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To propose a reliable cloud computing task deployment algorithm for the optimization theory. The current 

research on cloud computing task deployment mainly only focuses on one of the two goals: reliability and 

optimization theory. This paper studies how to provide fault tolerance for task execution failure while 

minimizing the number of servers used to perform all tasks, thus reducing the problem of optimization 

theory. This article provides fault recovery capability through task replication, providing two instances 

of each task that make up the job. Task copies can be deployed either on a dedicated backup server or to 

the server where the main task is located by sharing the same computing resources and running at less 

than the execution speed of the main task. We propose a reliable cloud computing task deployment 

algorithm for optimizing theoretical optimization and service quality perception. For users, the 

completion time of the service is usually limited, and if a timeout occurs, it will cause a loss to the cloud 

service provider. For the actual completion time performance of the task at the last moment, the algorithm 

RER is about 2% to 10% more than the algorithm QSRE at xtr = 0.75. Time out times of the algorithm 

RER (xtr = 0.75). Suppose the task fails at a random time. In that case, the algorithm RER (xtr = 0.75) 

has a 10% -15% probability over the execution period of the job, and the algorithm RER has a 42% to 

63% probability of timeout. The algorithm RER (xtr = 0.5) is 12% to 22% less than the algorithm QSRE. 

This paper studies how to minimize the number of servers used to perform all task copies while ensuring 

service quality and providing fault tolerance, thus reducing the problem of optimization theory. 

Povzetek: Predlagan je zanesljiv algoritem za razporejanje nalog v oblaku, ki optimizira število 

uporabljenih strežnikov in zagotavlja toleranco napak z replikacijo nalog. 

 

1 Introduction 
The rationale for scalable computing and data-

parallel frameworks is to decompose user-submitted 

jobs into multiple tasks and deploy them to the server 

for parallel execution. When a job arrives, the data 

center deploys the appropriate nodes for the tasks that 

make up the job, leading to task deployment problems 

[1, 2]. The impact of task deployment on the 

performance of cloud computing systems is mainly 

manifested in bringing huge costs to cloud service 

providers and users. Many task deployment algorithms 

have been proposed to deploy tasks to cloud servers [3, 

4]. Given the vast complexity of cloud data centers, with 

the explosion of system size, hardware and software 

failures have become common during application 

execution [5, 6]. Failure is inevitable due to the large 

number of components in the data center infrastructure. 

Despite the improved reliability of individual 

components, the failure rate of the entire system 

remains high. A variety of reasons cause faults. One-

third of the machines and more than 8% of the memory 

face at least one correctable error per year, and 1.3% and 

0.22% of the year, respectively [7]. Even if the average 

interval time for a single node is 5 years, the average  

 

interval time for a computing system with 200,000 nodes 

will be less than one hour. Therefore, it is essential to use 

fault-tolerant operations for reliability planning. However, 

these systems are less reliable than they claim [8]. 

According to Google, each Map Reduce workflow has five 

permanent failures in the form of machine crashes, with at 

least one disk failure in each Map Reduce workflow 

running 4,000 tasks. A Microsoft study on one million PCs 

showed that the CPU and chip subsystems fail frequently 

[9]. 

Cloud computing is increasingly becoming an 

indispensable and demanding platform for a variety of 

computing. At present, there are two central schemes to 

realize checkpoints: uncoordinated checkpoints and 

coordinated checkpoints [10, 11]. After the writes are 

complete, the application continues to execute. If a failure 

occurs, all processes will resume execution from the 

checkpoint. Coordinated checkpoints are easy to 

implement, and the desired natural synchronization points 

exist in most applications. However, the need for global 

coordination leads to its lack of scalability [12, 13]. In an 

uncoordinated checkpoint, each task performs the 

checkpoint independently and recovers from the local store 

in case of a failure. In contrast, for synchronization without 
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a coordinated checkpoint, the nodes hold the nearest 

message log they send. When a node recovers from the 

previous checkpoint, it can receive the message using 

the log replay of the remote node, which reduces the 

overhead of running when fault-free [14, 15]. A 

mathematical model based on integrated linear planning 

is established, and QoS adjusts the reliability and 

optimization theory of cloud computing systems under 

the service period to allocate resources in the way of 

fault perception and efficient energy saving [16, 17]. 

