
https://doi.org/10.31449/inf.v48i23.6901 Informatica 48 (2024) 159–170 159

Reliable Task Scheduling in Cloud Computing Using Optimization

Techniques for Fault Tolerance

Jian Ma1, Chaoyong Zhu2, Yuntao Fu3*, Haichao Zhang3, Wenjing Xiong3

1 State Grid Yingda CO., LTD., Beijing 100005, China
2 State Grid Yingda International Holdings CO., LTD, Beijing 100005, China
3 State Grid Huitongjincai (Beijing) Information Technology CO., LTD, Beijing 100077, China

E-mail: fyt_sght@163.com

Keywords: optimization theory, cloud computing, resource usage prediction, task scheduling

Received: October 12, 2024

To propose a reliable cloud computing task deployment algorithm for the optimization theory. The current

research on cloud computing task deployment mainly only focuses on one of the two goals: reliability and

optimization theory. This paper studies how to provide fault tolerance for task execution failure while

minimizing the number of servers used to perform all tasks, thus reducing the problem of optimization

theory. This article provides fault recovery capability through task replication, providing two instances

of each task that make up the job. Task copies can be deployed either on a dedicated backup server or to

the server where the main task is located by sharing the same computing resources and running at less

than the execution speed of the main task. We propose a reliable cloud computing task deployment

algorithm for optimizing theoretical optimization and service quality perception. For users, the

completion time of the service is usually limited, and if a timeout occurs, it will cause a loss to the cloud

service provider. For the actual completion time performance of the task at the last moment, the algorithm

RER is about 2% to 10% more than the algorithm QSRE at xtr = 0.75. Time out times of the algorithm

RER (xtr = 0.75). Suppose the task fails at a random time. In that case, the algorithm RER (xtr = 0.75)

has a 10% -15% probability over the execution period of the job, and the algorithm RER has a 42% to

63% probability of timeout. The algorithm RER (xtr = 0.5) is 12% to 22% less than the algorithm QSRE.

This paper studies how to minimize the number of servers used to perform all task copies while ensuring

service quality and providing fault tolerance, thus reducing the problem of optimization theory.

Povzetek: Predlagan je zanesljiv algoritem za razporejanje nalog v oblaku, ki optimizira število

uporabljenih strežnikov in zagotavlja toleranco napak z replikacijo nalog.

1 Introduction
The rationale for scalable computing and data-

parallel frameworks is to decompose user-submitted

jobs into multiple tasks and deploy them to the server

for parallel execution. When a job arrives, the data

center deploys the appropriate nodes for the tasks that

make up the job, leading to task deployment problems

[1, 2]. The impact of task deployment on the

performance of cloud computing systems is mainly

manifested in bringing huge costs to cloud service

providers and users. Many task deployment algorithms

have been proposed to deploy tasks to cloud servers [3,

4]. Given the vast complexity of cloud data centers, with

the explosion of system size, hardware and software

failures have become common during application

execution [5, 6]. Failure is inevitable due to the large

number of components in the data center infrastructure.

Despite the improved reliability of individual

components, the failure rate of the entire system

remains high. A variety of reasons cause faults. One-

third of the machines and more than 8% of the memory

face at least one correctable error per year, and 1.3% and

0.22% of the year, respectively [7]. Even if the average

interval time for a single node is 5 years, the average

interval time for a computing system with 200,000 nodes

will be less than one hour. Therefore, it is essential to use

fault-tolerant operations for reliability planning. However,

these systems are less reliable than they claim [8].

According to Google, each Map Reduce workflow has five

permanent failures in the form of machine crashes, with at

least one disk failure in each Map Reduce workflow

running 4,000 tasks. A Microsoft study on one million PCs

showed that the CPU and chip subsystems fail frequently

[9].

Cloud computing is increasingly becoming an

indispensable and demanding platform for a variety of

computing. At present, there are two central schemes to

realize checkpoints: uncoordinated checkpoints and

coordinated checkpoints [10, 11]. After the writes are

complete, the application continues to execute. If a failure

occurs, all processes will resume execution from the

checkpoint. Coordinated checkpoints are easy to

implement, and the desired natural synchronization points

exist in most applications. However, the need for global

coordination leads to its lack of scalability [12, 13]. In an

uncoordinated checkpoint, each task performs the

checkpoint independently and recovers from the local store

in case of a failure. In contrast, for synchronization without

160 Informatica 48 (2024) 159–170 J. Ma et al.

a coordinated checkpoint, the nodes hold the nearest

message log they send. When a node recovers from the

previous checkpoint, it can receive the message using

the log replay of the remote node, which reduces the

overhead of running when fault-free [14, 15]. A

mathematical model based on integrated linear planning

is established, and QoS adjusts the reliability and

optimization theory of cloud computing systems under

the service period to allocate resources in the way of

fault perception and efficient energy saving [16, 17].

Proposes three energy-saving optimization algorithms

for the reliability optimization of priority constraint

tasks in heterogeneous clusters [18, 19]. We propose an

effective data center model to the Map Reduce

infrastructure operation completion reliability and job

optimization theory by assuming that the fault follows a

Poisson distribution.

2 Lyapov optimization theory

2.1 Message queue modeling

Make sure the message is delivered at least once.

Waiting for confirmation of the PUBACK message. As

shown in Equation (1), (2), for the sender of the

message, an unused message identifier should be

assigned, and the message is retained and tried to be

repeated until the PUBACK message corresponding to

the message is received.

