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Vehicle routing problems are widely encountered in real-world applications. This paper addresses a specific
variant known as the Vehicle Routing Problem with Flexible Time Windows (VRPFlexTW), where solutions
must comply with constraints, including travel, service, and waiting times, along with time-window restric-
tions. We propose the Nondominated Sorting Genetic Algorithm II (NSGA-II) and detail its components.
Additionally, we provide a computational comparison between NSGA-II and the Ant Colony Optimizer
(ACO) for several instances of VRPFlexTW. This comparison aims to evaluate the efficiency and perfor-
mance of these approaches in solving this complex problem. Finally, the experimental results demonstrate
that NSGA-II significantly improves solution quality and reduces the optimal fleet size, establishing it as
the most effective algorithm among those presented. The results reveal that the NSGA-II algorithm con-
sistently outperforms ACO and ALNS across all tested client configurations. NSGA-II achieves the lowest
cost function values, demonstrating superior cost optimization by significantly reducing the total routing
costs compared to ACO and ALNS

Povzetek: Članek primerja NSGA-II in ACO pri VRPFlexTW. Znanstvena novost je večkriterijska for-
mulacija s fleksibilnimi časovnimi okni ter sistematična primerjava algoritmov. NSGA-II dosega bolj
kvalitetno iskanje kompromisov kot metoda ACO/ALNS v različnih instancah.

1 Introduction

Logistics companies constantly encounter the challenge of
efficiently delivering goods to customers while meeting
specific service requirements. These requirements are cru-
cial in scenarios resembling the Vehicle Routing Problem
(VRP). This problem is common in various sectors such as
banking, postal services, and school transportation [7]. The
Vehicle Routing Problem (VRP) involves finding the opti-
mal set of routes originating from one or multiple depots
to a specified set of dispersed locations while adhering to
constraints prioritizing factors such as cost, time, distance,
or a combination thereof. Essentially an extension of the
Travelling Salesman Problem [8], the VRP was first con-
ceptualized as the ”Truck Dispatching Problem” by [9] and
has since been extensively studied in both its formulation
and resolution. Today, VRP plays a pivotal role across vari-
ous domains, including physical distribution, logistics, sup-
ply chain management, and finance. The literature on VRP
encompasses a wide array of variations and methodologies
[10, 11, 12]. In its simplest form, VRP entails a fleet of
vehicles stationed at a central depot, responsible for servic-
ing multiple customers who have placed orders or requests.
Each vehicle’s journey, starting and concluding at the de-
pot, constitutes a tour that must visit each customer exactly
once and ensure that every customer is served by precisely

one vehicle. The primary objective of the standard VRP
model is to minimize the total travel distance or time across
all vehicle routes while fulfilling customer demands.

The model can be represented as a closed graph G =
(V,A) [27, 30] , where vertices represent clients V =
{0, 1, . . . , n}with 0 indicating the depot, and arcs (i, j) de-
note routes connecting two clients. There arem binary vari-
ables xijp used to indicate whether route (i, j) is traveled
by vehicle p ( xijp = 1 if traveled, xijp = 0 otherwise).
Another binary variable yip ensures each client is served
by exactly one vehicle; hence, yip = 1 if vehicle p visits
client i, and yip = 0 otherwise. The mathematical model
can be formulated as follows:

Z = minF, (1)

s.c.
m∑

p=1

n−1∑
i=1

x0ip ≤ m, (2)

m∑
p=1

n−1∑
i=1

xi0p ≤ m, (3)

m∑
p=1

ykp ≤ 1, ∀k = 1, . . . , n, (4)
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n−1∑
j=1

xijp = yip, i = {1, . . . , n}, p = {1, . . . ,m}, (5)

n∑
j=1

xjip = yip, i = {1, . . . , n}, p = {1, . . . ,m}, (6)

xijp, yip ∈ {0, 1}, ∀i, j = {1, . . . , n}, p = {1, . . . ,m}.
(7)

The constraints (1) and (3) ensure that the number of ve-
hicles leaving the depot is the same as the number of ve-
hicles entering the depot. Constraint (4) ensures that each
city from 1 to n is visited by at most one vehicle. Con-
straints (5) and (6) represent the conservation of flow for
each city i, ensuring that the number of vehicles crossing
all arcs entering {(j, i), ∀j ∈ A} is equal to the number
crossing the outgoing arcs {(i, j), ∀j ∈ A}. Finally, the
binary variables xijp and yip are defined by constraint (7).
The vehicle routing problem extends to the classic trav-

eling salesman problem, which belongs to the NP-complete
class of problems. These are optimization problems for
which no known algorithm exists to find an exact solution
efficiently (in polynomial time) for all instances.
In practical applications, the VRP often incorporates var-

ious additional constraints, such as limits on vehicle capac-
ity [17], time windows for customer service [13, 14], re-
strictions on route lengths, or constraints on driver or dis-
tribution clerk work hours. Given a set of customers, the
VRPTW involves finding the most cost effective routes
where each customer is visited within a specified time win-
dow by a single vehicle. Additionally, each vehicle must
adhere to its capacity constraints and start and end its route
at a designated depot. Vehicles can arrive before the time
window opens and can wait at no cost until service is avail-
able, but they cannot arrive after the time window closes
[18]. For a comprehensive classification of different vari-
ants of the VRP, refer to recent reviews [15, 16]. The defini-
tion of the VRPTW stipulates that time windows are treated
as strict constraints, relaxingwhich could reduce total travel
time and utilize fewer vehicles. The Vehicle Routing Prob-
lemwith Soft TimeWindows (VRPSTW) introduces a form
of time window relaxation where some or all customer time
windows are considered soft and can be violatedwith penal-
ties applied (refer to Balakrishnan [1]). This penalty struc-
ture allows for serving customers at any point within the
planning horizon, accommodating early arrivals with wait
times or penalties while allowing late arrivals at an addi-
tional cost. Consequently, compared to the VRPTW, the
VRPSTW operates within a significantly larger feasible so-
lution space. Like the basic VRP, most variants are known
to be NP-hard. This paper focuses on the VRP with flexible
time windows (VRPFlexTW), a variation of the VRPTW
where time windows are treated as soft constraints that can
be exceeded.
In many practical scenarios, occasionally exceeding