Proposes three energy-saving optimization algorithms 

for the reliability optimization of priority constraint 

tasks in heterogeneous clusters [18, 19]. We propose an 

effective data center model to the Map Reduce 

infrastructure operation completion reliability and job 

optimization theory by assuming that the fault follows a 

Poisson distribution. 

 

2   Lyapov optimization theory 

2.1 Message queue modeling 

Make sure the message is delivered at least once. 

Waiting for confirmation of the PUBACK message. As 

shown in Equation (1), (2), for the sender of the 

message, an unused message identifier should be 

assigned, and the message is retained and tried to be 

repeated until the PUBACK message corresponding to 

the message is received. 

 

1 0k k k kQ (t ) max[Q (t ) b (t ), ] a (t )+ = − +  (1) 

 

1 0k k k k kQ (t ) max[Q (t ) d (t ) b (t ), ] a (t )+ = − − +  (2) 

 
For the receiver of the message, after receiving the 

message, needs should send the PUBACK message with 

the received message identifier to the sender of the 

message. After sending the PUBACK message, as 

shown in equation (3), if the recipient receives a 

message with the same message identifier, it will be 

processed as a new message. 

 

0 k maxb (t ) B   (3) 

 

The highest level of message service quality 

ensures that the message is delivered once and only to 

the recipient. For the sender of the message, you must 

assign an unused message identifier to the new message 

to be sent. As shown in Equation (4), this message is 

treated as unidentified until the corresponding PUBREC 

message is received from the recipient. 

 

0 k maxa (t ) A   (4) 

 

After receiving the PUBREC message, the sender 

will send another PUBREL message with the original 

message identifier, as shown in equation (5), (6), the 

PUBREL message will be treated as unconfirmed long 

before the PUBCOMP message is received from the 

recipient. After defining the system stability, the next 

problem to be solved is how to analyze the stability of the 

system. 

 

0 k maxd (t ) D   (5) 
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Such as the stability theorem of ordinary differential 

equations. As shown in equation (7), (8), the system 

stability discrimination method of such classical control 

theory is only suitable for studying BIBO stability in SISO 

linear constant system. 

 

01 1
kk k { Q ( t ) } k kZ ( t ) max[ Z ( t ) ( b ( t ))+ = + −ò  (7) 

 
max max

k k k kQ (t ) Q , Z ( t ) Z   (8) 

 

The structure of the modern control system is often no 

longer a simple linear constant system, there will be a large 

number of non-linear or chronotropic factors. In a stable 

linear system, as shown in Equation (9) and (10), the 

characteristic equation and does not change by factors such 

as initial conditions and external interference. 

 

1 0k k k k kZ ( ) max[ Z ( ) b (t ) d (t ), ] + = + − −ò  (9) 

 

1k k k k kZ ( ) Z ( ) b (t ) d (t ) +  + − −ò  (10) 

 

2.2 QoS selection strategy optimization 

For stability, Lyapunov gives a definition in its 

theoretical sense using both norm and spherical domain 

concepts. The norm is mathematically defined as a 

measure of the distance between points in the dimensional 

space of n, as shown in Equation (11), (12), for any two 

points x1 and x2 in the n-dimensional space. According to 

the space of the measure and the meaning of the measure, 

there will be various specific norms accordingly. 
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(11) 
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The common norm is described as the sum of the 

projection length of the n-dimensional vector in each 

dimension, and the norm is described as the second of the 

sum of the n-dimensional vector in each dimension, as 

shown in Equation (13), the maximum value of the n-

dimensional vector projected length on each dimension. 

 

1

1

max
kt W

k k k
t

( b ( ) d ( )) Q ( t )


 
+

= +

 +  +  (13) 

 



Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 161 

If the system does equal shock, if it does not exceed 

the sphere range, it is said to meet the stability of 

Lyapunov, in the classical control theory will be judged 

as unstable. As shown in equation (15), (16), under the 

Lyapunov stability definition. 

 
max max max

k k k kW (Q Z ) / + ò  (14) 

 

If the state corresponds to BIBO stability in 

classical control theory, as shown in equation (15) and 

(16), from the perspective of engineering significance, 

asymptotic stability is often used rather than stability. 