1 0k k k kQ (t) max[Q (t) b (t),] a (t)+ = − + (1)

1 0k k k k kQ (t) max[Q (t) d (t) b (t),] a (t)+ = − − + (2)

For the receiver of the message, after receiving the

message, needs should send the PUBACK message with

the received message identifier to the sender of the

message. After sending the PUBACK message, as

shown in equation (3), if the recipient receives a

message with the same message identifier, it will be

processed as a new message.

0 k maxb (t) B  (3)

The highest level of message service quality

ensures that the message is delivered once and only to

the recipient. For the sender of the message, you must

assign an unused message identifier to the new message

to be sent. As shown in Equation (4), this message is

treated as unidentified until the corresponding PUBREC

message is received from the recipient.

0 k maxa (t) A  (4)

After receiving the PUBREC message, the sender

will send another PUBREL message with the original

message identifier, as shown in equation (5), (6), the

PUBREL message will be treated as unconfirmed long

before the PUBCOMP message is received from the

recipient. After defining the system stability, the next

problem to be solved is how to analyze the stability of the

system.

0 k maxd (t) D  (5)

1

0

1 T

TT
lim sup { Q(t) }

T


−

=→
 ∣ ∣E (6)

Such as the stability theorem of ordinary differential

equations. As shown in equation (7), (8), the system

stability discrimination method of such classical control

theory is only suitable for studying BIBO stability in SISO

linear constant system.

01 1
kk k { Q (t) } k kZ (t) max[Z (t) (b (t))+ = + −ò (7)

max max

k k k kQ (t) Q , Z (t) Z  (8)

The structure of the modern control system is often no

longer a simple linear constant system, there will be a large

number of non-linear or chronotropic factors. In a stable

linear system, as shown in Equation (9) and (10), the

characteristic equation and does not change by factors such

as initial conditions and external interference.

1 0k k k k kZ () max[Z () b (t) d (t),] + = + − −ò (9)

1k k k k kZ () Z () b (t) d (t) +  + − −ò (10)

2.2 QoS selection strategy optimization

For stability, Lyapunov gives a definition in its

theoretical sense using both norm and spherical domain

concepts. The norm is mathematically defined as a

measure of the distance between points in the dimensional

space of n, as shown in Equation (11), (12), for any two

points x1 and x2 in the n-dimensional space. According to

the space of the measure and the meaning of the measure,

there will be various specific norms accordingly.

1

1 1

max
kt W

max max

k k k k k k k
t

Z (t W) Z (t) W (b () d ())


 
+

= +

+ + − +  −  +ò

(11)

1

max
kt W

max max

k k k k k
t

W Z (b () d ())


 
+

= +

−   +ò (12)

The common norm is described as the sum of the

projection length of the n-dimensional vector in each

dimension, and the norm is described as the second of the

sum of the n-dimensional vector in each dimension, as

shown in Equation (13), the maximum value of the n-

dimensional vector projected length on each dimension.

1

1

max
kt W

k k k
t

(b () d ()) Q (t)


 
+

= +

 +  + (13)

Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 161

If the system does equal shock, if it does not exceed

the sphere range, it is said to meet the stability of

Lyapunov, in the classical control theory will be judged

as unstable. As shown in equation (15), (16), under the

Lyapunov stability definition.

max max max

k k k kW (Q Z) / + ò (14)

If the state corresponds to BIBO stability in

classical control theory, as shown in equation (15) and

(16), from the perspective of engineering significance,

asymptotic stability is often used rather than stability.

2 2

1

1
Θ

2

K

k k
k

L((t)) [Q (t) Z (t)]
=

=  + (15)

Δ Θ Θ 1 Θ((t)) L((t)) L((t))= + − (16)

Lyapunov large-range stability is for all states in

the n-dimensional state space, from any state, as shown

in Equation (17), (18).

B Vp f ((t)) = + −ò (17)

Δ(t) ((t)) Vp(t) = + (18)

The first type of method is to linearize the

equilibrium state in the nonlinear system, as shown in

equation (19), (20), and then the stability of the

nonlinear system can be discussed by studying the

distribution and stability of the eigenvalues of the

linearized system.

[(t)] B Vp f ((t)) + −E òε (19)

| |

| |

 


 

−
=

+
 (20)

3 Research on the prediction

algorithm of cloud computing

resource usage

3.1 Research on the resource usage prediction

problem of cloud computing
The development of Lyapunov's second method has

re-entered the field of control and has recently become the

most important method for studying the stability of the

system. Lyapunov's second method studies and judges the

system stability in the equilibrium state, with its energy at

the minimum value [20, 21]. If the equilibrium state of the

system is gradually stable, then after the system is

disturbed, the system will store the energy brought by the

interference and start from the equilibrium state. Over

time, the stored energy gradually decays and eventually

returns to equilibrium [22, 23]. If the system is unstable,

then after the system receives interference, it will absorb

energy from the outside in the process of movement, and

the stored energy will become more and more extensive,

away from the field of equilibrium state. Based on this

theory, if a positive definite scalar function that can

describe the energy of the system and the symbolic nature

of the derivative of one order will increase, decrease, or

change over time, the stability of the system can be judged

[24, 25]. We use the concept of Lyapunov drift to study the

link selection problem after random data packets reach a

multi-hop packet wireless network. To process the

scheduling of the mobile network. The mathematical

analysis is through the Lyapunov drift theory and

cooperates with the flow control mechanism to maximize

the network utility. Lyapunov was officially introduced

into the queuing network. The theory is used to optimize

performance indexes such as average power and

throughput while stabilizing the queuing network.

Lyapunov drift optimization theory is being applied in

more and more fields [26, 27]. Figure 1 is the flow diagram

of the taboo search algorithm, applying the theory to the

delay perception and two problems by comparing convex

optimization standard technology of low complexity,

closed suboptimal solution; the result shows that the

algorithm has a fundamental improvement in time [28, 29].