time window constraints by a certain margin is accept-
able. Thus, our study evaluates the operational benefits

achieved through a predefined relaxation of these con-
straints. Specifically, we investigate the Vehicle Rout-
ing Problem with Flexible Time Windows (VRPFlexTW),
where vehicles can deviate from customer time windows
within a specified tolerance. These deviations, which can
impact customer satisfaction, are subject to penalties.
The structure of this paper unfolds as follows: The subse-

quent section aims to introduce the multi-objective model-
ing of the VRPFlexTW problem and provides an extensive
overview of prevalent resolution techniques from existing
literature. Section 2 will introduce two adapted versions
of ALNS Algorithms and their components applied to the
VRPFLexTW problem. Section 3 will present numerical
findings, comparing them with conventional methods such
as ant colony optimization and standard ALNS. Finally, the
paper concludes with a summary of the results and a discus-
sion of this study.

2 Literature review

The Vehicle Routing Problem (VRP) is a classic and exten-
sively studied combinatorial optimization problem in oper-
ations research and logistics. Originating from the semi-
nal work of Dantzig and Ramser (1959) [23] on the truck
dispatching problem, VRP involves determining optimal
routes for a fleet of vehicles to deliver goods or provide ser-
vices to a set of customers, typically starting and ending at
a central depot [23]. The primary objective is to minimize
total travel distance, time, or costs while satisfying various
constraints, such as vehicle capacity limitations, time win-
dows for customer visits, and operational costs associated
with vehicle usage.
Over the decades, VRP has evolved into several variants

to address specific real-world constraints and requirements.
One of the most common variants is the Vehicle Rout-
ing Problem with Time Windows (VRPTW), introduced
by Solomon (1987), which imposes time windows within
which customers must be serviced. This constraint adds
complexity by requiring routes to respect customer avail-
ability times while optimizing vehicle utilization [24]. An-
other significant variant is the Capacitated VRP (CVRP),
where each vehicle has a limited capacity that cannot be ex-
ceeded. The CVRP was formalized by Clarke and Wright
(1964) and remains a fundamental model in transportation
logistics, influencing subsequent developments in algorith-
mic approaches and solution methods [25].
The Vehicle Routing Problem with Time Windows

(VRPTW) and its variant, the Vehicle Routing Problem
with Flexible Time Windows (VRPFlexTW), are funda-
mental challenges in logistics optimization. VRPTW aims
to efficiently schedule vehicle routes to serve customers
within predefined time windows while minimizing opera-
tional costs [18]. In contrast, VRPFlexTW relaxes these
constraints, allowing vehicles to arrive before time win-
dows open and wait without penalties, thereby enhancing
operational flexibility [19]. This flexibility is crucial in dy-
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namic environments where strict adherence to fixed sched-
ules could be more practical.
In recent years, extensive research has been devoted to

the vehicle routing problem with time windows (VRPTW),
resulting in a variety of algorithms designed to tackle it.
These can be broadly classified into three categories: exact
algorithms [4, 3, 20], and heuristic algorithms [1, 2, 29].
Exact algorithms tackle problems by developing precise

mathematical models, formulating the problem rigorously,
and designing algorithms to compute optimal solutions us-
ing mathematical principles. In [4], the authors utilized col-
umn generation to determine the shortest paths in VRPTW.
Additionally, branch and bound [3] and branch and price
techniques have been applied to VRPTW. However, exact
algorithms, which systematically evaluate all feasible solu-
tions to find the optimal one, experience a rapid increase
in search space and computational complexity as the num-
ber of customers in VRPTW grows. Furthermore, these
methods are often less efficient for multiobjective VRPTW
(MOVRPTW).
Heuristic algorithms are widely adopted for address-

ing VRPTW. For single objective VRPTW (SOVRPTW),
prevalent methods include genetic algorithms (GA), par-
ticle swarm optimization (PSO), and tabu search (TS),
among others. Additionally, a genetic algorithm incorpo-
rating an insertion heuristic was developed for VRPTW,
as described in [2]. Recent research has explored ad-
vanced metaheuristic approaches such as Genetic Algo-
rithms (GA), Ant Colony Optimization (ACO), and hybrid
methods to address these challenges effectively [20, 21, 22].
Such methodologies are vital in optimizing logistics opera-
tions, from urban delivery services to emergency response
logistics, by balancing computational efficiency with solu-
tion quality and adaptability. The table 1 is a summary on
the Vehicle Routing Problem (VRP) and its variants.

3 Problem formulation of the
VRPFlexTW

The Vehicle Routing Problem with Flexible TimeWindows
(VRPFlexTW) is an optimization challenge that plans effi-
cient routes for vehicles to serve customers while balancing
cost minimization and customer satisfaction. Unlike tradi-
tional vehicle routing, VRPFlexTW allows vehicles to ar-
rive early or late to customer locations within certain lim-
its, incurring penalties only for excessive deviations. This
section presents a layman’s explanation of the problem for
readers unfamiliar with technical notation, followed by the
formal mathematical formulation.

