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In a number of industries, including computer graphics, robotics, and medical imaging, three-dimensional 

reconstruction is essential. In this research, a CNN-based Multi-output and Multi-Task Regressor with 

deep learning capabilities is proposed for three-dimensional object reconstruction from 3D point cloud. 

Our approach is grounded in the original Point Net architecture, which addresses the difficulties associated 

with convolution when applied to point clouds. Firstly, this paper is modified using a Multi-Output 

Regressor to accurately recreate Super forms from 3D point clouds. Using this method, we first extract 

features from the 3D point cloud using Point Net. After that, a Multi-Output Regressor receives these data 

and uses them to anticipate the Super shape parameters needed to reconstruct the shape. Taking in the 

data, the Multi-Output Regressor retrieved characteristics from Point Net and simultaneously predicts 

several outcomes. Second, a Multi-Task Regressor is used to modify the Point Net. The network gains from 

the capacity to transfer knowledge from one task to another, improving the model's overall performance. 

The model would forecast the ten parameters needed to create the shape in the case of rebuilding Super 

shapes. The test findings were better than expected; they are intriguing in terms of prediction accuracy and 

cost, and they update the result by 80%, which is a good accomplishment for the study. 

Povzetek: Raziskava predlaga večizhodni in večopravilni regresor na osnovi CNN za rekonstrukcijo 3D 

oblike iz oblaka točk. 

 

1 Introduction 

1.1 Importance and challenges of three-

dimensional reconstruction 

Three-dimensional reconstruction is an essential task in 

computer vision, as it enables us to create accurate 3D 

models of objects and scenes from different data. These 

3D models can be used for a wide range of applications, 

including object recognition, tracking, localization, and 

segmentation. For instance, in object recognition, 3D 

models can have used to create a database of 3D models 

of objects, allowing a computer vision system to recognize 

objects based on their 3D shape, rather than just 2D 

appearance [1]. Additionally, in tracking, 3D models can 

be used to estimate the position and orientation of an 

object in 3D space, enabling the system to track the object 

even when it is partially occluded or when the viewpoint 

changes. Overall, 3D reconstruction plays a crucial role in 

advancing computer vision applications, and it has the 

potential to enhance the accuracy and efficiency of various 

computer vision systems. However, 3D reconstruction is 

a complex and challenging task and it requires accurate 

estimation of the camera parameters, feature detection, 

matching, and triangulation.  

 

 

These challenges increase when dealing with noisy, 

incomplete, or low-quality data [2].  

1.2 Evolution of techniques  

To overcome these challenges, researchers have proposed 

various techniques to improve the accuracy and efficiency 

of three-dimensional reconstruction [3]. Recently, deep 

learning approaches have gained significant attention in 

the field of three-dimensional reconstruction. Artificial 

Intelligence (AI) algorithms such as Convolutional Neural 

Networks (CNNs) [4], Generative Adversarial Networks 

(GANs) [5], and Recurrent Neural Networks (RNNs) [6] 

have shown promising results in solving different 

problems in three-dimensional reconstruction, such as 

feature detection, depth estimation, and shape completion. 

These techniques have the potential to revolutionize the 

way we reconstruct 3D models. However, there are still 

many challenges that need to be addressed, such as data 

acquisition, training data availability, and computational 

efficiency. Therefore, it is essential to do more research in 

the field of three-dimensional reconstruction, especially 

using deep learning approaches. More efforts are needed 

to develop new algorithms, improve the accuracy and 

efficiency of existing techniques, and explore new 
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applications of three-dimensional reconstruction. By 

doing so, we can overcome the current limitations and 

challenges and unlock the full potential of three-

dimensional reconstruction in various fields [7]. 

