigational 

safety and operational efficiency in 

curved river sections 

Adaptability to complex 

weather and traffic 

conditions needs to be 

verified 

15 J. Wang et al. 

Propose a path planning method for 

unmanned surface ships based on 

APFM and global positioning 

system to reduce the interference of 

positioning system on path planning 

and improve the efficiency of 

planning 

Need to validate its 

planning effect in curves 
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features through CNN, and optimize them by combining 

the PPO algorithm; (2) The second point is to introduce 

hybrid control to achieve dynamic weight adjustment to 

improve the adaptability in complex weather and curved 

waterways. The research content has three parts. Part 1 

elaborates on the construction of the new model, Part 2 is 

the performance testing of the model, and Part 3 is the 

discussion and analysis of experimental results. 

2 Methods and materials 

2.1 Construction of ship curved river path 

planning model based on PPO-CNN 
When ships navigate curved river sections, they often 

face complex water flow environments and narrow 

waterways, which pose challenges to navigation control. 

The constantly changing water flow velocity and 

direction in curved river sections make the navigation 

environment more complex [17]. To address these 

challenges, this study presents a path planning model 

based on PPO. The PPO is known for its excellent 

stability and efficiency in deep reinforcement learning 

and can achieve policy optimization in complex 

environments [18]. By combining PPO and CNN, this 

study constructs a hybrid model, PPO-CNN, which 

enables intelligent path planning and navigation in 

dynamically changing curved river sections, effectively 

adapting to changing river conditions. This study is based 

on the application concept of DL and designs a 

navigation framework and path planning, as shown in 

Figure 1. 

The framework of Figure 1 consists of two parts, 

namely, using reinforcement learning methods to make 

ship navigation decisions and using DL algorithms to 

perceive the environment for ship navigation. In the 

perception stage, neural networks process environmental 

information obtained from ship sensors, extract key 

features, and fit policy and value functions in 

reinforcement learning. In the decision-making stage, the 

main task is to collect data through the interaction 

between the ship and the environment, learn strategies 

based on the accumulated experience during exploration, 

and finally find the converged optimal strategy. The 

navigation and planning of ship navigation paths belong 

to long-term continuous decision-making problems [19]. 

To avoid the impact caused by delayed rewards, a dense 

reward function as shown in equation (1) is set. 

min

1

100,

50, 0.46

( ) 100 ,

t

g a

t

t t

g g p

d d

r o

d d t otherwise−

 


= 
 −  +

 (1) 

 

 

Figure 1: DL path planning framework. 

 

In equation (1), mino  is the threshold distance for 

obstacles. tr  is the value of the intensive reward 

function. ad  is the length of the path to the vessel to the 

target threshold. pt  is a time penalty item to encourage 

ships to complete tasks in a short period of time. 
1t

gd −
 is 

the distance between the ship and the target point in the 

previous time. 
t

gd  is the actual distance between the 

ship and the target point. Through the continuous iterative 

interaction between ships and the environment, plenty of 

sample data will be generated. This study proposes the 

concept of importance sampling to improve the utilization 

of interactive data in PPO algorithm. The expression is 

shown in equation (2). 

 ( ) ( )
( )

( )
~ ~[ ] [ ]x p x p

p x
E f x E f x

q x
=  (2) 

In equation (2), 
( )

( )

p x

q x
 represents the importance 
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weight. ( )~ [ ]x pE f x  is the expected value of random 

variables x  and p  under probability distribution 

( )f x . If a reasonable ( )f x  is chosen so that 
( )

( )

p x

q x
 is 

not too large or too small, it can significantly improve the 

efficiency and accuracy of the data. The formula for 

applying importance sampling in PPO is shown in 

equation (3). 

 

~

( / )
[ ] ( , ) log ( / )

( / )

n nt t

t t t t

t t

p a S
R E A S a p a S

p a S


   






 =  (3) 

 

In equation (3), tS  is the environment state at the 

time of t . 
n

tS  is the environment state at the time of n . 