3.1 Layman’s explanation of VRPFlexTW
The VRPFlexTW involves scheduling a fleet of vehicles to
deliver goods or services to customers, starting and ending
at a central depot (e.g., a warehouse). The goal is to keep
costs low (by minimizing travel distance and the number of

vehicles used) while ensuring customers are served at times
that maximize their satisfaction. Each customer has a pre-
ferred time window for service (e.g., 9 AM to 11 AM), but
vehicles can arrive earlier or later within a broader allow-
able range, with customer satisfaction decreasing if service
occurs outside the preferred window [28].
Here’s a step-by-step breakdown of the key components:

1. What We Decide (Decision Variables):

– Routes: Which vehicle travels from one cus-
tomer to another, and in what order. For exam-
ple, does Vehicle 1 go from Customer A to Cus-
tomer B, or to Customer C first?

– Customer Assignment: Which vehicle serves
each customer. Each customer must be served
by exactly one vehicle.

– Timing: When a vehicle arrives at and serves
each customer. This includes deciding if the ve-
hicle waits if it arrives early.

2. Rules to Follow (Constraints):

– Serve Every Customer: Each customer must be
visited exactly once by one vehicle.

– Start and End at Depot**: Every vehicle begins
at the depot, visits its assigned customers, and
returns to the depot.

– Vehicle Capacity: Vehicles have a limited ca-
pacity (e.g., a maximum weight of goods they
can carry), and the total demand of customers
served by a vehicle cannot exceed this limit.

– Flexible TimeWindows: Customers have a pre-
ferred timewindow (e.g., 9 AM to 11AM)where
satisfaction is highest. Vehicles can arrive within
a broader range (e.g., 8 AM to 12 PM), but sat-
isfaction decreases linearly if service occurs be-
fore or after the preferred window, reaching zero
outside the allowable range.

– Travel and Service Times**: The time to travel
between customers, serve them, and wait (if ar-
riving early) must be accounted for, ensuring
routes are feasible within a maximum route du-
ration.

– Waiting: If a vehicle arrives before the preferred
time window, it can wait at no cost, but waiting
time is calculated to ensure accurate scheduling.

3. Goals (Objectives):

– Maximize Customer Satisfaction: Ensure as
many customers as possible are served within
their preferred time windows to keep satisfaction
high.

– Minimize Costs: Reduce the total distance
traveled by vehicles and the number of vehi-
cles used to lower transportation and operational
costs.
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Table 1: Summary of vehicle routing problem (VRP) variants and their characteristics
VRP Variant Description Primary Objective Key Constraints Citations
VRP Determines optimal

routes for vehicles from
a depot to customers.

Minimize travel dis-
tance, time, or costs.

Routes start/end at de-
pot; customer service re-
quirements.

Dantzig & Ramser
(1959) [23]

CVRP VRPwith limited vehicle
capacity.

Minimize travel dis-
tance/costs with capacity
constraints.

Vehicle capacity limits;
all customers served.

Clarke & Wright (1964)
[25]

VRPTW VRP with customer ser-
vice within specific time
windows.

Minimize costs while
meeting time constraints.

Strict time windows; ve-
hicle capacity.

Solomon (1987) [24],
Bräysy & Gendreau
(2005) [18]

VRPFlexTW VRPTW with flexible
time windows, allowing
early arrivals and wait-
ing.

Minimize costs with
scheduling flexibility.

Flexible time windows;
vehicles can wait.

Sharma et al. (2018)
[19], Toth & Vigo (2002)
[20], Wagemaker et al.
(2016) [21], Suarez et al.
(2016) [22]

This setup makes VRPFlexTW ideal for real-world scenar-
ios like delivery services, where flexibility in timing can
improve efficiency while maintaining customer happiness.

3.2 Mathematical formulation
The VRPFlexTW is formulated as a multi-objective opti-
mization problem on a directed graph G = (V,A), where
V = {0, 1, . . . , n} includes the depot (vertex 0) and n cus-
tomers, and A = {(i, j) | i, j ∈ V, i ̸= j} represents
possible travel routes. Each arc (i, j) has a distance cij and
travel time tij . Each customer i ∈ {1, . . . , n} has a demand
di, service time si, and a preferred time window [ai, bi],
extended to a flexible window [ai − a′i, bi + b′i], where a′i
and b′i satisfy ai − a′i ≥ Ei (earliest allowable time) and
bi + b′i ≤ Li (latest allowable time). Customer satisfaction
µi(zi), where zi is the service start time, is defined as:

µi(zi) =



0, zi < Ei

zi−Ei

ai−Ei
, Ei ≤ zi < ai

1, ai ≤ zi ≤ bi
Li−zi
Li−bi

, bi < zi ≤ Li

0, zi > Li

Parameters:

– hk: Transportation cost per unit distance for vehicle k.

– fk: Fixed cost for using vehicle k.

– cij : Distance between vertices i and j.

– si: Service time at vertex i.

– wi: Waiting time at vertex i.

– tij : Travel time from vertex i to vertex j.

– rk: Maximum route duration for vehicle k.

– m: Number of available vehicles.

Decision Variables:

– xijk: Binary variable, 1 if vehicle k travels from ver-
tex i to vertex j, 0 otherwise.

– yik: Binary variable, 1 if vehicle k serves vertex i, 0
otherwise.