 

2 2

1

1
Θ

2

K

k k
k

L( ( t )) [Q ( t ) Z ( t ) ]
=

=  +  (15) 

 

Δ Θ Θ 1 Θ( ( t )) L( ( t )) L( ( t ))= + −  (16) 

 

Lyapunov large-range stability is for all states in 

the n-dimensional state space, from any state, as shown 

in Equation (17), (18). 

 

B Vp f ( ( t )) = + −ò  (17) 

 

Δ( t ) ( ( t )) Vp(t ) = +  (18) 

 
The first type of method is to linearize the 

equilibrium state in the nonlinear system, as shown in 

equation (19), (20), and then the stability of the 

nonlinear system can be discussed by studying the 

distribution and stability of the eigenvalues of the 

linearized system. 

 

[ ( t )] B Vp f ( ( t )) + −E òε  (19) 

 

| |

| |
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+
 (20) 

 

3 Research on the prediction 

algorithm of cloud computing 

resource usage 
 

3.1 Research on the resource usage prediction 

problem of cloud computing 
The development of Lyapunov's second method has 

re-entered the field of control and has recently become the 

most important method for studying the stability of the 

system. Lyapunov's second method studies and judges the 

system stability in the equilibrium state, with its energy at 

the minimum value [20, 21]. If the equilibrium state of the 

system is gradually stable, then after the system is 

disturbed, the system will store the energy brought by the 

interference and start from the equilibrium state. Over 

time, the stored energy gradually decays and eventually 

returns to equilibrium [22, 23]. If the system is unstable, 

then after the system receives interference, it will absorb 

energy from the outside in the process of movement, and 

the stored energy will become more and more extensive, 

away from the field of equilibrium state. Based on this 

theory, if a positive definite scalar function that can 

describe the energy of the system and the symbolic nature 

of the derivative of one order will increase, decrease, or 

change over time, the stability of the system can be judged 

[24, 25]. We use the concept of Lyapunov drift to study the 

link selection problem after random data packets reach a 

multi-hop packet wireless network. To process the 

scheduling of the mobile network. The mathematical 

analysis is through the Lyapunov drift theory and 

cooperates with the flow control mechanism to maximize 

the network utility. Lyapunov was officially introduced 

into the queuing network. The theory is used to optimize 

performance indexes such as average power and 

throughput while stabilizing the queuing network. 

Lyapunov drift optimization theory is being applied in 

more and more fields [26, 27]. Figure 1 is the flow diagram 

of the taboo search algorithm, applying the theory to the 

delay perception and two problems by comparing convex 

optimization standard technology of low complexity, 

closed suboptimal solution; the result shows that the 

algorithm has a fundamental improvement in time [28, 29]. 

 

 

Figure 1: Flow chart of candidate solution selection for the taboo search algorithm 
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Based on this theory, the packet loss rate and time 

delay. Based on this theory, the optimization model of 

the online energy-sharing scheme is designed, taking 

into account photovoltaic energy and end-user load 

randomness, and it proves the effectiveness of 

improving the autonomy of the satellite system [30]. 

When Wang Yuedong et al. constructed the Lyapunov 

function in the study of double star formation control, 

they used the logarithmic function and theoretically 

compared the logarithm function with the function of 

the traditional quadratic type function, which proved 

that the logarithmic form has higher numerical accuracy 

and faster convergence rate under this condition. Pull 

mode is that the client can access the server every other 

time, polling whether there is any information that needs 

to be transmitted and processed. Figure 2 is the search 

space exploration diagram of the optimization algorithm, 

and the service system also has different fault 

characteristics. However, the cloud computing system 

must ensure the dynamic supply and reliability of 

resources without having a negative impact on the 

effective use of resources. Various reliability optimization 

methods face similar problems. When a fault occurs, the 

cloud computing system needs to adopt a reasonable and 

effective way to restore the fault. 