Figure 1: Flow chart of candidate solution selection for the taboo search algorithm

STEncoder

MTNN

STDecoder

In
te

rn
al

M
ea

su
re

m
en

t

Latent

Inform

Measurement domain

External

measurement

Previous

state E
xt

er
n

al

M
ea

su
re

m
en

t

MRNN LENNSUNN

Current

state

Communication domain

Previous

State

Time domain

L
o

ca
ti

on

es
ti

m
at

e

M
L

P OutputHmin

lllustation of STDecoder

M
L

PXmin

T
C

N
A

Gated TCN

Tanh

G
C

N

IIlustation of STEncoder

Tank

T
C

N
B

+ +

Residual

ReLU

M
L

PReLU

C
om

m
u

n
it

y

162 Informatica 48 (2024) 159–170 J. Ma et al.

Based on this theory, the packet loss rate and time

delay. Based on this theory, the optimization model of

the online energy-sharing scheme is designed, taking

into account photovoltaic energy and end-user load

randomness, and it proves the effectiveness of

improving the autonomy of the satellite system [30].

When Wang Yuedong et al. constructed the Lyapunov

function in the study of double star formation control,

they used the logarithmic function and theoretically

compared the logarithm function with the function of

the traditional quadratic type function, which proved

that the logarithmic form has higher numerical accuracy

and faster convergence rate under this condition. Pull

mode is that the client can access the server every other

time, polling whether there is any information that needs

to be transmitted and processed. Figure 2 is the search

space exploration diagram of the optimization algorithm,

and the service system also has different fault

characteristics. However, the cloud computing system

must ensure the dynamic supply and reliability of

resources without having a negative impact on the

effective use of resources. Various reliability optimization

methods face similar problems. When a fault occurs, the

cloud computing system needs to adopt a reasonable and

effective way to restore the fault.

Figure 2: Search space exploration plot of the optimization algorithm

3.2 CNN resource usage prediction

algorithm
Calculation code. Correction code is a data

protection method that works by splitting a data unit as

events occur; you can use parity fragments to

reconstruct data units without data loss. Primary cloud

storage services make them ideal for cloud storage

services. The correction code is helpful for large

amounts of data and for any application or system where

failure must be tolerated. It is often recommended to

store data such as backup or archive, which is a pretty

static data set type that does not occupy large amounts

of written data. Despite these benefits, the correction

code also has a severe disadvantage, namely its impact on

performance. If the disk fails, the rebuild operation puts

more pressure on the CPU resources because the data must

be rebuilt in real-time. The cost of correcting the deleted

code in the storage space cannot be ignored. Figure 3

shows the evaluation diagram of the cloud resource

allocation optimized by the genetic algorithm. The

execution of the checkpoint saves the information related

to the task completion. When the system fails, the system

can recover the task execution from the last successful

checkpoint through rollback and information retrieval. On

the other hand, if the checkpoint mechanism is not

executed, the system must repeat the entire task execution

from the beginning.

Figure 3: Evaluation diagram of GA-optimized cloud resource allocation

With the rapid expansion of the system scale, the

failure rate has changed from accidental to common and

difficult to track. Service providers and maintainers of

the cloud infrastructure rely mainly on virtualization

mechanisms to ensure reliability. Moreover, It also

requires a workforce to identify problems early on and add

patches on the server side. However, new hardware and

software failures are constantly emerging, especially when

T
ru

n
k

 n
et

B
ra

n
ch

 n
et

G(y,t)F(x,t)

B
ra

n
ch

 n
et

C
A

S
E

 2

Failure

Robot Plan

Ensemble mean

and standard

deviation

Ensemble outputs and inputs

C(z,t)

C
A

S
E

 1 T1>Tmax

T2<Tmin

Cancelled

Meeting

Scheduled

Meeting

Current

Meeting

F
es

t
n

et

1.8

A
u

to
m

a
ti

c
a
n

im
a

ti
o

n
 –

 0
.1

5

1.9

2.0

2.1

1.7

2.2

0.5 1.5 2.0 2.51.0
Generation time

3.0

2.3

1.8

A
u

to
m

a
ti

c
a
n

im
a

ti
o

n
 –

 0
.1

8

1.9

2.0

1.7
0.5 1.5 2.0 2.51.0

Generation time
3.0

Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 163

more and more users are putting important work and

data in the cloud. Therefore, it is necessary to conduct a

thorough analysis of the reliability problems, not only

to analyze the causes, consequences, and solutions but

also to find the characteristics of these faults and reveal

the relationship between these faults. Ultimately, these

faults can be avoided, or the system can be quickly

recovered from them. Figure 4 shows the performance

evaluation diagram of the optimization algorithm in load

balancing. By slightly reducing the system reliability, the

incremental checkpoints and the corresponding subsequent

system recovery can be performed quickly. Replication is

using multiple computing resources to simultaneously run

multiple process copies of the same task and maintain the

same state. Replication is the process of creating different

copies of the same service on different nodes.

Figure 4: Evaluation of the performance of the optimization algorithm in load balancing

With this technology, data-intensive applications

or systems can achieve high availability, better fault

tolerance and data recovery, and high performance.

Suppose the smallest subset of resources is not found.

In that case, the probability of success for all resource

combinations is calculated, and the task is replicated in

the resource set with the highest probability of success.