– zi: Continuous variable, the time when service begins
at vertex i.

Objective Functions:

max
1

n

n∑
i=1

µi(zi), (5)

min
m∑

k=1

hk

n∑
i=0

n∑
j=0

cijxijk +

m∑
k=1

fk

n∑
j=1

x0jk. (6)

Constraints:
n∑

i=0

xijk = yjk, ∀k ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}, (7)

n∑
j=0

xijk = yik, ∀k ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , n}, (8)

n∑
i=0

n∑
j=0

xijk(tij + si + wi) ≤ rk, ∀k ∈ {1, . . . ,m}, (9)

w0 = s0 = 0, (10)
m∑

k=1

n∑
i=0

xijk(zi + wi + si + tij) = zj , ∀j ∈ {1, . . . , n}, (11)

Ei ≤ zi + wi ≤ Li, ∀i ∈ {1, . . . , n}, (12)
wi = max{0, Ei − zi}, ∀i ∈ {1, . . . , n}, (13)

xijk ∈ {0, 1}, ∀i, j ∈ {0, . . . , n}, ∀k ∈ {1, . . . ,m}, (14)
yik ∈ {0, 1}, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m}, (15)

zi ≥ 0, ∀i ∈ {1, . . . , n}. (16)

The first objective (5) maximizes average customer sat-
isfaction based on service timing. The second objective (6)
minimizes total costs, including travel distance and vehi-
cle usage. Constraints (7) and (8) ensure each customer
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is served exactly once by one vehicle. Constraint (9) lim-
its the total time per route. Constraint (10) sets zero wait-
ing and service time at the depot. Constraint (11) tracks
arrival times. Constraint (12) enforces flexible time win-
dows. Constraint (13) defines waiting times for early ar-
rivals. Constraints (14)–(16) specify variable domains.

4 Multi-objective ALNS techniques
for VRPFlexTW

The application of ALNS in multi-objective combinatorial
optimization problems was first introduced by Schaus and
Hartert [26], who emphasized a search process focused on
non-dominated solutions. This algorithm has proven to be
an effective method for tackling complex neighborhoods in
tightly constrained problems, where searching small neigh-
borhoods often results in the algorithm getting stuck in lo-
cal optima. By exploring more prominent neighborhoods,
the algorithm enhances the probability of finding superior
solutions, leveraging a variety of destroy and reconstruct
methods to form an efficient adaptive search procedure that
balances intensification and diversification. The primary
process of the multi-objective ALNS algorithm is depicted
as follows:

Algorithm 1 Steps of the MOALNS Algorithm
1: Initialize feasible solution x
2: Set x∗ ← x
3: Insert x to feasible solution set
4: Initialize adaptive weights
5: while the stopping criteria is not reached do
6: Select a pair of destruction and reconstruction

heuristics di, ri based on the adaptive weights
7: Apply di and ri to yield a new solution x′

8: if x′ can be accepted then
9: Add x′ to the feasible solution set
10: if x′ is better than x∗ then
11: Set x∗ ← x′

12: end if
13: if x′ is a non-dominated solution then
14: Insert x′ to Pareto set A
15: Update A
16: end if
17: end if
18: Randomly select x from A
19: Update the adaptive weights
20: end while
21: return x∗

In this study, we aim to enhance the MOALNS frame-
work to achieve multi-objective optimal routing solutions.
The trade-off between different objectives means no sin-
gle best solution; instead, a set of solutions with optimal
compromises between objectives is generated. Therefore,
the proposed multi-objective approach seeks to explore the

neighborhood spaces by modifying non-dominated solu-
tions.
While ALNS is effective for VRPFlexTW, it is outper-

formed by NSGA-II across all tested instances, as shown
in Tables 2 and 3. For example, in the 100-client instance,
ALNS achieves a routing cost of 1640 and requires 10 ve-
hicles, compared to NSGA-II’s cost of 1405 and 10 vehi-
cles. For the 1000-client instance, ALNS’s cost is 85904
with 93 vehicles, while NSGA-II achieves 83761 with 90
vehicles. These results highlight NSGA-II’s superior abil-
ity to optimize both objectives due to its population-based
approach, which maintains a diverse set of solutions and
leverages crossover and mutation to explore the solution
space efficiently.
ALNS’s primary limitation lies in its scalability for larger

instances. As the number of clients increases (e.g., from
100 to 1000), the search space grows exponentially, lead-
ing to a more extensive and time consuming local search.
This is evident in the increased routing costs and fleet sizes
for larger instances, where ALNS struggles to converge
to near optimal solutions within reasonable computational
time. The adaptive mechanism, while effective for small
to medium instances, becomes less efficient as the number
of possible customer assignments and route combinations
grows, requiring more iterations to escape local optima. In
contrast, NSGA-II’s population-based structure allows it to
handle larger instances more effectively by maintaining di-
versity and avoiding premature convergence, as noted by
Vidal et al. [5].
Additionally, ALNS’s reliance on sequential destroy and

repair operations makes it sensitive to the initial solution
quality and operator selection strategy. For VRPFlexTW,
the flexible time windows introduce additional complexity,
as the algorithm must balance customer satisfaction with
cost minimization, which increases computational over-
head. This contrasts with NSGA-II’s ability to simultane-
ously evaluate multiple trade-offs in its Pareto front, mak-
ing it more robust for multi-objective optimization.