R  is the importance sampling value. ta  is the action 

output. 
n

ta  is the output value of the action output at the 

time of n . ~E
  

 is the expected value of the trajectory 
 . p  is the value of the instantaneous reward function. 

p   is the value of the rewards generated by the next 

state. A  is the vessel's sailing space.   is the strategy 

parameter. ( , )t tA S a
 is the dominance function.   is 

the strategy value.   is the value of the training 

strategy. Due to the uncertainty of the strategy, the 

reward value has randomness in the interaction process, 

that is, the state value function is taken to evaluate the 

value of the current state, as shown in equation (4). 

 

 ( ) ( )t ta s P A a S s = = =  (4) 

 

In equation (4), ( )a s  is the value of state value 

function. P  is the probability of ship trajectory. a  is 

the ship action. s  is the current state value. To prevent 

the large difference between   and   from causing 

excessive variance between ( )f x  and ( )
( )

( )

p x
f x

q x
, this 

study introduces a constrained trust region policy 

optimization algorithm based on equations (3) and (4) to 

constrain them, as shown in equation (5). 

 

 ( ) ( , )
k k k

PPOJ J KL    = −  (5) 

 

In equation (5), ( )
k

PPOJ    is the Proximal policy 

optimization penalty function (PPO-penalty).   is the 

penalty coefficient of the Kullback-Leibler (KL) scatter. 

( , )kKL    is the value of the KL scatter, which is used 

to measure the difference between the old and the new 

policies. 
k

J   is the value of the old policy the value of 

the expectation function generated. Proximal policy 

optimization clip function (PPO-clip) is calculated as 

equation (6). 

( , )~

( )

( ) [ ( , )]

( )

k k

t t k

k

t

t

S a t t

t

t

a
P

S
J E A S a

a
P

S



 





 =  (6) 

In equation (6), ( )
k

J    represents the PPO loss 

function value obtained through pruning method. 

( )t

t

a
P

S  is the probability of the current strategy   

selecting action ta  in state tS  under parameter  . 

( )k
t

t

a
P

S
 is the policy from the last policy update. 

Equations (5) and (6) limit the differences between new 

and old strategies by introducing KL divergence, 

avoiding drastic changes in the strategy during a single 

update and enhancing the stability of the training process. 

The expression for   is shown in equation (7). 

 

 
min

max

, ( , )
2

2 , ( , )

k

k

KL KL

KL KL


 



  




= 
 

 (7) 

 

In equation (7), ( )   is the new penalty 

coefficient. ( , )kKL    denotes the KL scatter between 

the old and new strategies. minKL  is the minimum target 

value of the KL scatter. maxKL  is the maximum target 

value of the KL scatter. A larger value of ( )   

increases the penalty for KL scatter and limits the update 

magnitude of the policy [20]. While a smaller value of 

( )   reduces this limitation and allows the policy to be 

updated more substantially. The structure of the studied 

PPO-CNN neural network is shown in Figure 2. 

In Figure 2, when the river channel image 
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information is input into the CNN, convolution 

calculation is performed in the image area through the 

convolution kernel. Convolutional kernels multiply 

corresponding elements at each position in the image and 

accumulate them to generate new feature map elements, 

ultimately generating a feature map of curved rivers. The 

feature map is input into the PPO for training, and 

optimal path planning is achieved through exploration 

and optimization. The ship path planning model based on 

PPO-CNN can effectively combine image feature 

extraction and reinforcement learning algorithms to 

generate efficient and safe ship path planning schemes 

through in-depth analysis and learning of curved river 

channel images. 
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Strategy 
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movements

Value function
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Reset()
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521
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Figure 2: PPO-CNN neural network structure. 

 

2.2 Construction of SNC model for curved 

river section combining hybrid controller 

and PPO-CNN 
This study uses the reinforcement learning algorithm PPO 

to construct path planning and navigation tasks for ships 

navigating in curved river sections. Using the ship's 

camera to obtain image data from the environment as 

state input, a CNN-based model is built to process the 

input and achieve the mapping of visual images to ship 

navigation speed [21]. When a ship is in a river with poor 

weather conditions and complex curved sections, due to 

the reduced navigation field of view, the ship often 

cannot accurately find the yaw angle to avoid collisions 

in curved sections. To enable ships to adapt to unknown 

long-sequence complex environments and complete 

planned navigation tasks [22], it is necessary to improve 

the algorithm's ability to explore and generalize. This 

study proposes an algorithm that combines a Hybrid 

Controller (HC) and PPO-CNN, HC-PPO-CNN. It 

integrates target position, self-state, and LiDAR 

information into the state input through multiple HC, 

improving the perception ability of ships in curved river 

sections. Figure 3 shows the HC reinforcement learning 

framework of the algorithm. 