 

Figure 2: Search space exploration plot of the optimization algorithm 

 

3.2 CNN resource usage prediction 

algorithm 
Calculation code. Correction code is a data 

protection method that works by splitting a data unit as 

events occur; you can use parity fragments to 

reconstruct data units without data loss. Primary cloud 

storage services make them ideal for cloud storage 

services. The correction code is helpful for large 

amounts of data and for any application or system where 

failure must be tolerated. It is often recommended to 

store data such as backup or archive, which is a pretty 

static data set type that does not occupy large amounts 

of written data. Despite these benefits, the correction 

code also has a severe disadvantage, namely its impact on 

performance. If the disk fails, the rebuild operation puts 

more pressure on the CPU resources because the data must 

be rebuilt in real-time. The cost of correcting the deleted 

code in the storage space cannot be ignored. Figure 3 

shows the evaluation diagram of the cloud resource 

allocation optimized by the genetic algorithm. The 

execution of the checkpoint saves the information related 

to the task completion. When the system fails, the system 

can recover the task execution from the last successful 

checkpoint through rollback and information retrieval. On 

the other hand, if the checkpoint mechanism is not 

executed, the system must repeat the entire task execution 

from the beginning. 

 

Figure 3: Evaluation diagram of GA-optimized cloud resource allocation 

 

With the rapid expansion of the system scale, the 

failure rate has changed from accidental to common and 

difficult to track. Service providers and maintainers of 

the cloud infrastructure rely mainly on virtualization 

mechanisms to ensure reliability. Moreover, It also 

requires a workforce to identify problems early on and add 

patches on the server side. However, new hardware and 

software failures are constantly emerging, especially when 
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more and more users are putting important work and 

data in the cloud. Therefore, it is necessary to conduct a 

thorough analysis of the reliability problems, not only 

to analyze the causes, consequences, and solutions but 

also to find the characteristics of these faults and reveal 

the relationship between these faults. Ultimately, these 

faults can be avoided, or the system can be quickly 

recovered from them. Figure 4 shows the performance 

evaluation diagram of the optimization algorithm in load 

balancing. By slightly reducing the system reliability, the 

incremental checkpoints and the corresponding subsequent 

system recovery can be performed quickly. Replication is 

using multiple computing resources to simultaneously run 

multiple process copies of the same task and maintain the 

same state. Replication is the process of creating different 

copies of the same service on different nodes. 

 

Figure 4: Evaluation of the performance of the optimization algorithm in load balancing 

 

With this technology, data-intensive applications 

or systems can achieve high availability, better fault 

tolerance and data recovery, and high performance. 

Suppose the smallest subset of resources is not found. 

In that case, the probability of success for all resource 

combinations is calculated, and the task is replicated in 

the resource set with the highest probability of success. 

Cost in cloud computing is focused on by proposing a 

new strategy referred to as cost-effective incremental 

replication in the data center. In this era of rapid 

technological development, new technologies are 

replacing the old technologies, bringing new opportunities 

for enterprises. Figure 5 is an application evaluation 

diagram for virtual machine migration decisions. Cloud 

computing allows users to expand resources quickly 

compared to what takes days or even weeks to use 

traditional systems. This procedure avoids insufficient 

resource utilization when the servers are idle, or when all 

servers are active or busy, or when there are no idle servers. 

 

 

Figure 5: Application evaluation diagram in virtual machine migration decision 

 

4 Research on cloud computing 

resource scheduling method 

based on optimization theory 
According to the predictable characteristics of 

cloud computing execution, the highest utilization rate 

of cluster computing resources and the maximum 

completion efficiency of tasks can be obtained as much 

as possible. In the process of task execution, the 

optimization theory dynamically adjusts the position of 

the task according to the status of the cluster and the 

completion of the task. Optimization theory can 

sufficiently reduce the completion time of cloud  

 

computing in a cluster. However, there are some problems: 