1.3 Proposal of research contribution 

Our research is aligned with this overarching theme. We 

focus on modeling 3D objects using a parametrized 

surface, specifically Super shapes [8]. These Supershapes 

are versatile geometric shapes capable of describing a 

wide array of complex objects. However, accurately 

estimating the parameters of Supershapes poses a 

significant challenge. Traditional methods often rely on 

manual parameter tuning and handcrafted features, which 

are labor-intensive and may not yield precise results. To 

address these limitations, we propose a novel three-

dimensional reconstruction approach leveraging 

Convolutional Neural Networks (CNNs). Our method 

utilizes a CNN-based Regressor network that takes 3D 

point clouds as input and accurately estimates Supershape 

parameters. In this architecture, convolutional and pooling 

layers are stacked multiple times before fully connected 

layers. The pooling layers reduce the spatial 

dimensionality of features, while the convolutional layer’s 

extract features from the input data. These learned features 

are then mapped to output values through the fully 

connected layers. Furthermore, we leverage the Point Net 

[9] network as the foundation for our architecture. While 

PointNet has demonstrated effectiveness in processing 3D 

point clouds, its original design may not be directly 

applicable to the task of 3D reconstruction. PointNet is 

primarily designed for point cloud classification and 

segmentation, lacking specific capabilities for regression 

tasks required for parameter estimation in 3D shapes or 

objects. To address this limitation, we adapt the PointNet 

network to learn the correlation between input point 

clouds and output parameters. This involves modifying 

the network architecture and training process to 

incorporate regression-based objectives. By adjusting 

PointNet to learn this correlation, it can effectively serve 

as a CNN-based Regressor network for 3D reconstruction 

tasks. This modification enables accurate and efficient 

estimation of parameters for 3D shapes and objects, 

significantly improving upon traditional 3D 

reconstruction techniques [10-12]. 

1.4 Outline of the paper 

This paper is divided into four main sections. 

The first section provides an overview of deep learning 

techniques for 3D reconstruction and object modeling, 

focusing on recent advancements and the impact of 

Convolutional Neural Networks (CNNs). Various 

approaches, including volumetric and point cloud-based 

methods, are discussed. The second section details our 

proposed methodology, emphasizing the architecture and 

training process of the CNN-based Regressor network. 

We highlight how our approach addresses limitations of 

traditional techniques, enhancing accuracy and efficiency 

in estimating Supershape parameters. Moving to the third 

part, we present experimental results, evaluating our 

approach through metrics like accuracy and precision and 

comparing them with prior work. Finally, the conclusion 

summarizes our contributions, acknowledges 

significance, outlines potential and limitations, and 

suggests areas for future improvement. 

2 Literature review 
Deep learning techniques have revolutionized the field of 

3D reconstruction, enabling more accurate and efficient 

reconstruction of complex objects and scenes. The 

evolution of deep learning techniques for 3D 

reconstruction can be traced back to the use of CNNs for 

3D shape classification and segmentation. CNNs have 

shown promising results in processing 3D shapes by 

considering them as volumetric representations, and have 

been used for many applications such as object detection, 

recognition, and pose estimation [13]. Recent 

advancements in deep learning have yielded various 

specialized architectures for 3D reconstruction, tailored to 

different applications and data types. One such example is 

Point Net [14], designed specifically for processing point 

cloud data. Unlike traditional methods relying on 

structured data like meshes or voxels, PointNet directly 

processes unstructured point clouds, making it ideal for 

tasks like 3D reconstruction from LiDAR data. Its 

versatility lies in its capacity to handle point clouds of 

varying density, distribution, and orientation. Notably, 

PointNet has demonstrated effectiveness in processing 

large-scale point cloud datasets, facilitating the 

reconstruction of intricate scenes and objects. Its ability to 

accommodate inputs of different sizes and extract both 

local and global geometric features has rendered it 

popular, particularly in fields like autonomous driving and 

robotics, significantly enhancing the accuracy and 

efficiency of 3D reconstruction tasks. VoxNet, as 

described in [15], is a specialized deep learning model 

tailored for 3D object detection and recognition. By 

processing 3D voxel grids with 3D convolutions, it excels 

in detecting objects, even in occluded or complex scenes. 