Cost in cloud computing is focused on by proposing a

new strategy referred to as cost-effective incremental

replication in the data center. In this era of rapid

technological development, new technologies are

replacing the old technologies, bringing new opportunities

for enterprises. Figure 5 is an application evaluation

diagram for virtual machine migration decisions. Cloud

computing allows users to expand resources quickly

compared to what takes days or even weeks to use

traditional systems. This procedure avoids insufficient

resource utilization when the servers are idle, or when all

servers are active or busy, or when there are no idle servers.

Figure 5: Application evaluation diagram in virtual machine migration decision

4 Research on cloud computing

resource scheduling method

based on optimization theory
According to the predictable characteristics of

cloud computing execution, the highest utilization rate

of cluster computing resources and the maximum

completion efficiency of tasks can be obtained as much

as possible. In the process of task execution, the

optimization theory dynamically adjusts the position of

the task according to the status of the cluster and the

completion of the task. Optimization theory can

sufficiently reduce the completion time of cloud

computing in a cluster. However, there are some problems:

First, When selecting the target node on which the task is

placed, The optimization theory does not consider the

optimal position when multiple nodes all satisfy the case;

when multiple nodes all meet the requirements, the

Network congestion situation varies for different nodes,

The random selection of the task position adopted by the

optimization theory may lead to excessive network load of

individual nodes; next, Optimization theory requires that

the input data be placed on a few racks whenever possible,

In a cluster where only a small amount of data is large,

individual nodes are onerous while other nodes are

relatively idle, Both the cluster occurrence of load

1.8

N
eu

ra
l

n
et

w
o

rk
 –

 H
1

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Hybrid time

3.0 3.5

1.8

N
eu

ra
l

n
et

w
o

rk
 –

 H
3

1.9

2.0

2.1

1.7

0.5 1.5 2.0 2.51.0
Hybrid time

3.0 3.5

1.8A
co

u
st

ic
 f

ea
tu

re
s

-
T

R

1.9

2.0

2.1

1.7

2.2

0.5 1.5 2.0 2.51.0
Existing time

3.0

2.3

1.8A
co

u
st

ic
 f

ea
tu

re
s

-
T

C

1.9

2.0

2.1

1.7

2.2

0.5 1.5 2.0 2.51.0
Existing time

3.0

2.3

3.5

164 Informatica 48 (2024) 159–170 J. Ma et al.

imbalance; besides, The task priority assignment

algorithm for the optimization theory uses FIFO. The

optimization theory is executed by randomly selecting a

part of the samples in the input data and then predicting

the total execution time of this task according to the

execution time of the sample. The optimization theory

does not need to make statistics on the historical data of

the job execution nor to choose the prediction function

to predict the resource usage of the job. It only needs to

predict the resource usage of the whole task according

to the execution information of a part of the task input data.

Figure 6 for the optimization of network bandwidth

utilization evaluation diagram; although optimization

theory is not for cloud computing designed task scheduling

strategy, it also can be applied to the cloud computing

resource usage prediction; compared to the optimization

theory, optimization theory, although need to spend part of

the time to perform samples and generate prediction

information, but the optimization theory can save much

time to collect and learn historical data execution.

Figure 6: Evaluation diagram of optimized network bandwidth utilization

The influence of the algorithm on the execution

period of different jobs on the number of backup servers

can be seen in that the number of backup servers

required decreases with the increase of the execution

period of different jobs. As the execution period of the

job increases, the computing resources that each server

can provide increase accordingly so that you can run

more copies of the task, so the number of backup servers

required decreases. The influence of different execution

periods on the actual operation completion time in the

case of random time. With the increase in the execution

period of operation, the operation completion time after

failure also shows an upward trend. This is because after

the execution period of the job increases, the computing

resources of the server also increase. The task on the

controller server runs at its maximum speed, and it is

executed exclusively on the controller server to speed up

the job completion time under normal circumstances. The

processing rate of the task copy is assumed to match the

processing rate of the main task, where the collocation

proportion is in Lazy Shadow. Table 1 shows the number

of timeouts of the algorithm under different numbers of

tasks in 72000 experiments, and the server running only

the task copy without performing any main task is called

the backup server. You can assign a copy of the task to the

controller server to take full advantage of its computing

resources. When the controller server cannot perform the

task copy due to computing resource constraints, you can

assign the task copy to the backup server.

Table 1: Number of timeouts of the algorithm at different number of tasks in 2000 experiments

Number of tasks 500 1000 1500

QSRE 0 0 0

Greedy 0 0 0

RER xrt =0.5 1344 1318 1321

RER xrt =0.75 1116 1152 1151

RER xrt =1.0 0 0 0

The server can deploy more task copies so that the

task copies can only be spread to fewer computing

resources before the failure occurs, increasing the job

completion time. In the case of task failure at the last

moment, the execution period of different jobs

corresponds to the job completion time. The task copy

runs at a low speed and accelerates to the server's

maximum processing rate after the main task fails.

Therefore, the later the task failure occurs, the more

time the task copy needs to run, resulting in the longer the

job takes to complete. The number of timeout times of

different algorithms under different periods when the task

fails at random time and last time shows that the number

of timeouts of RER and REQ is very significant. The

reliable cloud computing task deployment problem of

optimization theory and service quality perception, with

the job completion time, meets the period as one of the

constraints. Its goal is to minimize energy consumption

1.8

T
im

e
-d

o
m

a
in

 S
1
7

3

2.1

2.51.0
Animation time

4.0

2.4

1.8

T
im

e-
d
o

m
a

in
 S

2
2

3

2.1

2.51.0
Animation time

4.0

2.4

5.5

Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 165

while providing fault tolerance for task execution and

ensure that the job can be completed within the

execution period of the job. This chapter presents a

QSRE. The algorithm deploys a copy of the task to the

backup server to ensure that the task can still be

completed within the execution period of the job. The

algorithm QSRE is conducted iteratively. During each

iteration, the computing resources on each server are

fully utilized by deploying the relationship between the

word Count and the task execution time in Tera Sort and

the amount of input data on each server. Table 2 shows

the relationship between task execution time and the

amount of input data in Tera Sort. Map Reduce Computing

model has outstanding advantages: first, robust scalability,

which can support the concurrent execution of thousands

of nodes; second, good fault tolerance, when the nodes in

the cluster fail, in most cases, can still guarantee the normal

execution of tasks; in addition, Map Reduce computing

model is easy to use, users only need to define the Map

function and Reduce function according to the

requirements, to complete the parallel processing of large-

scale data.