First, When selecting the target node on which the task is 

placed, The optimization theory does not consider the 

optimal position when multiple nodes all satisfy the case; 

when multiple nodes all meet the requirements, the 

Network congestion situation varies for different nodes, 

The random selection of the task position adopted by the 

optimization theory may lead to excessive network load of 

individual nodes; next, Optimization theory requires that 

the input data be placed on a few racks whenever possible, 

In a cluster where only a small amount of data is large, 

individual nodes are onerous while other nodes are 

relatively idle, Both the cluster occurrence of load 
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imbalance; besides, The task priority assignment 

algorithm for the optimization theory uses FIFO. The 

optimization theory is executed by randomly selecting a 

part of the samples in the input data and then predicting 

the total execution time of this task according to the 

execution time of the sample. The optimization theory 

does not need to make statistics on the historical data of 

the job execution nor to choose the prediction function 

to predict the resource usage of the job. It only needs to 

predict the resource usage of the whole task according 

to the execution information of a part of the task input data. 

Figure 6 for the optimization of network bandwidth 

utilization evaluation diagram; although optimization 

theory is not for cloud computing designed task scheduling 

strategy, it also can be applied to the cloud computing 

resource usage prediction; compared to the optimization 

theory, optimization theory, although need to spend part of 

the time to perform samples and generate prediction 

information, but the optimization theory can save much 

time to collect and learn historical data execution. 

 

Figure 6: Evaluation diagram of optimized network bandwidth utilization 

 

The influence of the algorithm on the execution 

period of different jobs on the number of backup servers 

can be seen in that the number of backup servers 

required decreases with the increase of the execution 

period of different jobs. As the execution period of the 

job increases, the computing resources that each server 

can provide increase accordingly so that you can run 

more copies of the task, so the number of backup servers 

required decreases. The influence of different execution 

periods on the actual operation completion time in the 

case of random time. With the increase in the execution 

period of operation, the operation completion time after 

failure also shows an upward trend. This is because after 

the execution period of the job increases, the computing 

resources of the server also increase. The task on the 

controller server runs at its maximum speed, and it is 

executed exclusively on the controller server to speed up 

the job completion time under normal circumstances. The 

processing rate of the task copy is assumed to match the 

processing rate of the main task, where the collocation 

proportion is in Lazy Shadow. Table 1 shows the number 

of timeouts of the algorithm under different numbers of 

tasks in 72000 experiments, and the server running only 

the task copy without performing any main task is called 

the backup server. You can assign a copy of the task to the 

controller server to take full advantage of its computing 

resources. When the controller server cannot perform the 

task copy due to computing resource constraints, you can 

assign the task copy to the backup server. 

 
Table 1: Number of timeouts of the algorithm at different number of tasks in 2000 experiments 

Number of tasks 500 1000 1500 

QSRE 0 0 0 

Greedy 0 0 0 

RER xrt =0.5 1344 1318 1321 

RER xrt =0.75 1116 1152 1151 

RER xrt =1.0 0 0 0 

The server can deploy more task copies so that the 

task copies can only be spread to fewer computing 

resources before the failure occurs, increasing the job 

completion time. In the case of task failure at the last 

moment, the execution period of different jobs 

corresponds to the job completion time. The task copy 

runs at a low speed and accelerates to the server's 

maximum processing rate after the main task fails. 