This framework consists of two controllers. The one 

is the reinforcement learning algorithm controller  , 

and the other is the prior controller prior . To integrate 

the two controllers, it is necessary to label the output of 

  as a Gaussian distribution of the same dimension as 

the policy output. The calculation of the fusion method is 

given by equation (8). 

 

 11
( ) ( ( ) ( ) )priora s a S a S

Z

 

  − =   (8) 

 

In equation (8),   is the gating function. ( )a s  

is the value of the fused output distribution. Z  is the 

weighting coefficient. ( )prior a S   is the output 

distribution of prior . ( )a S  is the output distribution 

of  . The expression for the fusion distribution is 

2( ) ~ ( , )a s N     . The expression of   is given by 

equation (9). 

 

2 2

2 2

(1 )

(1 )

prior prior

prior

 



     


   

− +
 =

− +
  (9) 

 



Hybrid Deep Learning Approach for Ship Navigation in Curved… Informatica 48 (2024) 15–30 21 

 

 
 

 

Strategy 

distribution

Controller 

fusion

Prior controller

Policy 

controller

Sampling 

speed

Target location

Radar 

information

Radar 

information

Ship status

Image 

information 

 

Figure 3: HC reinforcement learning framework. 

 

In equation (9), prior  is the expected value of the 

output distribution of prior .   is the gating function. 
2

prior  is the output variance value of prior .   is the 

variance of the fused distribution. 
2

prior  is the expected 

value of the fused control output. 
2

  is the output 

variance of  .   is the expected output value   of 

 , which comprehensively considers the output 

information of the prior controller and PPO-CNN model. 

The calculation of 2
  is given by equation (10). 

 

 

2 2

2

2 2(1 )

prior

prior





 


   


=

− +
  (10) 

 

In equation (10), 2   is the output variance of the 

PPO-CNN model, which indicates the degree of 

uncertainty of the integrated control output. 
2

  is the 

variance of the output distribution of the strategy 

controller. The value of the gating function,  , is 

employed to attain a more flexible control strategy. This 

enables the dynamic adjustment of the weight of the a 

priori controller and the PPO-CNN model in the fusion 

process. The value of   is calculated using the 

following equation (11). 

 

 
1, 0

1 0.001 , 0

t

t t


=
= 

− 
 (11) 

 

In equation (11), t  is the number of times the ship 

avoids obstacles in curved river sections during 

simulation experiments. By calculation, the fused control 

output can comprehensively consider the advantages of 

the fused prior controller and PPO-CNN model, thereby 

improving the performance and stability of SNC. To 

enhance the prior guidance for  , the control output is 

modified to achieve a state of complementary advantages. 

The study adopts the APFM as the prior controller for 

 . APFM is a commonly used algorithm in path 

planning, which relies on the combined force of attractive 

and repulsive potential fields to guide ships from the 

starting point to the target position, while avoiding 

obstacles. Figure 4 is a schematic diagram of APFM for 

ship navigation. 
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Figure 4: Schematic diagram of AFPM for ships. 

 

In APFM, the attractive potential field function is 

used to generate attractive force [25], causing the ship to 

move towards the target position. The commonly used 

equation for the attractive potential field function is given 

by equation (12). 

 21
( ) ( , )

2
att gU q q q=  (12) 

In equation (12), q  is the current position of the 

vessel. 
2 ( , )gq q  is the distance between the ship and 

the obstacle avoidance target point in the curved river 

section. gq  is the location of the obstacle avoidance 

target point in the curved river section. The direction of 
2 ( , )gq q  is directed towards the target point by the line 

connecting q  and gq .   is the value of the stress gain 

coefficient. The magnitude of the gravitational force 

generated by the attractive potential field is given by 

equation (13). 