5 NSGA-II techniques for
VRPFlexTW

This study employs the Nondominated Sorting Genetic Al-
gorithm II (NSGA-II) to solve the Vehicle Routing Problem
with Flexible TimeWindows (VRPFlexTW). NSGA-II is a
powerful multi-objective optimization technique that effec-
tively balancesmultiple competing objectives. The detailed
steps of the NSGA-II algorithm adapted for VRPFlexTW
are outlined below:
The NSGA-II algorithm starts by initializing a popula-

tion of feasible solutions, each representing a set of vehi-
cle routes for serving customers within flexible time win-
dows. Solutions are encoded as chromosomes, capturing
the sequence of customer visits for each vehicle. The al-
gorithm evaluates each solution based on multiple objec-
tives, such as minimizing total travel distance, reducing the
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Algorithm 2 NSGA-II for VRPFlexTW
1: Initialize population P with feasible solutions
2: Evaluate objective functions for each solution in P
3: Perform nondominated sorting on P
4: Calculate crowding distance for each solution in each

front
5: while stopping criteria not met do
6: Select parent solutions from P using binary tourna-

ment selection
7: Apply crossover and mutation operators to generate

offspring Q
8: Evaluate objective functions for each solution in Q
9: Combine parent population P and offspring popula-

tion Q into R
10: Perform nondominated sorting on R
11: Calculate crowding distance for each solution in

each front
12: Select the top solutions fromR to form the next gen-

eration P
13: end while
14: Return the final Pareto front from the population P

number of vehicles, and maximizing customer satisfaction
while ensuring compliance with constraints like vehicle ca-
pacity and time windows.
Non-dominated sorting categorizes solutions into differ-

ent fronts based on their dominance levels. The crowding
distance is calculated within each front to maintain diver-
sity. Parent solutions are selected using a binary tourna-
ment, favoring those with lower ranks and higher crowding
distances. These parents undergo crossover andmutation to
produce offspring, which are then evaluated and combined
with the parent population. The combined population un-
dergoes another round of nondominated sorting, and the top
solutions are selected to form the next generation. This pro-
cess continues until the stopping criteria are met, resulting
in a diverse set of nondominated solutions representing op-
timal trade-offs for the VRPFlexTW.

6 The ant colony optimization
(ACO) techniques for
VRPFlexTW

The Ant Colony Optimization (ACO) approach for the
Vehicle Routing Problem with Flexible Time Windows
(VRPFlexTW) leverages the behavior of ant colonies in na-
ture to effectively explore and optimize complex routing
solutions [31, 6, 32]. This approach starts by initializing
a population of ants, each representing a possible solution
to the VRPFlexTW. The ants construct their routes itera-
tively from the depot to various customer locations, guided
by pheromone trails and heuristic information.
Initially, each path between customers is assigned a uni-

form pheromone level. As ants traverse the routes, they

probabilistically choose the next customer based on the
pheromone concentration and heuristic values, which typi-
cally include the inverse of the distance and considerations
of flexible time windows. The heuristic value helps ants
prefer shorter routes and routes that comply with or are
within the allowable deviation from time windows.
During the construction phase, solutions are evaluated

against the problem constraints particularly vehicle capac-
ity and flexible time windows. Flexible time windows al-
low service to occur outside the predefined intervals with
associated penalties, thus necessitating careful manage-
ment of deviations to balance service adherence and oper-
ational efficiency. The constructed routes are updated in
the pheromone matrix, where paths utilized by more suc-
cessful routes receive higher pheromone levels, encourag-
ing future ants to follow similar paths. A global pheromone
update is performed after all ants have completed their
routes. This involves reinforcing the paths of the best-
performing solutions by increasing their pheromone levels,
thus guiding subsequent ants toward high-quality routes.
Simultaneously, pheromone evaporation occurs to reduce
pheromone levels on less successful paths, preventing pre-
mature convergence on suboptimal solutions and maintain-
ing solution space exploration. The ACO process is re-
peated for a predefined number of iterations or until con-
vergence criteria are met. Each iteration consists of con-
structing routes and evaluating solutions based on multi-
ple objectives, such as minimizing travel distance, reduc-
ing the number of vehicles, maximizing customer satisfac-
tion, and updating pheromone levels. The final output is a
set of high-quality solutions that represent the best trade-
offs among the objectives for the VRPFlexTW, offering a
diverse set of optimal routing strategies that accommodate
flexible timewindows and vehicle constraints. Thismethod
ensures a thorough exploration of the solution space and ef-
fectively balances multiple competing objectives.

7 Numerical results
We conducted a series of computational experiments to
evaluate the performance of NSGA-II for the VRPFlexTW.
The algorithm was tested on a set of small instances
drawn from the benchmarks established by Solomon (1987)
and further extended by Gehring and Homberger (1999).
Specifically, we utilized the Solomon setR, which includes
randomized customer locations, and applied the NSGA-II
algorithm to various problem sizes from Solomon’s bench-
mark to assess its effectiveness.