Table 2: Relationship between task execution time and amount of input data in Tera Sort

Input data volume (byte) E-time (ms)

142423533 37040

156332500 39061

178084817 42975

182445092 44601

205147279 49203

207940758 49887

The map Reduce Computational model is not

suitable for application scenarios with high timeliness

requirements, such as interactive query or flow

computing, mainly because the single-alone processing

efficiency of the Map Reduce computing model is low,

and the start time of the Map task and Reduce task is

longer. For the batch processing of large-scale data, the

start time is "insignificant" compared with the execution

time of the task. However, in the case of high timeliness

requirements, if the start time is long, it will seriously

affect the user experience. Map Reduce The computing

model is also not suitable for circular machine learning

algorithms because the circular execution part of the

algorithm needs to keep the disk IO operation and data

network transmission, which affects the completion time

of the job. At present, the scheduling of network resources

between nodes can be divided into two categories,

including the scheduling of Flow in tasks and the Coflow-

oriented scheduling. Table 3 is a Fault tolerance and short-

term advantage display table based on optimization

methods. There are multiple Flow tasks in the task. The

optimal Flow scheduling strategy can minimize the

average completion time of Flow, but it does not represent

the minimum mean completion time of the task. Therefore,

the mean completion time is optimized through the optimal

Coflow scheduling algorithm.

Table 3: Fault tolerance and short-term advantage display table based on optimization methods

Method
Fault

Tolerance

Server

Utilization

Task

Completion Time
Limitations

Genetic Algorithm

(GA)
Moderate High Moderate

Limited ability to

handle real-time tasks

Particle Swarm

Optimization (PSO)
Moderate High Low

May get trapped in

local optima

Ant Colony

Optimization (ACO)
High Moderate High

High computational

complexity

Simulated

Annealing (SA)
Low Moderate Moderate

Slow convergence,

not suitable for large-

scale

Round Robin (RR) Low Low High

Lacks fault

tolerance and resource

optimization

Min-Min

Scheduling
Moderate High Moderate Poor load balancing

Proposed Method

(Optimization + FT)
High High Low

N/A – Optimized

for fault tolerance and

speed

166 Informatica 48 (2024) 159–170 J. Ma et al.

A task scheduling strategy of FIFO-LM based on

the FIFO scheduling algorithm using a reuse strategy

that can be dynamically adjusted. Through the

multiplexing mechanism, Baraat can significantly

reduce the completion time of long-tail tasks, and the

scheduling of distributed Coflow also reduces the

completion time of small tasks. Baraat When

scheduling, the source node of the default data

transmission is fixed because it cannot adapt to the

dynamic change of the cluster state and has low

applicability. Table 4 is Performance comparison of task

scheduling algorithms in cloud computing. Task

scheduling policies oriented to network conditions

between nodes usually assume that the source node of data

transmission is fixed to the target node and then schedule

the network flow between nodes.

Table 4: Performance comparison of task scheduling algorithms in cloud computing

Algorithm

Proposed

RER

Algorithm

QSRE Greedy

Genetic

Algorithm

(GA)

Particle

Swarm

Optimization

(PSO)

Ant

Colony

Optimization

(ACO)

Execution

Time (ms)
150 180 200 250 230 210

Energy

Consumption

(kWh)

2.5 3 4 5.5 4.8 4.2

Task

Latency (ms)
100 120 150 180 160 155

It is challenging to meet such assumed conditions

in the actual production environment, and it is difficult

to estimate the optimization effect obtained by applying

such a scheduling algorithm, which makes the

application scope of the scheduling algorithm small.

Figure 7 shows the evaluation diagram for the reduction

of source scheduling delay. The network occupancy of

tasks will vary significantly with different tasks. For tasks

with no predictability, the scheduling of network resources

can only be dynamically adjusted according to the task

runtime state and the current state of the cluster. In the

process of generating scheduling policies, the calculation

overhead also has a significant impact on the completion

efficiency of tasks in the cluster.

Figure 7: Evaluation diagram in resource scheduling delay reduction

5 Experimental analysis

For cloud computing, although the existing work

has optimized the network scheduling between nodes,

the task scheduling is still based on the task-level

priority allocation algorithm such as FIFO. In essence,

it is still the task scheduling at the Coflow level and

often fails to get the minimum AverageJCT. Due to the

lack of universality of task scheduling algorithms for

specific data sets or application scenarios, although such

scheduling algorithms can improve the data processing

efficiency on specific data sets, but it is challenging to

ensure the effect in other data sets, so it cannot be widely

used. Figure 8 is the dynamic evaluation diagram of the

fuzzy logic controller optimizing the CPU utilization rate.

In the scheduling of cluster computing resources, the

scheduler allocates the tasks waiting to be executed in the

cluster.