Its flexibility to handle various voxel grid sizes and 

resolutions makes it versatile for different applications, 

particularly in autonomous driving and robotics, where 

accuracy is crucial. OctNet presented in [16], is a deep 

learning framework designed for processing 3D data using 

an octree structure, enhancing the management of 

complex 3D scenes. Its hierarchical approach allows for 

efficient processing, with higher-resolution octree cells 

corresponding to smaller regions of the scene. This 

methodology has proven effective for tasks like object 

detection, segmentation, and 3D reconstruction from 

sparse data. OctNet is applied in various fields including 

robotics, virtual reality, and medical imaging, owing to its 

adaptability to variable-resolution inputs. Additionally, it 

demonstrates high accuracy in detecting, segmenting, and 

reconstructing objects from sparse data, solidifying its role 

in computer vision applications. 3D U-Net, described in 

[17], is a tailored version of the U-Net architecture crafted 

for processing 3D volumetric data, notably in medical 

imaging like MRI and CT scans. It utilizes an encoder-

decoder structure with skip connections to effectively 
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process volumetric data. The encoder down samples input 

data to capture high-level features, while the decoder up 

samples to generate output segmentation or 

reconstruction. Notably, 3D U-Net accommodates 

variable-sized inputs, rendering it apt for large medical 

image datasets. MVCNN, described in [18], processes 

multiple 2D images to create 3D reconstructions. Using a 

CNN, it extracts features from each image, aggregates 

them, and generates the final reconstruction. It is versatile 

for object recognition and reconstruction in robotics and 

AR, handling varying input images effectively. MVCNN 

is highly accurate and widely preferred in computer vision 

applications. Recent advancements in deep learning have 

introduced Graph Convolutional Networks (GCNs) and 

Generative Adversarial Networks (GANs) as potent tools 

for 3D reconstruction tasks. GCNs, detailed in [19], 

specialize in processing intricate 3D structures like 

molecular configurations, exhibiting promising outcomes 

in constructing lifelike 3D models from input point clouds. 

Meanwhile, GANs, outlined in [20] excel in synthesizing 

realistic 3D models from either 2D images or partial 3D 

data. Their potential to transform the 3D reconstruction 

domain lies in their ability to generate high-quality 3D 

models even from limited or incomplete datasets. In 

addition to these advancements, the integration of deep 

learning techniques [21] with traditional 3D 

reconstruction techniques such as stereo vision, Structure 

from Motion (SfM), and Multi-View Stereo (MVS) has 

led to significant improvements in the accuracy and 

efficiency of 3D reconstruction. For example, deep 

learning techniques have been used for refining and post-

processing 3D reconstructions generated by SfM and 

MVS techniques, and for integrating depth and color 

information for more accurate 3D reconstruction. Overall, 

the recent advancements in deep learning techniques have 

significantly improved the accuracy and efficiency of 3D 

reconstruction and have the potential to revolutionize the 

field of 3D reconstruction by enabling the reconstruction 

of complex and diverse 3D structures from limited or 

incomplete data [22]. Table 1 present the summary of 

related work. 

Table 1: Summary of related work 
Technique 

name 

Data set Result Future work 

Deep 

learning 

LiDAR 

data 

78% Need improvement in 

result  

PointNet LiDAR 

data 

74% 3D reconstruction 

tasks 

CNN synthetic 

3D 

shapes 

77% 3D reconstruction 

tasks 

U-Net synthetic 

3D 

shapes 

79% Need improvement in 

result 

SfM, and 

MVS 

LiDAR 

data 

75%  Need improvement 

in result 

 

3 Proposed methodology 
This section provides a detailed presentation of the 

proposed methodological approach for three-dimensional 

object reconstruction. It explores the fundamental 

techniques used in our methodology, including modeling 

objects in 3D using Supershapes, the PointNet architecture 

adapted to this specific task, and multiple regression by 

neural networks. 

3.1 Maintaining a 3D Object by 

supershapes 

SuperShapes, introduced in [23], extend the capabilities of 

traditional geometric shapes by offering a parametric 

approach to modeling complex forms. By adjusting 

parameters such as symmetry (m, M), scaling (a, b), and 

shape coefficients (𝑛1, 𝑛2, 𝑛3, 𝑁1, 𝑁2, 𝑁3), a diverse range 

of shapes can be generated, allowing for the representation 

of complex objects and surfaces in three-dimensional 

space. The Supershape formula, see Eq. (1), encapsulates 

these parameters, enabling the creation of customized 

geometries tailored to specific applications. 

S= [a, b, m, M, 𝑛1, 𝑛2, 𝑛3, 𝑁1, 𝑁2, 𝑁3]                   (1) 

m: Symmetry in the radial direction 

M: Symmetry in the tangential direction  

a, b: 

The scaling parameters that control the overall size of the

 shape. 

n1, n2, n3, N1, N2, N3: The shape parameters coefficie

nts [24].  