 ( , )att gF q q=  (13) 

In equation (13),   is the gravitational gain 

coefficient. attF  is the gravitational force that attracts the 

potential field. 0( , )q q  is the path length between the 

vessel position and the bend obstacle position. The 

magnitude of gravitational and repulsive forces is 

inversely proportional to the distance between the ship 

and the obstacle avoidance point in the curved river 

section. The potential energy of a ship is directly 

proportional to the cube of the distance between the ship 

and the center of gravity. A decrease in distance results in 

a corresponding decrease in potential energy, and 0 

indicates that the ship has reached the target point. The 

formula for repulsive potential field is given by equation 

(14). 

( )
1

0 02

0 0

0 0

1 1
( ),0 ( , )

( , )

0, ( , )

rep

k q q
q qU q

q q

 
 

 


−  

= 
 

(14) 

 

In equation (14), 0  is the threshold distance. k  

is the repulsive gain coefficient. attF  is the gravitational 

force that attracts the potential field. The magnitude of 

gravity is mainly related to the distance between ships 

and obstacle avoidance targets in curved river sections. 

The larger the distance, the higher the potential energy 

value that the ship experiences. From this, the global 

potential field function in the curved river environment is 

obtained, as shown in equation (15). 

 

 ( ) ( ) ( )rep allU q U q U q= +  (15) 

In equation (15), ( )U q  is the resultant force of the 

attractive potential field and the repulsive potential field. 

The introduction of a combined attractive and repulsive 

potential field allows ships to navigate around obstacles 

and reach their intended destination. This method is 

intuitive and straightforward to calculate, making it 

well-suited for real-time path planning. By introducing 

the fusion of prior controller outputs and  -gate 

functions, dynamic weight adjustment has been achieved, 

further improving the response speed and adaptability of 

the ship navigation system. In addition, combined with 

APFM, it can effectively reduce the collision problem of 

obstacles in curved river sections during navigation, 

ensuring navigation safety. 
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3  Results 

3.1 Performance verification of PPO-CNN 

model in curved river sections 
This study selects a certain type of ocean freight ship as 

the experimental object to verify the performance of the 

PPO-CNN model in curved river sections. The 

experimental environment is set as follows: The server 

model is XYZ-1234, the CPU is Intel Xeon E5-2670 v3, 

the memory is 16GB RAM, the operating system is 

Windows 10, the GPU is NVIDIA Tesla V100, the power 

supply is 800W-ATX. A simulation map is constructed 

using a section of the Yangtze River and a curved section 

of the Cangzhou Canal, as shown in Figure 5. 

Figures 6 (a) and (b) show the average reward 

results and path length obtained by PPO-CNN during the 

training process of simulating curved river sections. In 

Figure 6 (a), as the amount of training iterations grows, 

the average reward number becomes positive at 75 

rounds of algorithm iteration. This indicates that the 

model is beginning to obtain useful information and 

gradually optimizing its navigation strategy in the 

channel. When the algorithm is iterated to 100 times, the 

average reward is in the range of 0.02~0.05, indicating 

that the model can effectively handle the task of 

simulating curved river sections with fewer errors. In 

Figure 6 (b), when the iterations reach 80, the path length 

rapidly decreases. At iteration 200, the path length tends 

to flatten and fluctuates around 83 steps, indicating that 

the PPO-CNN algorithm is in a convergence state. 

 

(a) A section of waterway in the Yangtze River
(b) A section of the curved section of the Cangzhou Canal

 

Figure 5: Simulated navigation map based on the Yangtze River and Cangzhou canal. 
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Figure 6: The average reward and path length results of PPO-CNN in simulating curved river sections. 

 

Figure 7 shows the results of path planning for two 

algorithms in different winding river sections. In Figure 7 

(a), the PPO-CNN algorithm plans a path for the winding 

river section of the Yangtze River. The path in the figure 

shows that the route planned by the model in the winding 

river section is coherent and smooth, and the planned 
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navigation path is 660.2km. Figure 7(b) illustrates the 

path planning results obtained using the traditional 

Dijkstra algorithm for the winding river section of the 

Yangtze River. The path in the figure shows that the 

model's planned path in the winding river section is poor. 

The planned navigation path is 678.3km, and by 

calculating the length of the path, it is 2.73% longer than 

the path planned by the PPO-CNN algorithm. Figure 7 (c) 

shows the path planning result of the PPO-CNN 

algorithm in the winding section of the Cangzhou Canal. 