Therefore, the later the task failure occurs, the more 

time the task copy needs to run, resulting in the longer the 

job takes to complete. The number of timeout times of 

different algorithms under different periods when the task 

fails at random time and last time shows that the number 

of timeouts of RER and REQ is very significant. The 

reliable cloud computing task deployment problem of 

optimization theory and service quality perception, with 

the job completion time, meets the period as one of the 

constraints. Its goal is to minimize energy consumption 

1.8

T
im

e
-d

o
m

a
in

 S
1
7

3

2.1

2.51.0
Animation time

4.0

2.4

1.8

T
im

e-
d
o

m
a

in
 S

2
2

3

2.1

2.51.0
Animation time

4.0

2.4

5.5



Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 165 

while providing fault tolerance for task execution and 

ensure that the job can be completed within the 

execution period of the job. This chapter presents a 

QSRE. The algorithm deploys a copy of the task to the 

backup server to ensure that the task can still be 

completed within the execution period of the job. The 

algorithm QSRE is conducted iteratively. During each 

iteration, the computing resources on each server are 

fully utilized by deploying the relationship between the 

word Count and the task execution time in Tera Sort and 

the amount of input data on each server. Table 2 shows 

the relationship between task execution time and the 

amount of input data in Tera Sort. Map Reduce Computing 

model has outstanding advantages: first, robust scalability, 

which can support the concurrent execution of thousands 

of nodes; second, good fault tolerance, when the nodes in 

the cluster fail, in most cases, can still guarantee the normal 

execution of tasks; in addition, Map Reduce computing 

model is easy to use, users only need to define the Map 

function and Reduce function according to the 

requirements, to complete the parallel processing of large-

scale data. 

 
Table 2: Relationship between task execution time and amount of input data in Tera Sort 

Input data volume (byte) E-time (ms) 

142423533 37040 

156332500 39061 

178084817 42975 

182445092 44601 

205147279 49203 

207940758 49887 

The map Reduce Computational model is not 

suitable for application scenarios with high timeliness 

requirements, such as interactive query or flow 

computing, mainly because the single-alone processing 

efficiency of the Map Reduce computing model is low, 

and the start time of the Map task and Reduce task is 

longer. For the batch processing of large-scale data, the 

start time is "insignificant" compared with the execution 

time of the task. However, in the case of high timeliness 

requirements, if the start time is long, it will seriously 

affect the user experience. Map Reduce The computing 

model is also not suitable for circular machine learning 

algorithms because the circular execution part of the 

algorithm needs to keep the disk IO operation and data 

network transmission, which affects the completion time 

of the job. At present, the scheduling of network resources 

between nodes can be divided into two categories, 

including the scheduling of Flow in tasks and the Coflow-

oriented scheduling. Table 3 is a Fault tolerance and short-

term advantage display table based on optimization 

methods. There are multiple Flow tasks in the task. The 

optimal Flow scheduling strategy can minimize the 

average completion time of Flow, but it does not represent 

the minimum mean completion time of the task. Therefore, 

the mean completion time is optimized through the optimal 

Coflow scheduling algorithm. 

 
Table 3: Fault tolerance and short-term advantage display table based on optimization methods 

Method 
Fault 

Tolerance 

Server 

Utilization 

Task 

Completion Time 
Limitations 

Genetic Algorithm 

(GA) 
Moderate High Moderate 

Limited ability to 

handle real-time tasks 

Particle Swarm 

Optimization (PSO) 
Moderate High Low 

May get trapped in 

local optima 

Ant Colony 

Optimization (ACO) 
High Moderate High 

High computational 

complexity 

Simulated 

Annealing (SA) 
Low Moderate Moderate 

Slow convergence, 

not suitable for large-

scale 

Round Robin (RR) Low Low High 

Lacks fault 

tolerance and resource 

optimization 

Min-Min 

Scheduling 
Moderate High Moderate Poor load balancing 

Proposed Method 

(Optimization + FT) 
High High Low 

N/A – Optimized 

for fault tolerance and 

speed 
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A task scheduling strategy of FIFO-LM based on 

the FIFO scheduling algorithm using a reuse strategy 

that can be dynamically adjusted. Through the 

multiplexing mechanism, Baraat can significantly 

reduce the completion time of long-tail tasks, and the 

scheduling of distributed Coflow also reduces the 

completion time of small tasks. Baraat When 

scheduling, the source node of the default data 

transmission is fixed because it cannot adapt to the 

dynamic change of the cluster state and has low 

applicability. Table 4 is Performance comparison of task 

scheduling algorithms in cloud computing. Task 

scheduling policies oriented to network conditions 

between nodes usually assume that the source node of data 

transmission is fixed to the target node and then schedule 

the network flow between nodes. 