By manipulating these parameters (as shown in 

Figure 1 and Table2), it is possible to create complex and 

interesting shapes that cannot be easily generated using 

traditional geometric shapes alone.

 

 

Shape (1) 

 

Shape (2) 

 

Shape (3) 
 

  Shape (4) 

Figure 1: Variety of SuperShapes 
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Table 2: Super shapes parameters  

  m M 𝐧𝟏 𝐧𝟐 𝐧𝟑 𝐍𝟏 𝐍𝟐 𝐍𝟑 

Shape (1) 4 4 10 10 10 10 10 10 

Shape (2) 4 4 10 10 10 1.10 10 1.70 

Shape (3) 4 4 10 10 10 -2 10 4.20 

Shape (4) 4 4 10 -10 10 2 25 3 

 

3.2 The PointNet architecture  

PointNet is a deep learning architecture for processing 3D 

point clouds. It was introduced in 2017 [25] and has since 

become one of the most widely used architectures for 

point cloud analysis tasks such as classification, 

segmentation, and object detection. The Point Net 

architecture [26] takes as input a set of unordered point 

clouds and learns a set of features that can be used to 

classify or segment the objects in the scene. The key 

innovation of PointNet is that it directly operates on the 

point clouds without the need for pre-processing or feature 

engineering, which has traditionally been a time-

consuming and error-prone process. The original PointNet 

architecture consists of several layers of fully connected 

neural networks, which are used to learn features from the 

input point clouds. The architecture also includes a max-

pooling layer, which is used to aggregate information from 

all the points in the cloud and generate a global feature 

vector that can be used for classification or segmentation. 

The network is trained using a loss function that penalizes 

misclassifications or segmentation errors [27]. 

3.3 Multiple regression by neural networks 

Multiple regression by neural networks [28] involves using 

neural network algorithms to perform regression analysis 

on multiple independent variables simultaneously. These 

networks are capable of modeling complex non-linear 

relationships between inputs and outputs, and can handle 

large amounts of data. By leveraging the inherent ability of 

neural networks to model non-linear relationships between 

inputs and outputs, multiple regression techniques can 

capture intricate patterns in the data and accurately estimate 

parameters like shape, orientation, or texture of 

reconstructed objects. In our proposed architecture, we will 

utilize multi-output regression and multi-task regression, 

techniques that will allow us to predict multiple output 

variables simultaneously related to our 3D shape models. 

These methods will be further discussed later to illustrate  

 

 

their role in our 3D reconstruction approach [29]. 

3.4 Multi-output regression (MOR) 

Multi-output regression, as described in [30], aims to 

predict multiple output variables simultaneously, 

contrasting with simpler regression methods that focus on a 

single target variable (see Figure 2). This approach models 

the relationships between input variables and each target 

variable separately, offering enhanced flexibility and 

accuracy in predicting multiple outcomes. Various machine 

learning techniques, including neural networks, support 

vector machines, and random forests, can be employed for 

multi-output regression. While this approach presents 

challenges due to its complexity, it has the potential to yield 

more precise and valuable predictions compared to 

traditional single-target regression methods. The 

advantages of multi-output learning include a better 

understanding of the relationships between target variables, 

simplification of the modeling process, and improvement in 

generalization, especially when outputs exhibit mutual 

dependencies. However, it is crucial to carefully consider 

the model architecture and select target variables 

judiciously for a successful implementation of multi-output 

learning [31]. 

3.5 Multi-Task regression (MTR) 

In machine learning, multi-task learning involves 

training a model to perform multiple related tasks 

simultaneously (see Figure 3), aiming to enhance overall 

performance by leveraging shared knowledge across tasks. 

Typically, the model incorporates shared hidden layers, 

capturing common patterns across tasks, while task-specific 

layers focus on unique task patterns. Determining the 

architecture, layer sizes, and activation functions involves 

considering task complexity and available data, often 

requiring experimentation. Regularization techniques like 

batch normalization or dropout can help prevent overfitting 

and improve generalization [32]. 
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Figure 2: Multi output regression        

 
Figure 3: Multi-task regression 

 
Multi-task learning offers benefits such as improved 

generalization, efficient resource utilization, and the ability 

to learn from limited labeled data. By learning multiple 

tasks simultaneously, models can build robust 

representations and handle data variations effectively. 