The PPO-CNN algorithm has a better route planning for 

the winding section of the river, and the navigable path 

after path planning is 397.42 km. Figure 7 (d) shows the 

path planning result of the Dijkstra algorithm for the 

winding section of the Cangzhou Canal. The length of the 

planned navigation path is 436.5 km. The length of the 

path planned by the PPO-CNN algorithm is 8.95% 

shorter than that planned by the Dijkstra algorithm. The 

results show that the PPO-CNN model is significantly 

better than the Dijkstra algorithm for path planning in 

winding river sections. 

Figure 8 (a) shows a comparison of the average 

rewards obtained from training models using traditional 

PPO, Dijkstra, and PPO-CNN in simulating fast-flowing 

curved river sections. PPO-CNN has relatively small 

fluctuations in the early stages, with positive values when 

the number of training rounds reaches 75-200, and an 

average reward value of 0.0323. Compared to other 

algorithms, the average reward value of PPO-CNN is 

19.36% higher, indicating that the improved PPO-CNN 

can quickly find the target point of yaw in curved river 

sections. Figure 8 (b) shows a comparison of the path 

lengths obtained by three algorithms in training models 

for simulating turbulent water flow in curved river 

sections. When PPO-CNN trains for 150-240 rounds, the 

path length tends to be more stable 

 

（a）The results of PPO-CNN algorithm for path 

planning in curved sections of the Yangtze River

（b）Dijkstra's Path Planning in the Curved 

Section of the Yangtze River

（c）PPO-CNN algorithm for path planning in 

the curved section of the Cangzhou Canal

（d）Dijkstra's Path Planning for the Curved 

Section of the Cangzhou Canal

 

Figure 7: Results of the path length of the PPO-CNN simulation for the curved river section. 

 

as a straight line, with an average value of 139.30. Other 

algorithms still exhibit significant data fluctuations, 

indicating that the PPO-CNN-trained model has better 

robustness and stronger generalization ability. 

 

3.2 Performance verification of SNC model 

for curved river sections using 

HC-PPO-CNN 
To investigate whether the HC-PPO-CNN algorithm can 

complete the planned navigation task in unknown long 

sequence complex environments, obstacles are set in the 

training scenario in the previous section to create a 

relatively narrow navigation area. By limiting the 

viewing angle range of ships and reducing the viewing 

angle range by 45 degrees, the environment of poor river 

weather conditions is simulated. Figure 9 shows the 

performance comparison of three path planning 

algorithms based on long sequence complex 

environments. 

Figure 9 (a) shows the average path planning of PPO, 

PPO-CNN, and HC-PPO-CNN algorithms on simulated 

maps. The average path of HC-PPO-CNN is 1.996, which 

is lower than the 2.426 of PPO and the 2.865 of 

PPO-CNN. HC-PPO-CNN performs the best on 

simulated maps with the shortest average path length. 

This indicates that the combination of HC and PPO-CNN 

significantly improves the effectiveness of path planning 

in complex curved river sections. Figure 9 (b) shows the 

total number of 
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Figure 8: Comparison of average reward and path length of three algorithms in curved river sections under high flow 

velocity. 
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Figure 9: Performance comparison of three path planning algorithms based on long sequence complex environments. 

 

collision paths for three algorithms. The total number of 

collision paths for HC-PPO-CNN is 7, which is lower 

than the 11 paths for PPO and the 16 paths for PPO-CNN. 

This indicates that HC-PPO-CNN exhibits strong 

adaptability in complex curved river environments, and 

can effectively cope with diverse curved river sections 

and adverse weather conditions, reducing collisions. 

Figure 10 (a) shows a comparison of the average 

reward values of PPO, PPO-CNN, and HC-PPO-CNN 

algorithms under limited field of view. HC-PPO-CNN 

gradually converges at around 5,000 steps, with an 

average reward value between 300-500 between 10,000 

and 20,000 steps, which is higher than the other two 

algorithms. Figure 10 (b) shows a comparison of three 

algorithms in a long sequence environment. When 

HC-PPO-CNN training reaches 2,000 steps of falling, it 

tends to flatten out, with an average value of 448.3. PPO 

and PPO-CNN both tend to flatten out at 3,500 steps. 