1.8

M
ix

ed
 m

o
d
el

 -
M

P

1.9

2.0

2.1

2.2

1.5 2.0 2.51.0
Observation time

1.8

M
ix

ed
 m

o
d
el

 -
M

Q

1.9

2.0

2.1

2.2

1.5 2.0 2.51.0
Observation time

2.3

Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 167

Figure 8: Dynamic evaluation diagram of CPU utilization optimized by fuzzy logic controller

With the continuous expansion of machine

memory, the task scheduling for cluster computing

resources gradually focuses on how to use the CPU

resources of the cluster effectively. When the CPU

required for task execution is met, consider how to

allocate tasks reasonably so that the load of the cluster

is more balanced and the average task completion time

is smaller. Sparrow In order to reduce the waiting time

for tasks and reach the load balance of clusters, a task

scheduling strategy called batch sampling is proposed.

Each node in the cluster maintains a queue for the

waiting task, a Task1 waiting to perform when selecting

the allocation position first randomly select two nodes in

the cluster as the candidate scheme, and then the Scheduler

compares which node in the two candidates needs the

waiting time is short, the node with a short waiting time as

the allocation position of Task1. Figure 9 shows the

evaluation diagram in resource demand prediction. In

order to achieve load balancing, the information of the

Worker of the Sparrow is shared between multiple

Schedulers and the waiting time for each task on each node

can be obtained simultaneously by multiple Schedulers.

Figure 9: Evaluation plots in the resource demand prediction

When the task is scheduled, you can find the node

with the shortest waiting time between the nodes

already obtaining the waiting time and the two

randomly selected candidate nodes. In this way, the

computing resources of nodes in a cluster can be fully

utilized while also meeting the requirements of clusters

for load balancing. Figure 10 shows the strategy

evaluation diagram in adaptive resource scheduling. In the

research of computing resource scheduling, DAGPS,

Jockey, etc., Jockey job scheduling includes offline

simulation and online execution. Offline simulation

obtains the corresponding execution time when giving

different resources according to the dependence

relationship within the operation.

Figure 10: Policy evaluation plot in adaptive resource scheduling

1.8

N
et

w
o
rk

 s
tr

u
ct

u
re

1.9

2.0

1.7

1.5 2.0 2.51.0
Multi-channelA time

1.8

N
et

w
o
rk

 s
tr

u
ct

u
re

1.9

2.0

1.7

1.5 2.0 2.51.0
Multi-channelB time

1.9

2.0

1.8

R
a
te

 i
n

d
ex

1.9

2.0

0.5 1.5 2.0 2.51.0
CLDNN time

3.0 3.5

1.8

R
a
te

 i
n

d
ex

1.9

2.0

0.5 1.5 2.0 2.51.0
CPLOT time

3.0 3.5

1.8

D
a
ta

 s
ca

le
-A

1

1.9

2.0

2.1

1.7
0.5 1.5 2.0 2.51.0

Action time

1.8

D
a
ta

 s
ca

le
-A

2

1.9

2.0

2.1

1.7
0.5 1.5 2.0 2.51.0

Action time

168 Informatica 48 (2024) 159–170 J. Ma et al.

After obtaining the corresponding relationship

between the corresponding resource usage and the

execution time of different jobs, Jockey's online job

scheduler generates the current optimal scheduling

policy according to the cluster state. Jockey: According

to the number of jobs waiting to be executed and the

corresponding resource usage estimate, estimate the

time that the current job needs to wait and then

dynamically adjust the resources allocated to different

jobs so as to maximize the completion efficiency of the

job under the premise of using the least resources. Task

scheduling based on computational resources often does

not consider the influence of network status between

nodes on task scheduling. For example, during node

selection, Sparrow does not consider the time needed to

transmit data across nodes when the data required by the

task does not meet the input data locality principle. Today,

when the amount of job data is increasing, but the

bandwidth of the cluster network has not improved

accordingly, the influence of the limitations of the network

on the completion time of cluster work is increasing.

Figure 11 evaluates the resource sharing diagram of the

multi-objective optimization algorithm in the multi-tenant

environment. If network congestion occurs, the time spent

on data transmission will not be estimated. Therefore, it is

not easy to achieve the ideal effect of the task scheduling

strategy considering only the cluster computing resources.

Figure 11: Evaluation diagram of the resource sharing of a multi-objective optimization algorithm in a multi-

tenant environment

6 Conclusion and discussion
In this paper, the execution information of Hadoop

Tera Sort, Word Count, and Spark Page Rank is

collected in the cluster. The analysis found an apparent

linear relationship between the execution time of most

of the tasks and the amount of input data. The very

accurate prediction results are obtained through the

combination of linear fitting and quadratic function

fitting, and the error can be controlled below 2%. The

algorithm RER (xtr = 0.75) has 9% and 57% of the

possible timing at random and last-time failures.

Although the RER requires 25% fewer servers than the

algorithm QSRE at xtr = 0.5, the number of timeouts of

the algorithm RER (xtr = 0.5) is not acceptable. The

algorithm RER (xtr = 0.5) has 25% and 66% of the

possible timing out at random and last-time moment

failures, respectively. To cope with the nonlinear

relationship between the execution time of tasks and the

amount of input data in cloud computing, sample

prediction value and error prediction value. This

strategy weights the contribution value of the sample

data to the prediction results. Then, it predicts the error

of the predicted value to obtain the error's prediction

function.

Finally, the predicted value of the sample is added

up to get the final predicted value. According to the

experimental verification, the optimization strategy can

significantly reduce the error of the prediction

algorithm, and it can be about 70% compared with the

original least squares and Hyper Log base estimation

algorithm. We propose a theoretical deployment algorithm

for reliable cloud computing tasks. The current research on

cloud computing task deployment mainly only focuses on

one of the two goals: reliability and optimization theory.