 
Table 4: Performance comparison of task scheduling algorithms in cloud computing 

Algorithm 

Proposed 

RER 

Algorithm 

QSRE Greedy 

Genetic 

Algorithm 

(GA) 

Particle 

Swarm 

Optimization 

(PSO) 

Ant 

Colony 

Optimization 

(ACO) 

Execution 

Time (ms) 
150 180 200 250 230 210 

Energy 

Consumption 

(kWh) 

2.5 3 4 5.5 4.8 4.2 

Task 

Latency (ms) 
100 120 150 180 160 155 

It is challenging to meet such assumed conditions 

in the actual production environment, and it is difficult 

to estimate the optimization effect obtained by applying 

such a scheduling algorithm, which makes the 

application scope of the scheduling algorithm small. 

Figure 7 shows the evaluation diagram for the reduction 

of source scheduling delay. The network occupancy of 

tasks will vary significantly with different tasks. For tasks 

with no predictability, the scheduling of network resources 

can only be dynamically adjusted according to the task 

runtime state and the current state of the cluster. In the 

process of generating scheduling policies, the calculation 

overhead also has a significant impact on the completion 

efficiency of tasks in the cluster. 

 

Figure 7: Evaluation diagram in resource scheduling delay reduction 

 

5   Experimental analysis 

For cloud computing, although the existing work 

has optimized the network scheduling between nodes, 

the task scheduling is still based on the task-level 

priority allocation algorithm such as FIFO. In essence, 

it is still the task scheduling at the Coflow level and 

often fails to get the minimum AverageJCT. Due to the 

lack of universality of task scheduling algorithms for 

specific data sets or application scenarios, although such 

scheduling algorithms can improve the data processing 

efficiency on specific data sets, but it is challenging to 

ensure the effect in other data sets, so it cannot be widely 

used. Figure 8 is the dynamic evaluation diagram of the 

fuzzy logic controller optimizing the CPU utilization rate. 

In the scheduling of cluster computing resources, the 

scheduler allocates the tasks waiting to be executed in the 

cluster. 
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Figure 8: Dynamic evaluation diagram of CPU utilization optimized by fuzzy logic controller 

 

With the continuous expansion of machine 

memory, the task scheduling for cluster computing 

resources gradually focuses on how to use the CPU 

resources of the cluster effectively. When the CPU 

required for task execution is met, consider how to 

allocate tasks reasonably so that the load of the cluster 

is more balanced and the average task completion time 

is smaller. Sparrow In order to reduce the waiting time 

for tasks and reach the load balance of clusters, a task 

scheduling strategy called batch sampling is proposed. 

Each node in the cluster maintains a queue for the 

waiting task, a Task1 waiting to perform when selecting 

the allocation position first randomly select two nodes in 

the cluster as the candidate scheme, and then the Scheduler 

compares which node in the two candidates needs the 

waiting time is short, the node with a short waiting time as 

the allocation position of Task1. Figure 9 shows the 

evaluation diagram in resource demand prediction. In 

order to achieve load balancing, the information of the 

Worker of the Sparrow is shared between multiple 

Schedulers and the waiting time for each task on each node 

can be obtained simultaneously by multiple Schedulers. 

 

Figure 9: Evaluation plots in the resource demand prediction 

 

When the task is scheduled, you can find the node 

with the shortest waiting time between the nodes 

already obtaining the waiting time and the two 

randomly selected candidate nodes. In this way, the 

computing resources of nodes in a cluster can be fully 

utilized while also meeting the requirements of clusters 

for load balancing. Figure 10 shows the strategy 

evaluation diagram in adaptive resource scheduling. In the 

research of computing resource scheduling, DAGPS, 

Jockey, etc., Jockey job scheduling includes offline 

simulation and online execution. Offline simulation 

obtains the corresponding execution time when giving 

different resources according to the dependence 

relationship within the operation. 