This indicates that the HC-PPO-CNN algorithm exhibits 

good convergence and stability in long-sequence 

environments. 
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(a) Comparison chart of average reward values of three 

algorithms under limited field of view
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(b) Comparison chart of reward values for three 

algorithms in long sequence environments
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Figure 10: Comparison chart of average reward values of algorithms under limited field if view and reward values in 

long sequence environments. 
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Figure 11: The success rate and IR map of three algorithms for path planning in curved river sections in complex 

training scenarios. 

 

Table 2: Experimental results of HC-PPO-CNN model ablation. 

Model version Accuracy (%) LOSS F1 score Recall(%) 
Mean absolute 

error (MAE) 

Complete model 92.5 0.23 0.91 93.2 0.15 

L-HC 89.3 0.31 0.88 90.1 0.21 

L-CNN 81.7 0.45 0.79 82.4 0.37 

L-PPO 85.6 0.37 0.84 86.5 0.29 

 

Figure 11 (a) shows a comparison of the success 

rates of three algorithms for curved river path planning in 

complex training scenarios. The success rate of 

HC-PPO-CNN is 82%, while PPO (63%) and PPO-CNN 

(28%) differ from HC-PPO-CNN by 19%  

 

 

and 54%, respectively. This indicates that HC-PPO-CNN 

has higher processing capability and path planning 

effectiveness in complex environments than the other two 

algorithms. Figure 11 (b) shows the Instantaneous 

Reward (IR) maps obtained by each algorithm for each 

action taken during path planning for curved river 

sections. Compared to PPO and PPO-CNN, 
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HC-PPO-CNN achieves higher IR scores in each path 

planning process. The mean IR score of HC-PPO-CNN is 

7.95, which is 3.69 and 1.58 higher than others. This 

proves that the research algorithm can make better 

choices at every step of the planning process, 

demonstrating its immediate decision-making advantage 

in handling complex path planning tasks. To verify the 

impact of different modules of the HC-PPO-CNN model, 

ablation experiments are conducted on the model to 

remove the HC module (L-HC), the CNN module 

(L-CNN), and the PPO module (L-PPO), respectively. 

The experimental results of the accuracy are shown in 

Table 2. 

Table 2 shows the results of removing different 

modules on the HC-PPO-CNN model. Among the results 

of accuracy, loss value, F1-score loss value, recall rate, 

and MAE, the model data with the CNN module removed 

is poorer, with values of only 81 .7%, 0.45, 0.79, 82.4%, 

and 0.37. This indicates that after the CNN module is 

removed, the model loses its ability to extract features 

from images of curved river sections. Based on this, the 

input image cannot be effectively processed, and the 

classification ability of positive and negative samples is 

reduced. The results verify that the CNN is an 

indispensable part of the model. The L-PPO model's 

accuracy, F1 score, and recall rate are 85.6%, 0.84, and 

86.5%, respectively, with performance only lower than 

the complete model and the L-HC model. This indicates 

that PPO plays an important role in proximal strategy 

optimization, but the impact on model performance after 

removal is smaller than that of L-CNN. The accuracy, 

loss value, F1 score, recall rate, and MAE values of L-HC 

model are 89.3%, 0.31, 0.88, 90.1%, and 0.21, 

respectively. Its experimental values are only lower than 

those of the complete model. This indicates that after the 

HC module is removed, there is a small impact on the 

model's feature extraction ability and sample recognition, 

but its performance does not differ greatly after the CNN 

module is removed. The experimental results show that 

the CNN module plays a more important role in the 

model and is the core module for processing river images 

and assisting navigation planning. 

4  Discussion 

The proposed HC-PPO-CNN model has unique 

advantages in the planning of ship navigation paths in 

winding river sections. In the experiment, the PPO-CNN 

algorithm reduced the planned path in the winding 

section of the Yangtze River by 2.73% compared to the 

path planned by the Dijkstra algorithm. The PPO-CNN 

algorithm reduced the planned path in the winding 

section of the Cangzhou Canal by 8.95% compared to the 

Dijkstra algorithm. HC-PPO-CNN had a success rate of 

82% in path planning for complex winding sections and 

could effectively reduce collisions in winding sections. 