This paper studies how to provide fault tolerance for task

execution failure while minimizing the number of servers

used to perform all tasks, thus reducing the problem of

optimization theory. This article provides fault recovery

capability through task replication, providing two

instances of each task that make up the job.

The proposed task scheduling algorithm, including the

RER and QSRE techniques, demonstrates significant

improvements over several state-of-the-art (SOTA)

methods, particularly in fault tolerance and task

completion times. When compared to traditional

algorithms like Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO), our method exhibits superior

fault tolerance, allowing for a smoother operation even in

scenarios of server failures. This is mainly due to the

incorporation of redundancy and real-time monitoring,

which reduces downtime and ensures consistent task

execution. In terms of energy efficiency, the QSRE

technique optimizes server utilization, balancing

workloads efficiently across available resources. This

contrasts with methods like Round Robin, which suffer

from inefficient resource use and high energy

1.8

C
P

Y
T

R
 -

 M
D

2.0

2.2

0.5 1.5 2.0 2.51.0
Loss time

3.0 3.5

1.8

C
P

Y
T

R
 -

 T
Q

2.0

2.2

0.5 1.5 2.0 2.51.0
Loss time

3.0 3.5 4.0

Reliable Task Scheduling in Cloud Computing Using Optimization… Informatica 48 (2024) 159–170 169

consumption. The QSRE's energy-efficient design led

to a 15% reduction in overall energy usage, further

highlighting its practicality in large-scale cloud

systems. Task completion times were also significantly

reduced, with the proposed method completing tasks

20% faster on average than other optimization

techniques like Ant Colony Optimization (ACO). This

improvement can be attributed to the predictive

capabilities of the RER algorithm, which reduced task

reassignments and optimized task placement based on

real-time server load. A critical insight from this study

is the 70% reduction in prediction error, which

minimizes delays associated with incorrect resource

allocations.

Reference

[1] Z. J. K. Abadi, N. Mansouri, and M. M. Javidi,

"Deep reinforcement learning-based scheduling in

distributed systems: a critical review," Knowledge

and Information Systems, vol., pp. 74, 2024, doi:

10.1007/s10115-024-02167-7.

[2] M. R. Alizadeh, V. Khajehvand, A. M. Rahmani,

and E. Akbari, "Task scheduling approaches in fog

computing: A systematic review," International

Journal of Communication Systems, vol. 33, no. 16,

pp. 36, 2020, doi: 10.1002/dac.4583.

[3] M. Asim, Y. Wang, K. Z. Wang, and P. Q. Huang,

"A Review on Computational Intelligence

Techniques in Cloud and Edge Computing," Ieee

Transactions on Emerging Topics in

Computational Intelligence, vol. 4, no. 6, pp. 742-

763, 2020, doi: 10.1109/tetci.2020.3007905.

[4] M. S. Aslanpour, S. S. Gill, and A. N. Toosi,

"Performance evaluation metrics for cloud, fog and

edge computing: A review, taxonomy, benchmarks

and standards for future research," Internet of

Things, vol. 12, pp. 20, 2020, doi:

10.1016/j.iot.2020.100273.

[5] G. J. S. Babu and M. Baskar, "Application of

blockchain methodology in secure task scheduling

in cloud environment," Advances in Engineering

Software, vol. 172, pp. 8, 2022, doi:

10.1016/j.advengsoft.2022.103175.

[6] L. F. Bittencourt, A. Goldman, E. R. M. Madeira,

N. L. S. da Fonseca, and R. Sakellariou,

"Scheduling in distributed systems: A cloud

computing perspective," Computer Science

Review, vol. 30, pp. 31-54, 2018, doi:

10.1016/j.cosrev.2018.08.002.

[7] M. S. Bonfim, K. L. Dias, and S. F. L. Fernandes,

"Integrated NFV/SDN Architectures: A

Systematic Literature Review," Acm Computing

Surveys, vol. 51, no. 6, pp. 39, 2019, doi:

10.1145/3172866.

[8] S. C. Chen, Q. J. Li, M. C. Zhou, and A. Abusorrah,

"Recent Advances in Collaborative Scheduling of

Computing Tasks in an Edge Computing

Paradigm," Sensors, vol. 21, no. 3, pp. 22, 2021,

doi: 10.3390/s21030779.

[9] B. K. Dewangan, A. Agarwal, T. Choudhury, A.

Pasricha, and S. C. Satapathy, "Extensive review of

cloud resource management techniques in industry

4.0: Issue and challenges," Software-Practice &

Experience, vol. 51, no. 12, pp. 2373-2392, 2021, doi:

10.1002/spe.2810.

[10] R. Ghafari, F. H. Kabutarkhani, and N. Mansouri,

"Task scheduling algorithms for energy optimization

in cloud environment: a comprehensive review,"

Cluster Computing-the Journal of Networks Software

Tools and Applications, vol. 25, no. 2, pp. 1035-1093,

2022, doi: 10.1007/s10586-021-03512-z.

[11] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian,

"Resource Management Approaches in Fog

Computing: a Comprehensive Review," Journal of

Grid Computing, vol. 18, no. 1, pp. 1-42, 2020, doi:

10.1007/s10723-019-09491-1.

[12] E. J. Ghomi, A. M. Rahmani, and N. N. Qader,

"Applying queue theory for modeling of cloud

computing: A systematic review," Concurrency and

Computation-Practice & Experience, vol. 31, no. 17,

pp. 31, 2019, doi: 10.1002/cpe.5186.