However, successful implementation requires careful 

consideration of model architecture and task selection [22]. 

3.6 The proposed approach 

In this article, we introduce a new approach able to retrieve 

individual Supershape model parameters from point cloud 

by deep learning. More precisely, we formulate the 

SuperShapes recovery problem as a prediction task, where 

the goal is to estimate the parameters of a given surface 

model:  

Ŷ = [a,b,m,M,𝒏𝟏, 𝒏𝟐,𝒏𝟑, 𝑵𝟏, 𝑵𝟐, 𝑵𝟑]∈ R1×1O     (2) 

This estimation is achieved using a Deep Learning 

network defined by: 

ŷ=f(x, W)                                                                    (3)                   

Here, f represents a predictor that learns from annotated 

training data. W defines the set of network weights that have 

to be learned during training. To build our regression model, 

we design a network that conforms to the architectural 

guidelines of the Point Net network [34]. Initially, we retain 

the first section of PointNet for feature extraction, utilizing 

reduced-size MLPs (32). The basic PointNet section (cf. 

Fig.4) is a neural network architecture commonly employed 

for point cloud processing tasks. It typically comprises a 

"tnet" sub-network, which is a transformation MLP with 

input and output sizes identical. The purpose of the "tnet" is 

to learn symmetric functions and apply 1D convolutional 

layers (CNN-1D) that extract global features post Max-

pooling. This process allows the network to glean useful 

information from the input point cloud data [35].

Figure 4: Basic Point Net Section (MLP) 
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To further extend the capabilities of the basic PointNet, we 

propose a 5-layer MLP architecture. The input layer of our 

MLP takes the global features of the object as its input. The 

three hidden layers of the MLP consist of 256, 128 and 64 

bits in size, respectively, and are intended to extract and 

learn intricate features from the input data.  In the initial 

design, we introduce multi-output regression to Point Net’s 

base section, while in the second,  

 

3.6.1 Multi-output regression (MOR) 

The first proposed architecture is based on the base section 

of PointNet and augmented by multi-output regression as 

shown in figure 5. The multiple output layer of the MLP 

calculates the surface parameters using a simple linear 

regression. This enables the network to predict the surface 

parameters of the input object with a high degree of 

accuracy [36].

Figure 5: Modified CNN-based multi-output regressor  

Our extension consists of a 5-layer MLP. The input layer is 

composed of the global features of the object. Then we have 

three hidden layers with respective sizes of 256, 128, and 

64. Finally, a multiple output layer calculating surface 

parameters using a simple linear regression. 

3.6.2 Multi-Task regression (MTR) 

The second proposed architecture is based on the base 

section of PointNet and augmented by multi-task regression 

as shown in the figure 6. In this architecture, the regression 

part of the new CNN-based Regressor architecture consists 

of a hidden layer (128) and 10 tasks. A hidden layer (64) 

and an individualized output (one neuron) represent each 

task for each of the SuperShapes parameters, indicated in 

equation (1). 

 
Figure 6: Modified CNN-based multi-task regressor 
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We utilize a distance metric based on the L2 norm between 

the pre-defined parameters y and the anticipated 

SuperShapes parameters ŷ to assess the effectiveness of our 

Regressor model. Our Regressor uses the pre-defined 

parameters y as its training objective, and the L2 norm gives 

us a measure of the discrepancy between the target and 

anticipated values of the Supershape parameters. The goal 

function is as follows: 

L2 (y, ŷ) = ‖y − ŷ‖2                                            (4) 

By minimizing the L2 distance between the predicted and 

target Supershape parameters during the training process, in 

order to minimize the error in our predictions, we make sure 

that our model learns to reliably forecast the target 

parameters. With this method, we can measure our model's 

accuracy and make sure it can adapt well to new, untested 

data. The goal is to get as near to y as feasible with an 

estimation ŷ = f(x, W), where f is the proposed architecture 

model with weights W for the input x (the 3D object).  Our 

Modified CNN-based Multi-Output and Multi-Task 

Regressor Network model must be trained on a sizable 

dataset of 3D objects represented as point clouds in order to 

produce an accurate prediction of the supershape 

parameters for a given 3D item, x. Using its learnt weights 

W, the model uses the 3D object x as input and predicts the 

supershape parameters ŷ. An enhanced version of mini-

batch SGD, the stochastic gradient descent optimization 

algorithm ADAM minibatch, is used to train the model. By 

iteratively changing the model's weights to enhance 

predictions, this approach effectively minimizes the loss 

function on the accessible training dataset. A series of input-

output pairs (x,y) are given to the model during training, 

where y is the appropriate pre-defined set of supershape 

parameters and x is a 3D object represented as a point cloud. 