 

Figure 10: Policy evaluation plot in adaptive resource scheduling 
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After obtaining the corresponding relationship 

between the corresponding resource usage and the 

execution time of different jobs, Jockey's online job 

scheduler generates the current optimal scheduling 

policy according to the cluster state. Jockey: According 

to the number of jobs waiting to be executed and the 

corresponding resource usage estimate, estimate the 

time that the current job needs to wait and then 

dynamically adjust the resources allocated to different 

jobs so as to maximize the completion efficiency of the 

job under the premise of using the least resources. Task 

scheduling based on computational resources often does 

not consider the influence of network status between 

nodes on task scheduling. For example, during node 

selection, Sparrow does not consider the time needed to 

transmit data across nodes when the data required by the 

task does not meet the input data locality principle. Today, 

when the amount of job data is increasing, but the 

bandwidth of the cluster network has not improved 

accordingly, the influence of the limitations of the network 

on the completion time of cluster work is increasing. 

Figure 11 evaluates the resource sharing diagram of the 

multi-objective optimization algorithm in the multi-tenant 

environment. If network congestion occurs, the time spent 

on data transmission will not be estimated. Therefore, it is 

not easy to achieve the ideal effect of the task scheduling 

strategy considering only the cluster computing resources. 

 

 

Figure 11: Evaluation diagram of the resource sharing of a multi-objective optimization algorithm in a multi-

tenant environment 

 

6   Conclusion and discussion 
In this paper, the execution information of Hadoop 

Tera Sort, Word Count, and Spark Page Rank is 

collected in the cluster. The analysis found an apparent 

linear relationship between the execution time of most 

of the tasks and the amount of input data. The very 

accurate prediction results are obtained through the 

combination of linear fitting and quadratic function 

fitting, and the error can be controlled below 2%. The 

algorithm RER (xtr = 0.75) has 9% and 57% of the 

possible timing at random and last-time failures. 

Although the RER requires 25% fewer servers than the 

algorithm QSRE at xtr = 0.5, the number of timeouts of 

the algorithm RER (xtr = 0.5) is not acceptable. The 

algorithm RER (xtr = 0.5) has 25% and 66% of the 

possible timing out at random and last-time moment 

failures, respectively. To cope with the nonlinear 

relationship between the execution time of tasks and the 

amount of input data in cloud computing, sample 

prediction value and error prediction value. This 

strategy weights the contribution value of the sample 

data to the prediction results. Then, it predicts the error 

of the predicted value to obtain the error's prediction 

function. 

Finally, the predicted value of the sample is added 

up to get the final predicted value. According to the 

experimental verification, the optimization strategy can 

significantly reduce the error of the prediction 

algorithm, and it can be about 70% compared with the 

original least squares and Hyper Log base estimation 

algorithm. We propose a theoretical deployment algorithm 

for reliable cloud computing tasks. The current research on 

cloud computing task deployment mainly only focuses on 

one of the two goals: reliability and optimization theory. 

This paper studies how to provide fault tolerance for task 

execution failure while minimizing the number of servers 

used to perform all tasks, thus reducing the problem of 

optimization theory. This article provides fault recovery 

capability through task replication, providing two 

instances of each task that make up the job. 

The proposed task scheduling algorithm, including the 

RER and QSRE techniques, demonstrates significant 

improvements over several state-of-the-art (SOTA) 

methods, particularly in fault tolerance and task 

completion times. When compared to traditional 

algorithms like Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO), our method exhibits superior 

fault tolerance, allowing for a smoother operation even in 

scenarios of server failures. This is mainly due to the 

incorporation of redundancy and real-time monitoring, 

which reduces downtime and ensures consistent task 

execution. In terms of energy efficiency, the QSRE 

technique optimizes server utilization, balancing 

workloads efficiently across available resources. This 

contrasts with methods like Round Robin, which suffer 

from inefficient resource use and high energy 
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consumption. The QSRE's energy-efficient design led 

to a 15% reduction in overall energy usage, further 

highlighting its practicality in large-scale cloud 

systems. Task completion times were also significantly 

reduced, with the proposed method completing tasks 

20% faster on average than other optimization 

techniques like Ant Colony Optimization (ACO). This 

improvement can be attributed to the predictive 

capabilities of the RER algorithm, which reduced task 

reassignments and optimized task placement based on 

real-time server load. A critical insight from this study 

is the 70% reduction in prediction error, which 

minimizes delays associated with incorrect resource 

allocations. 
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