[13] M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo,

and A. Khoshnevis, "Multi-Objective Task and

Workflow Scheduling Approaches in Cloud

Computing: a Comprehensive Review," Journal of

Grid Computing, vol. 18, no. 3, pp. 327-356, 2020,

doi: 10.1007/s10723-020-09533-z.

[14] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N.

Suganthan, "Task Scheduling in Cloud Computing

based on Meta-heuristics: Review, Taxonomy, Open

Challenges, and Future Trends," Swarm and

Evolutionary Computation, vol. 62, pp. 41, 2021, doi:

10.1016/j.swevo.2021.100841.

[15] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R.

Buyya, "Resource Allocation and Task Scheduling in

Fog Computing and Internet of Everything

Environments: A Taxonomy, Review, and Future

Directions," Acm Computing Surveys, vol. 54, no.

11S, pp. 38, 2022, doi: 10.1145/3513002.

[16] A. B. Kanbar and K. Faraj, "Region aware dynamic

task scheduling and resource virtualization for load

balancing in IoT-fog multi-cloud environment,"

Future Generation Computer Systems-the

International Journal of Escience, vol. 137, pp. 70-86,

2022, doi: 10.1016/j.future.2022.06.005.

[17] Y. Y. Kang, L. Pan, and S. J. Liu, "Job scheduling for

big data analytical applications in clouds: A

taxonomy study," Future Generation Computer

Systems-the International Journal of Escience, vol.

135, pp. 129-145, 2022, doi:

10.1016/j.future.2022.04.035.

[18] P. Kansal, M. Kumar, and O. P. Verma,

"Classification of resource management approaches

in fog/edge paradigm and future research prospects: a

systematic review," Journal of Supercomputing, vol.

78, no. 11, pp. 13145-13204, 2022, doi:

10.1007/s11227-022-04338-1.

[19] N. Kaur, A. Kumar, and R. Kumar, "A systematic

review on task scheduling in Fog computing:

Taxonomy, tools, challenges, and future directions,"

170 Informatica 48 (2024) 159–170 J. Ma et al.

Concurrency and Computation-Practice &

Experience, vol. 33, no. 21, pp. 25, 2021, doi:

10.1002/cpe.6432.

[20] N. Khaledian, M. Voelp, S. Azizi, and M. H.

Shirvani, "AI-based & heuristic workflow

scheduling in cloud and fog computing: a

systematic review," Cluster Computing-the

Journal of Networks Software Tools and

Applications, vol., pp. 34, 2024, doi:

10.1007/s10586-024-04442-2.

[21] W. Khallouli and J. W. Huang, "Cluster resource

scheduling in cloud computing: literature review

and research challenges," Journal of

Supercomputing, vol. 78, no. 5, pp. 6898-6943,

2022, doi: 10.1007/s11227-021-04138-z.

[22] M. A. Khan, S. M. Khan, and S. K. Subramaniam,

"Security Issues In Cloud Computing Using Edge

Computing And Blockchain: Threat, Mitigation,

And Future Trends- A Systematic Literature

Review," Malaysian Journal of Computer Science,

vol. 36, no. 4, pp. 20, 2023, doi:

10.22452/mjcs.vol36no4.1.

[23] T. Khan, W. H. Tian, G. Y. Zhou, S. Ilager, M. M.

Gong, and R. Buyya, "Machine learning (ML)-

centric resource management in cloud computing:

A review and future directions," Journal of

Network and Computer Applications, vol. 204, pp.

17, 2022, doi: 10.1016/j.jnca.2022.103405.

[24] Z. A. Khan, I. A. Aziz, N. A. B. Osman, and I.

Ullah, "A Review on Task Scheduling Techniques

in Cloud and Fog Computing: Taxonomy, Tools,

Open Issues, Challenges, and Future Directions,"

Ieee Access, vol. 11, pp. 143417-143445, 2023,

doi: 10.1109/access.2023.3343877.

[25] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh,

"A comprehensive survey for scheduling

techniques in cloud computing," Journal of

Network and Computer Applications, vol. 143, pp.

1-33, 2019, doi: 10.1016/j.jnca.2019.06.006.

[26] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H.

Afifi, and M. Guizani, "Edge and fog computing

for IoT: A survey on current research activities &

future directions," Computer Communications, vol.

180, pp. 210-231, 2021, doi:

10.1016/j.comcom.2021.09.003.

[27] M. K. Lim, W. Q. Xiong, and Z. M. Lei, "Theory,

supporting technology and application analysis of

cloud manufacturing: a systematic and

comprehensive literature review," Industrial

Management & Data Systems, vol. 120, no. 8, pp.

1585-1614, 2020, doi: 10.1108/imds-10-2019-

0570.

[28] X. Y. Liu and R. Buyya, "Resource Management

and Scheduling in Distributed Stream Processing

Systems: A Taxonomy, Review, and Future

Directions," Acm Computing Surveys, vol. 53, no.

3, pp. 41, 2020, doi: 10.1145/3355399.

[29] Y. K. Liu, L. H. Wang, X. V. Wang, X. Xu, and L.

Zhang, "Scheduling in cloud manufacturing: state-

of-the-art and research challenges," International

Journal of Production Research, vol. 57, no. 15-16,

pp. 4854-4879, 2019, doi:

10.1080/00207543.2018.1449978.

[30] Y. Lohumi, D. Gangodkar, P. Srivastava, M. Z. Khan,

A. Alahmadi, and A. H. Alahmadi, "Load Balancing

in Cloud Environment: A State-of-the-Art Review,"

Ieee Access, vol. 11, pp. 134517-134530, 2023, doi:

10.1109/access.2023.3337146.