The model predicts the supershape parameters ŷ using the 

input x, and then computes the loss between ŷ and y. Based 

on the L2 distance measure. Next, in order to minimize the 

loss, the ADAM minibatch method adjusts the model's 

weights W. This procedure is done numerous times until the 

model converges to an ideal set of weights that yield precise 

predictions of the supershape parameters for brand-new, 

unobserved 3D objects [37]. 

4 Experimental results  

4.1 Dataset 

To train and evaluate our CNN-based Regressor, we 

generate a Dataset of synthetic 3D shapes by varying the 

parameters pseudo-randomly by a specific algorithm that 

takes care of Generation of 3D objects at (point cloud) using 

pseudo random supershape parameters with bounds on 

parameter values and number of shapes. Resampling 

(reduction of the number of points to 512 per object) then 

arrangement in Dataset: 70% for training (9300 objects) and 

the rest for the test (2300 objects). Form of data used for 

learning: the coordinates of its points in the ply represent an 

object. Format, it is an ASCII file including all the 

coordinates (x,y,z) for example: This is an illustration of a 

produced object with 512 points under various viewpoints 

figure .7 Point Cloud Objects from the dataset. 

 

 

 
 

 
 

 

Figure 7: Point Cloud Objects from the dataset in 

different views 

4.1.1 Performance metrics 

 To evaluate the performance of our CNN model in 

predicting the Supershape parameters, we use the Mean 

Squared Error (MSE) for each of the parameter’s p ∈ 

{m, 𝑛1, 𝑛2, 𝑛3,M, 𝑁1, 𝑁2, 𝑁3,a,b} during experimentation. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1                                      

(5) 

The MSE is a commonly used metric to measure the 

accuracy of regression models, such as our CNN-based 

Regressor. For a given set of test data, it calculates the 

average squared difference between the true and anticipated 

values of the supershape parameters. The mean squared 

error (MSE) for each parameter p is computed by squaring 

the discrepancies between the true and projected values for 

every test sample. When evaluating regression models in 

machine learning, a smaller mean square error (MSE) value 

denotes greater accuracy in predicting the supershape 

parameters. Using Mean Squared Error (MSE) as the 

evaluation metric, we can assess how well our CNN-based 

Regressor model predicts the supershape parameters and 

compare its performance to other regression models or 

variations of our own model. This enables us to 

continuously enhance the architecture and hyperactive 

parameters in order to improve performance in super shape 

parameter prediction [36]. The MLP network employs 

gradient descent or one of its variations for backpropagation 

when it comes to updating its weights. Different gradient 

descent variations exist, including mini-batch gradient 

descent, batch gradient descent, and stochastic gradient 

descent (SGD), which vary in how the gradient is calculated 

and how the training data is supplied to the algorithm [38]. 

4.1.2 Model preparation 

Once the Datasets are in place, we present them to our 

CNN-based Regressor network for training cycles by 

augmenting the objects with affine transformations. Data 

augmentation is important when working with point cloud 

data. An augmentation function for shaking and shuffling 

the training dataset has been provided by PointNet 

realizations. 

4.2 Training and testing 

In the first set of experiments, we evaluate the performance 

of the proposed architectures using the 2300 test objects 

generated from our synthetic dataset. 

4.2.1 Multi-output regression (MOR) 

To illustrate the results of the network's training and testing, 
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we present two graphs related to the testing phase: 

Evolution Loss (cf. Fig8) and Accuracy Evolution (cf. 

Fig10). And a graph of Accuracy Evolution (see Fig9) in 

both phases: training and testing. 