The experimental results of the path planning length 

show that the research method has a significant advantage 

in reducing the length of the ship's navigation in the 

curved section. The advantage of the model lies in its 

combination of HC and PPO-CNN. HC can express 

superior adaptability in dynamic environments, 

particularly in curved sections. In contrast, static 

algorithms such as Dijkstra are often unable to respond to 

rapidly changing environments in curved sections 

promptly. In addition, PPO does not perform well when 

dealing with the complex dynamic environment of the 

winding river. The research introduces a CNN to extract 

and process the characteristics of the winding river 

section, which is then input into the PPO algorithm for a 

strategy update. This effectively improves the navigation 

accuracy of the ship in the winding river section and 

reduces collisions. Due to the nonlinear dynamic 

characteristics and sudden environmental changes of the 

winding river section, algorithms such as Dijkstra and 

PPO are more dependent on route planning in static or 

partially dynamic environments, making it difficult to 

respond and handle the winding river section scenario 

promptly. The HC-PPO-CNN model can respond to 

changes in water flow and curvature in winding river 

sections promptly through dynamic adjustments of 

different modules. HC controls real-time adjustments, 

while PPO-CNN ensures the robustness of path planning 

decisions during navigation. These operations can 

effectively reduce errors in path planning, so that 

HC-PPO-CNN can achieve a path planning success rate 

of 82% in complex winding river sections. The research 

model has reduced the length of the planned path by 15% 

compared to the traditional method in the planning of 

curved navigation sections, and the collision rate has been 

reduced by more than 20%. It has effectively improved 

navigation performance and reduced collisions. 

Compared with the model in reference [13], the 

research design uses PPO-CNN for ship navigation, 

which improves the adaptability of path planning and 

global exploration capabilities. This is because PPO can 

avoid the problem of the model getting stuck in a local 

optimum and can exhibit better performance and stability 

in complex dynamic environments. Compared with the 

model of reference [15], the model designed in this study 

achieves higher path planning accuracy and stability in 

curved river navigation through PPO-CNN. This is 

because PPO can perform effective strategy optimization 

updates and CNN has a high perception of environmental 

features. Compared with path planning based only on 

APFM, the model designed in this study has higher 

adaptability and robustness in complex environments. 

In summary, the research optimizes the 

PPO-CNN-based model by introducing an HC module, 

which effectively improves the success and efficiency of 

the model in navigation path planning in curved river 
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sections. The research contributes to the development of 

intelligent shipping. 

 

5  Conclusion 
The experimental analysis verified the effectiveness of 

the HC-PPO-CNN model in navigating curved river 

sections. The average reward value and path length data 

evaluation of the model for path planning in simulated 

curved river sections showed that the trained model had 

better robustness and stronger generalization ability. This 

model reduced the number of paths for ships to travel in 

curved river sections. This study also combined HC to 

plan curved river sections for ships in long sequence 

complex environments. This enabled ships to optimize 

their navigation paths based on actual conditions even in 

difficult weather conditions and complex curved river 

sections. As a result, the reliability and efficiency of 

autonomous navigation for ships in complex 

environments were improved. 

To make accurate path planning for SNC in curved 

river sections and ensure the safe operation of ships in 

curved river sections, this study proposed the 

HC-PPO-CNN. To verify its effectiveness, this study 

conducted relevant experiments. In a long sequence 

environment, the average reward value of HC-PPO-CNN 

stabilized at 448.36 after 2000 steps, while PPO and 

PPO-CNN tended to flatten out after 3500 steps, 

respectively. In complex training scenarios, the success 

rate of HC-PPO-CNN for curved river path planning was 

82%, significantly higher than PPO's 63% and 

PPO-CNN's 28%. The average IR value of 

HC-PPO-CNN in each path planning was 7.95, which 

was 3.69 higher than PPO and 1.58 higher than 

PPO-CNN. The average path length of HC-PPO-CNN on 

the simulation map was 1.996, and the number of 

collision paths was 7, both lower than PPO and 

PPO-CNN algorithms. In summary, HC-PPO-CNN has 

significant effectiveness and robustness in SNC of 

complex curved river sections. The limitation of this 

study is that the actual application effect of the model 

depends on a lot of input data and high-performance 

computing resources. This may limit its application in 

projects with limited resources. In the future, lightweight 

versions of the model will be developed to reduce the 

dependence on computer resources. 
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