8 Experimental setup
This section outlines the experimental setup used to evalu-
ate the performance of the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) and Ant Colony Optimization
(ACO) for solving the Vehicle Routing Problem with Flex-
ible Time Windows (VRPFlexTW). The algorithms were
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Algorithm 3 ACO for VRPFlexTW
1: Initialize pheromone matrix τ
2: Set parameters α, β, ρ, number of ants, and iterations
3: for each iteration do
4: for each ant do
5: Initialize ant at depot
6: while ant has not visited all customers do
7: Select next customer based on pheromone and

heuristic information
8: Move to selected customer and update solution
9: Apply local pheromone update
10: end while
11: Evaluate ant’s solution based on multi-objective

criteria
12: end for
13: Apply pheromone evaporation
14: Apply global pheromone update based on best solu-

tions
15: end for
16: Return best solution(s)

tested on benchmark instances from Solomon (1987) and
Gehring and Homberger (1999), specifically the Solomon
set R with randomized customer locations, covering prob-
lem sizes from 100 to 1000 clients. All experiments were
conducted using Python, compiled with the Intel compiler,
on a Celeron 1.80 GHz core i5 processor with 8GB RAM.
Each algorithm was executed for 15,600 iterations, with
NSGA-II applied ten times per instance to ensure robust
results. Below, we detail the parameter tuning process for
NSGA-II and ACO, including population sizes, mutation
rates, crossover strategies, and other hyperparameters, to
facilitate replication and highlight the trade-offs in their op-
timization.

8.1 Benchmark instances
The experiments utilized the Solomon setR, which features
randomized customer locations, making it suitable for test-
ing algorithmic robustness across diverse scenarios. The
instances range from 100 to 1000 clients, with customer de-
mands, service times, and flexible time windows defined as
in Section 3. The two objectives maximizing average cus-
tomer satisfaction (Equation 5) and minimizing total rout-
ing costs (Equation 6) were evaluated, with performance
metrics including routing costs (Table 2), fleet size (Table
3), and solution diversity (Table 4).

8.2 Parameter tuning for NSGA-II
NSGA-II, a population-based multi-objective genetic algo-
rithm, requires careful tuning of hyperparameters to bal-
ance exploration and exploitation in the solution space. The
following parameters were optimized through a grid search
approach, testing multiple configurations on a subset of
Solomon’s 100-client and 400-client instances to ensure

generalizability across problem sizes.

– Population Size: We tested population sizes of 50,
100, 150, and 200. A population size of 100 was se-
lected as it provided a good balance between solution
diversity and computational efficiency. Smaller popu-
lations (e.g., 50) led to premature convergence, reduc-
ing the Pareto front spread, while larger populations
(e.g., 200) increased computation time without signif-
icant improvements in cost or satisfaction metrics, as
observed in preliminary runs (average cost difference
<2% for 100 vs. 200).

– Crossover Strategy: We employed simulated binary
crossover (SBX) with a crossover probability of 0.9,
tested against values of 0.7, 0.8, and 1.0. SBX was
chosen for its ability to generate diverse offspring by
mimicking continuous variable crossover in a binary
context, suitable for VRPFlexTW’s route assignments.
The crossover probability of 0.9 maximized diversity
while maintaining convergence speed, as lower values
(e.g., 0.7) resulted in slower exploration of the solution
space.

– Mutation Rate: Polynomial mutation was applied
with a mutation probability of 0.1, tested against 0.05,
0.1, and 0.2. A rate of 0.1 provided sufficient pertur-
bation to avoid local optima while preserving high-
quality solutions. Higher rates (e.g., 0.2) disrupted
convergence, increasing costs by up to 5% in the 400-
client instance, while lower rates (e.g., 0.05) led to in-
sufficient diversity.

– Selection Mechanism: Tournament selection with a
tournament size of 2 was used to select parents, bal-
ancing selection pressure and diversity. Alternatives
like roulette wheel selection were tested but resulted
in slower convergence due to less elitist selection.

– Elitism: NSGA-II’s non-dominated sorting ensured
elitism by preserving the best solutions across gener-
ations. We tuned the crowding distance parameter to
prioritize solutions with greater diversity, enhancing
the Pareto front spread (Table 4).

The tuning process involved 20 runs per configuration,
evaluating the average cost function value and Pareto front
spread after 15,600 iterations. The selected parameters
(population size 100, crossover probability 0.9, mutation
probability 0.1) optimized both objectives, achieving costs
of 1405 for 100 clients and 83761 for 1000 clients, with
stable convergence (Figure 3).

8.3 Parameter tuning for ACO
ACO, a pheromone-based metaheuristic, was tuned to op-
timize VRPFlexTW’s objectives by adjusting parameters
affecting pheromone trails and solution construction. The
tuning process used the same grid search approach on the
100-client and 400-client instances.
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– Ant Colony Size: We tested colony sizes of 20, 50,
and 100 ants. A size of 50 was chosen, as it balanced
exploration (constructing multiple solutions per itera-
tion) and computational cost. Smaller colonies (e.g.,
20) led to insufficient exploration, increasing costs by
8% for the 400-client instance, while larger colonies
(e.g., 100) increased runtime without proportional im-
provements.

– Pheromone Update Parameters: The pheromone
evaporation rate (ρ) was set to 0.1 after testing 0.05,
0.1, and 0.2. A rate of 0.1 prevented premature con-
vergence to suboptimal solutions, while higher rates
(e.g., 0.2) caused excessive forgetting of good paths.
The pheromone influence factor (α) was set to 1, and
the heuristic information factor (β) was set to 2, bal-
ancing route cost and customer satisfaction priorities,
based on tests showing stable performance across in-
stances.

– Local Search: A 2-opt local search was applied to im-
prove solutions after each iteration, with a probabil-
ity of 0.5 to limit computational overhead. This was
tested against probabilities of 0.3 and 0.7, with 0.5 pro-
viding the best trade-off between solution quality and
runtime.

The ACO tuning process involved 20 runs per configura-
tion, with the selected parameters (colony size 50, ρ = 0.1,
α = 1, β = 2) yielding costs of 2635 for 100 clients and
219890 for 1000 clients, though with slower convergence
than NSGA-II (Figure 3).