  

Figure 8: Evolution of Loss                        Figure 9: Function accuracy evolution 

The "Evolution of Loss" graph (cf. Fig.8) typically displays 

how the loss function changes over time or iterations during 

the training process. It provides insights into how well the 

model is converging towards minimizing the loss, 

indicating whether the model is learning effectively. The 

graph depicts the evolution of error across iterations. 

Initially, the error starts at a high value, indicating 

significant divergence between the model's predictions and 

the actual values. There are notable fluctuations observed 

until around iteration 1000, suggesting instability in the 

model is learning process. However, from iteration 1000 

onward, the error gradually decreases, eventually reaching 

a minimum value of less than 1.06 at iteration 3000. This 

indicates that the model has stabilized and converged to 

predictions that are more accurate by the end of the training 

process. On the other hand, the "Function Accuracy 

Evolution" graph (cf. Fig.9) illustrates the accuracy of the 

model's predictions over time or iterations. It helps in 

understanding how the model's performance in making 

accurate predictions evolves throughout the training 

process. The graph illustrates the evolution of precision 

across iterations. Initially, the precision starts at a low value, 

indicating poor performance of the model in accurately 

classifying or predicting outcomes. From around iteration 

1000, there are noticeable fluctuations in precision, 

suggesting variability in the model's performance during 

training. However, as the training progresses, the precision 

gradually improves, reaching a maximum value of 0.768 at 

iteration 3000. This indicates that the model's ability to 

make correct predictions improved by the end of the 

training process. The last graph (cf. Fig10) illustrates the 

evolution of precision during training and tests. It visualizes 

how the model's precision evolves throughout the training 

process, providing insights into its learning and 

generalization abilities to new data. Comparing precision on 

training and testing data also helps detect any overfitting or 

under fitting of the model. In summary, such a graph offers  

a comprehensive evaluation of the model's performance and 

aids in adjusting hyper parameters or selecting the best 

model for the given task. 

 

Figure 10: Evolution accuracy (train/test) 

We have here a precision of 0.768 for training and  

0.74 for testing, which suggests that the model performs 

slightly better on training data than on testing data. This 

indicates slight overfitting, where the model has learned to 

fit the training data well but does not generalize as 

effectively to new data. Therefore, it is important to 

examine, in our future work, other performance metrics and 

explore regularization methods or other techniques to 

improve the model's generalization. 

4.2.2 Multi-task regression (MTR) 

During training, the error (cf. Fig11) quickly reaches 

a reasonable value, with minimal fluctuations. Around 

iteration 300, it begins to stabilize, and this stabilization 

becomes more pronounced by iteration 1250. Eventually, it 

reaches a value of 1.06 by iteration 2000. Regarding the 

evolution of accuracy during training (cf. Fig12-13), it takes 

longer to stabilize at the value of 0.802, reaching it by 

iteration 2000. 
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Figure 11: Evolution of loss Figure 12: Function accuracy evolution 

 

 
Figure 13: Training and testing data set 

 

 

 

 

The following figure illustrates the evolution of precision 

training (0.802) and testing (0.728): 

4.3 The result on test objects 

The object provided as input is a point cloud, and as 

output, we have the prediction of the 10 parameters of this 

object for reconstruction purposes. The results on 4 objects 

taken at random from the set of tests are presented in the 

following table: To assess the accuracy, effectiveness, and 

overall performance of the suggested system, a series of 

carefully chosen test objects were used in a rigorous 

evaluation process. The purpose of selecting these test 

objects was to ensure that the model was evaluated in 

situations that closely resembled the dataset by representing 

a wide range of scenarios. Table 3 present Predicted 

parameters results relating to four different objects. 
 

Table 3: Predicted parameters results relating to four different objects  

. m 𝒏𝟏 𝒏𝟐 𝒏𝟑 M 𝑵𝟏 𝑵𝟐 𝑵𝟑 a b 

Obj. 1 Input 3 30 69 81 3 63 78 76 1 1 

Output 2.894 22.245 66.286 74.180 3.145 68.545 100.991 81.670 1 1 

Obj. 2 Input 6 72 98 23 2 44 102 74 1 1 

Output -

29.366 

487.056 -

414.686 

-

228.655 

27.35

0 

-672.217 487.369 402.352 1.001 1.001 

Obj. 3 Input 2 66 89 48 2 74 79 93 1 1 

Output 3.082 66.838 94.065 44.577 2.862 63.356 67.228 94.921 1 1 

Obj. 4 Input 3 30 69 25 5 59 90 25 1 1 

Output 3.117 26.970 63.934 23.485 4.022 57.457 98.925 24.430 1 1 
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The figure 14 illustrates the reconstruction of the 3D objects 

taken in the test part of the Dataset after training under two  

Different views. Please note that the 4 examples in red are 

taken at random and represent ground truth, and the green 

ones represent the reconstructed objects by predictions. 

