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Traditional ways of monitoring power systems do not offer sufficient real-time information on equipment 

status and do not sufficiently address various operational scenarios and parameters. To address these 

problems, a new method referred to as Dynamic Black Hole-driven Deep Convolutional Generative 

Adversarial Network (DBH-DCGAN) has been developed. This method utilizes the dynamic Black Hole 

mechanism that can adjust the flexibility and stability of the DCGAN model according to the power 

condition. The purpose of this study is to present and assess the novel DBH-DCGAN approach and its 

impact on improving the accuracy and efficiency of power plant monitoring. A large set of power equipment 

images was gathered that contains data regarding all the equipment. The images were then pre-processed 

using Histogram Equalization to improve the contrast of the images. To enhance the monitoring accuracy 

and flexibility in different power system situations, the proposed Dynamic Black Hole-driven Deep 

Convolutional Generative Adversarial Network (DBH-DCGAN) method was applied. Experimental results 

demonstrate that DBH-DCGAN effectively monitors power plants across different operating conditions, 

achieving performance metrics of recall (95.4%), accuracy (94.2%), and F1-score (96.3%). The study 

concludes that the DBH-DCGAN method significantly improves reliability and efficiency in power system 

management, thereby advancing intelligent monitoring technologies within the power grid. 

Povzetek: Predlagana je nova metoda DBH-DCGAN za inteligentno spremljanje elektroenergetske 

opreme, ki prilagaja model glede na pogoje v omrežju in izboljšuje zanesljivost in učinkovitost nadzora. 

 

1 Introduction 

Electric power is crucial for the efficient operation of 

critical infrastructure and overall socioeconomic stability, 

significantly influencing both industrial and residential 

sectors. As connectivity advances, the capabilities of 

power grid monitoring systems are expanding, with 

increased emphasis on sophisticated technologies for real-

time performance analysis and predictive maintenance [1]. 

The power grid's ability to operate safely and consistently 

is impacted by the security of its transformation and 

transmission equipment. Information system data from 

different kinds of equipment is required as additional 

assistance to do operations with the Internet of Things 

(IoT) for power transfer, transformation devices, and 

tracking devices. This is in addition to the necessity for 

remote monitoring of power transfer and transformation 

information [2]. It is challenging to promote power grid 

production procedures, safety supervision administration, 

and other company innovations and intelligent 

communication because power grid intelligent 

communication equipment technological maturity and 

system adoption are not high, and digital data platform and 

real mapping interaction ability are not enough [3]. 

A smart grid is an innovative type of power grid that 

combines modern sensor measurements, communication, 

data, computer, and control technologies with a physical 

power grid. It depends on the physical power grid and 

combines these technologies effectively [4]. It attempts to 

completely satisfy user demand for power while 

optimizing resource allocation; it also guarantees the 

security, dependability, and efficiency of the power 

supply; it corresponds with environmental regulations; it 

guarantees power quality; and it adjusts to the evolving 

power market. It provides consumers with additional 

benefits and a dependable, affordable, clean, and 

interactive power source. An electric energy meter that 

measures the power loss produced by a station during grid 

function or a substation's function and transmits that 

information to the user is known as an electric power 

distribution system [5]. 

The power sector, which is a crucial base industry for 

ensuring the long-term expansion of the national economy, 

has an extensive amount of knowledge about power 

equipment. A robust smart grid that can efficiently 

guarantee societal growth is built on transmission and 

transformation equipment, which is in excellent condition 

and operates consistently [6]. Numerous grid accidents, 
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particularly in the past several years, have been brought 

through pollutants, icing, strong winds, and lightning. 

Building an effective control and administration system 

for smart grids is imperative to ensure the secure operation 

of the grid, accelerate emergency response times, and 

perform thorough and accurate tracking, diagnosis, and 

early signaling of the condition of power transformation 

and transmission equipment [7]. For monitoring power 

equipment in power systems, a novel approach based on a 

DBH-DCGAN is proposed. 

Contribution of study: 

• As power systems continue to evolve into more 

complex structures, advanced monitoring techniques are 

increasingly seen as necessary to guarantee the efficiency 

and dependability of power appliances. Because of the 

shortcomings of traditional methods, new panoramic 

monitoring tactics have been developed to provide more 

accurate and up-to-date information regarding the 

operational state of equipment.  

• A new method called DBH-DCGAN, which stands 

for Dynamic Black Hole-driven Deep Convolutional 

Generative Adversarial Network, is created to solve these 

limitations. When it comes to steady performance under 

different operating situations and equipment 

characteristics, the dynamic Black Hole mechanism helps 

to further boost the DCGAN model's versatility. 

• To prepare the image data for analysis, we compile a 

panoramic dataset and apply the histogram equalization 

technique. Python is used to implement the proposed 

approach.  

• Various experimental results demonstrate the efficacy 

of the proposed DBH-DCGAN in monitoring power 

plants.  

 

2 Related works 

The study examined the condition-tracking system of 

power transfer and transforming devices were using 

panoramic information, and the data model was introduced 

into the power transfer IoT and transforming devices [8]. 

Simulation software was utilized to validate the efficacy 

and precision of the proposed structure, demonstrating its 

superiority over the conventional structure. The network 

safety of the power transferring structure was utilized and 

tends to build the fundamental model of power grid 

condition awareness [9]. It subsequently presented the 

fundamental architecture of the panoramic condition 

awareness technologies of the smart grid functioning state, 

which includes recognizing conditions, understanding 

conditions, and forecasting conditions.  It is significant to 

develop a comprehensive condition monitoring system for 

smart grid operating status using a variety of technologies 

that could help decision-makers create well-informed 

decisions by accurately predicting the maximum risk 

assault path that the system might experience.  