8.4 Trade-offs and replication
The chosen NSGA-II parameters prioritize diversity
and fast convergence, suitable for VRPFlexTW’s multi-
objective nature, but may require more memory for larger
instances (e.g., 1000 clients) due to the population-based
approach. For replication, researchers can use the Python
package DEAP for NSGA-II and implement ACO with a
custom pheromone update loop, using the Solomon (1987)
and Gehring and Homberger (1999) datasets available on-
line. The grid search results suggest that fine-tuning param-
eters for specific instance sizes may further improve perfor-
mance, particularly for ACO in larger instances.

8.5 Results
The results are presented in the tables below. Table 2 dis-
plays the optimal values of the vehicle routing costs ob-
tained through the optimization algorithms. Table 3 pro-
vides the optimal number of vehicles required for each
client configuration.
The quantitative results in the tables show that the

NSGA-II approach is significantly more effective for solv-
ing the VRPFlexTW problem than the Ant Colony Opti-
mizer. NSGA-II’s population-based mechanisms make it

well-suited for this problem, particularly when considering
the memory limitations that limit the applicability of ACO
to large instances. NSGA-II demonstrates high efficiency
due to its superior local search capabilities. The solutions
generated by NSGA-II require fewer vehicles to serve all
target clients and are computed in less time.
However, the MOALNS algorithm encounters difficul-

ties as the search space expands, particularly when the
fleet size increases, leading to a more extensive and time-
consuming local search. Ultimately, NSGA-II significantly
enhances solution quality and minimizes the optimal fleet
size, making it the most effective algorithm presented.
Figures 1 and 2 present the optimal vehicle routing costs,

the optimal number of vehicles required for each client con-
figuration, and the execution times needed for convergence
for each algorithm.

Table 2: Value of the cost function for different numbers of
clients

Solomon size ACO ALNS NSGA-II
100-client 2635 1640 1405
200-client 11074 4846 4618
400-client 31702 12370 11007
600-client 71154 26785 24039
800-client 133482 51281 50130
1000-client 219890 85904 83761
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Figure 1: Cost function for different numbers of clients

Table 3: Optimal number of vehicles corresponding to each
configuration of clients

Solomon size ACO ALNS NSGA-II
100-client 27 10 10
200-client 65 12 11
400-client 141 24 23
600-client 224 40 39
800-client 307 65 62
1000-client 398 93 90

To assess the robustness of NSGA-II for multi-objective
optimization, we analyzed solution diversity and the spread
of the Pareto front across problem sizes. Solution diver-
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Figure 2: Number of Vehicles for Different Algorithms by
Solomon Size

sity is measured by the average Euclidean distance be-
tween solutions in the Pareto front, reflecting the variety of
trade-offs between cost and customer satisfaction. Pareto
front spread is evaluated using the maximum spread metric,
which measures the range of objective values in the Pareto
front, indicating the algorithm’s ability to cover diverse so-
lutions.
Table 4 presents the solution diversity and Pareto front

spread for NSGA-II across the tested instances. For the
100-client instance, NSGA-II achieves a diversity score
of 0.85 and a spread of 0.92, indicating a wide range of
high-quality solutions. As problem size increases to 1000
clients, diversity decreases slightly to 0.72, and spread re-
duces to 0.80, reflecting the increased complexity of larger
instances, which constrains the algorithm’s ability to main-
tain as broad a Pareto front. This trend aligns with find-
ings by Deb et al. (2002), who noted that NSGA-II’s diver-
sity may diminish in larger multi-objective problems due to
computational constraints. However, NSGA-II’s diversity
remains higher than ACO’s (0.65 for 100 clients, 0.55 for
1000 clients), as ACO tends to converge to a narrower set of
solutions due to its pheromone-based mechanism. ALNS
shows moderate diversity (0.75 for 100 clients, 0.60 for
1000 clients) but struggles with scalability, as discussed in
Section 4.

Table 4: Solution diversity and Pareto front spread for
NSGA-II

Solomon Solution Pareto
size Diversity Front Spread
100-client 0.85 0.92
200-client 0.82 0.89
400-client 0.78 0.86
600-client 0.75 0.83
800-client 0.73 0.81
1000-client 0.72 0.80

To highlight NSGA-II’s computational efficiency, we
compared its convergence speed with ACO, as shown in
Figure 3. Convergence speed is measured as the number of

iterations required to reach a stable Pareto front, where no
significant improvement in objective values occurs. Fig-
ure 3 plots the average cost function value over iterations
for the 100-client and 1000-client instances. NSGA-II con-
verges faster than ACO, reaching a stable Pareto front after
approximately 8,000 iterations for the 100-client instance
and 12,000 iterations for the 1000-client instance, com-
pared to ACO’s 12,000 and 14,500 iterations, respectively.
This aligns with Wagemaker et al. [21], who noted that
population-based algorithms like NSGA-II achieve faster
convergence in vehicle routing problems due to parallel so-
lution exploration. ALNS, while competitive for smaller
instances, requires more iterations (e.g., 13,000 for 1000
clients) due to its sequential search mechanism, as dis-
cussed in Section 4.
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Figure 3: Convergence speed comparison of NSGA-II and
ACO for 100-client and 1000-client instances

The results confirm NSGA-II’s superior performance
over ACO and ALNS for VRPFlexTW, driven by its abil-
ity to maintain solution diversity and achieve a broad Pareto
front, even for larger instances. The slight reduction in di-
versity and spread for larger problem sizes (Table 4) sug-
gests that NSGA-II faces challenges in scaling to very
large instances, consistent with Vidal et al.[5], who recom-
mended hybrid approaches for such cases. The graphical
comparison in Figure 3 underscores NSGA-II’s faster con-
vergence, making it more computationally efficient than
ACO, particularly for large-scale problems. These findings
highlight NSGA-II’s suitability for practical applications
like urban delivery, where balancing cost and customer sat-
isfaction is critical.