 
 

 

 

 

 

Figurer 14: Visual results of 4 objects under two views 

 

4.4 Comparative analysis 

The provided data in the following table 3 presents the 

results of applying both a Multi-Output Regressor and a 

Multi-Task Regressor for 3D reconstruction from point 

clouds. In the Multi-Output Regressor, after 3000 iterations, 

the training performance is reported at 76.8, while the  

 

 

testing performance is slightly lower at 74.0. On the other 

hand, for the Multi-Task Regressor, after 2000 iterations, 

the training performance is higher at 80.2, but the testing 

performance is slightly lower at 72.8. Table 4 present the 

overall result comparison. 

 

Table 4: Comparison result 
 

Multi-Output Regressor (3000 

iterations)  

Multi-Task Regressor (2000 iterations) 

 (%) Train 76.8 80.2 

 (%) Test 74.0 72.8 

 
 
  
These findings imply that the Multi-Task Regressor fits the 

training data better than the Multi-Output Regressor, as seen 

by the latter is lower accuracy on the training dataset. In 

contrast to the Multi-Task Regressor, the Multi-Output 

Regressor has a marginally superior generalization 

performance with a smaller accuracy decline when assessed 

on the test dataset. This would suggest that overfitting to the 

training set is avoided by the Multi-Output Repressor’s 

increased robustness in handling unknown data. It is 

important to remember that the exact objectives of the 3D 

reconstruction work will determine which of these two 

approaches is best. In cases when strong generalization to 

fresh data is essential, the Multi-Output Regressor may be 

recommended. Nonetheless, the Multi-Task Regressor 

should be used if getting great accuracy on the training 

dataset is needed. Despite a minor decline in generalization 

performance, could be a better option. The trade-off 

between model complexity and generalization ability is 

generally highlighted by these results, highlighting the 

significance of considering the application’s particular 

requirements when selecting a regression strategy for 3D 

reconstruction. The problem of overfitting, in which a 

model performs very well on training data but poorly on 

fresh, unseen (testing) data, is the main cause of the trade-

offs between training and testing performance. Overfitting 

happens when a model is too intricate and begins to learn 

noise or unimportant features from the training dataset 

instead of broadly applicable patterns. Overfitting can be 

identified using cross-validation and model complexity 

5 Conclusion and future work 
This article presents a novel method called "A Modified 

CNN-based Multi-Output and Multi-Task Regressor 

Network," which integrates two separate extensions—a 

Multi-Output Regressor and a Multi-Task Regressor—to 

expand PointNet's core design. The experimental findings 

provide intriguing new information about how well these 

extensions work. The Multi-Output Regressor exhibits a 

respectable testing accuracy of 74.0 and a strong training 

accuracy of 76.8. Conversely, the Multi-Task Regressor has 

a little lower testing accuracy of 72.8 but a higher training 

accuracy of 80.2. These results point to a trade-off between 

the two extensions, with the Multi-Output Regressor 

showing a stronger suitability for robust generalization to 

fresh data due to its better balance between testing and 

training accuracy. The Multi-Task Regressor, however, 

shines in attaining increased precision on the training 

dataset, highlighting its capacity to detect complex patterns 

in the training set. In order to improve the overall 

performance of the model, it would be beneficial to 

investigate hybrid architectures in the future that take 

advantage of the advantages of both the Multi-Output and 
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Multi-Task Regressor. To reduce overfitting and enhance 

generalization, further research into training iteration 

optimization or the use of sophisticated regularization 

strategies may be beneficial. Moreover, the utilization of 

our methodology in various real-world settings and datasets 

may confirm its efficacy in a wider range of 3D 

reconstruction assignments. 
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