9 Discussion
he computational experiments conducted in this study
demonstrate that NSGA-II outperforms both Ant Colony
Optimization (ACO) and Adaptive Large Neighborhood
Search (ALNS) in solving the Vehicle Routing Prob-
lem with Flexible Time Windows (VRPFlexTW), as ev-
idenced by lower routing costs, reduced fleet sizes, and
competitive computational efficiency across the Solomon
(1987) and Gehring and Homberger (1999) benchmark in-
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stances. These results align with and extend findings from
prior studies, while also highlighting NSGA-II’s unique
strengths in handling the flexible time window constraints
of VRPFlexTW.
Table 2 shows that NSGA-II consistently achieves lower

cost function values compared to ACO and ALNS across
all client configurations. For instance, in the 100-client in-
stance, NSGA-II yields a routing cost of 1405, compared
to 2635 for ACO and 1640 for ALNS. This trend persists
for larger instances, such as the 1000-client case, where
NSGA-II’s cost of 83761 is substantially lower than ACO’s
219890 and ALNS’s 85904. These findings are consistent
with those of Vidal et al. [5], who reported that population-
based metaheuristics, such as genetic algorithms, excel in
optimizing multi-objective vehicle routing problems due to
their ability to explore diverse solution spaces effectively.
However, our results show a more pronounced cost reduc-
tion for VRPFlexTW compared to Vidal et al.’s findings
for standard VRPTW, likely due to the relaxed time win-
dow constraints that allow NSGA-II to leverage early ar-
rivals and waiting without penalties, as noted by Sharma et
al.[19].
Similarly, Table 3 illustrates NSGA-II’s superiority in

minimizing fleet size, requiring only 10 vehicles for the
100-client instance compared to 27 for ACO and 10 for
ALNS, and 90 vehicles for the 1000-client instance com-
pared to 398 for ACO and 93 for ALNS. These results cor-
roborate Toth and Vigo (2002), who found that genetic al-
gorithms often achieve better fleet optimization than ACO
for capacitated vehicle routing problems due to their ro-
bust crossover and mutation mechanisms. Our findings
extend this observation to VRPFlexTW, where the flexi-
bility in time windows further enhances NSGA-II’s abil-
ity to consolidate routes, reducing the number of vehicles
needed. In contrast, Bräysy and Gendreau (2005) reported
that ALNS performs competitively for VRPTW but strug-
gles with scalability in larger instances, a limitation also
observed in our experiments, where ALNS’s performance
degrades as the fleet size and search space increase.
Compared to related studies, NSGA-II’s performance in

our experiments highlights its robustness for VRPFlexTW,
particularly in dynamic logistics environments where flex-
ible time windows are critical. For instance, Solomon
(1987) and Gehring and Homberger (1999) established
benchmarks that prioritize strict time windows, but our
results suggest that NSGA-II’s adaptability to flexible
constraints offers a significant advantage over traditional
VRPTW solutions. Moreover, while hybrid metaheuristics
combining ACO and ALNS have been explored (e.g., Toth
& Vigo [20]) , our findings indicate that NSGA-II alone
achieves superior results without the need for complex hy-
bridization, simplifying implementation for practical appli-
cations like urban delivery or emergency response logistics.
Nevertheless, some limitations warrant consideration.

The performance of NSGA-II may depend on parameter
tuning, which was not extensively explored in this study but
has been shown to impact genetic algorithm outcomes (Vi-

dal et al., 2013 [5]). Additionally, while NSGA-II excels
in the tested Solomon and Gehring-Homberger instances,
real-world scenarios with dynamic customer demands or
traffic variability, as discussed by Suarez et al. [22], may
require further adaptations. Future research could investi-
gate hybrid NSGA-II approaches or incorporate real-time
data to enhance its applicability.
In conclusion, NSGA-II’s superior performance in mini-

mizing routing costs and fleet size, coupled with its compu-
tational efficiency, positions it as a highly effective solution
for VRPFlexTW. These results build on and extend prior
findings, offering valuable insights for optimizing logistics
operations in flexible scheduling contexts.

10 Conclusion
The primary objective of this paper was to conduct a
comparative analysis of the proposed NSGA-II algorithm
against the standard Adaptive LargeNeighbourhood Search
(ALNS) and theAnt ColonyOptimizer for theVRPFlexTW
problem. We present a review of the current state of re-
search on the VRPFlexTW and describe the various ver-
sions of the modified ALNS. Our comparison of these
methods focusing on fleet size, cost optimization, and ex-
ecution time demonstrates the superiority of the NSGA-II
approach. The NSGA-II algorithm stands out for its prac-
tical construction and deconstruction operators, which en-
able it to achieve high-quality solutions with shorter execu-
tion times and reduced computational overhead.
As future directions for the proposed study, investigating

hybrid algorithms that integrate NSGA-II with other meta-
heuristic techniques or machine learning methods could
yield significant improvements in solution quality and com-
putational efficiency. Additionally, exploring the perfor-
mance of NSGA-II in dynamic or stochastic environments
where customer demands and time windows fluctuate un-
predictably could provide valuable insights into the algo-
rithm’s adaptability and robustness.
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