The panoramic condition monitoring strategy for typical 

environment applications was presented using an optical 

fiber composite power connection [10]. The proposed 

surveillance system plan facilitated the construction of the 

intelligent surveillance architecture for the modern power 

system and improved the functioning and servicing of 

electricity transmission lines. The researchers developed 

automated power transfer tower recognition by employing 

a modern deep learning system [11]. Compared to other 

methods, their method was more appropriate for 

application in power grid disaster investigation because it 

could consider both accuracy and speed. A miniature 

multirotor unmanned aerial vehicle (UAV) utilized for 

power grid inspection was established in the research [12]. 

The proposed solution incorporated mobile network 

communications and a smart robot. It offered benefits for 

power grid monitoring that were both effective and 

feasible, and it could be promoted and used. They 

examined reactive visualization approaches for multiple 

devices and Geographic information system (GIS)-based 

grid panoramic visualizing display techniques in 

the research [13]. Employing clustering techniques, the 

evaluations improved both the GIS rendering and the 

visualization components, hence increasing the 

visualization performance. 

The study presented a Power system state estimation 

(PSSE) based on real-time data using a deep ensemble 

learning method [14]. The outcomes demonstrated that the 

proposed strategy performed better than the data-driven 

PSSE approaches. The study proposed an adaptive fault 

identification system and approach using GIS maps and 

IoT [15]. The procedure of panoramic presentation and 

reaction optimization that utilized GIS, as well as the phase 

of automatic defect detection and data evaluation based on 

IoT sensor information, were the main components of the 

technique. It increased productivity and offered a 

dependable and practical approach for smart address 

location and evaluation in power grid design. To improve 

power maintenance and operation, the study developed a 

set of servicing mechanisms for electrical devices using 

big data analytic technologies [16]. Big data utilization in 

electrical device maintenance and operation control leads 

to increased social and economic advantages as well as 

higher brand impact and better service for power supply 

companies. Table 1 presents the related works. 
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Table 1: Related works 

Study Method Dataset Key Results Gaps in SOTA 

[8] Power Transfer 

and Transforming 

Devices 

Monitoring 

Panoramic information 

introduced into IoT-

enabled power transfer 

and transforming 

devices 

Simulated power 

transfer systems 

Demonstrated 

superior efficacy and 

precision over 

conventional 

structures 

No consideration of 

dynamic learning 

models or real-time 

condition updates 

[9] Network 

Safety for Power 

Grid Condition 

Awareness 

Power grid condition 

awareness model using 

fundamental panoramic 

condition architecture 

Power grid 

condition data 

Effective in 

recognizing, 

understanding, and 

forecasting grid 

conditions 

Lacked integration of 

deep learning for 

enhanced predictive 

capabilities 

[10] Optical Fiber-

Based Power 

Connection 

Monitoring 

Panoramic monitoring 

for typical 

environments using 

optical fiber 

connections 

Optical fiber 

communication 

data 

Improved power 

transmission 

monitoring and line 

maintenance 

Limited application 

to specific 

environments and not 

scalable for diverse 

grid systems 

[11] Deep 

Learning for 

Power Transfer 

Tower 

Recognition 

Automated tower 

recognition using 

modern deep-learning 

techniques 

Image data of 

power transfer 

towers 

Suitable for disaster 

investigation due to 

high accuracy and 

speed 

Did not address 

complex, evolving 

grid conditions in real 

time 

[12] UAV for 

Power Grid 

Inspection 

Unmanned Aerial 

Vehicle (UAV) with 

mobile network and 

smart robot 

communication 

UAV flight data 

and power grid 

inspection data 

Effective and 

feasible for grid 

inspection with high 

mobility 

Limited scalability in 

large grid networks 

with frequent updates 

[13] GIS-based 

Grid Panoramic 

Visualization 

Reactive visualization 

and GIS-based 

visualization techniques 

for grid monitoring 

GIS data and 

power grid sensor 

data 

Improved GIS 

rendering and 

visualization 

performance using 

clustering 

Lack of advanced 

predictive analytics 

or integration with AI 

[14] PSSE Using 

Deep Ensemble 

Learning 

Power system state 

estimation with real-

time data using deep 

ensemble learning 

Real-time power 

system data 

Outperformed 

traditional PSSE 

methods in accuracy 

and speed 

Not optimized for 

large-scale, dynamic 

grids requiring 

adaptive updates 

[15] Adaptive 

Fault 

Identification with 

GIS and IoT 

Fault identification and 

reaction optimization 

using GIS and IoT 

sensor data 

GIS data and IoT 

sensor data 

Increased 

productivity and 

offered reliable fault 

detection 

Did not incorporate 

panoramic 

monitoring 

techniques or 

advanced learning 

algorithms 

[16] Big Data for 

Electrical Device 

Maintenance 

Big data analytics for 

improving power 

maintenance and 

operation 

Big data from 

electrical devices 

Increased social and 

economic advantages 

and improved service 

No integration of 

deep learning or 

dynamic condition 

monitoring 
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3 Methodology 

3.1 Data collection 

This study was able to get 1495 images showing 

equipment faults. The internal components of the 

substation equipment were analyzed, and the results 

showed that the equipment could be classified into 

3 categories (power cable, distribution equipment, and 

transformer), 18 components (insulator, bus, relay, etc.), 

14 varieties of faults (oil leakage, burning, abnormal 

indication, screw loosening, crack damage, rust, silica gel 

discoloration, falling, etc.), and relevant measures and 

recommendations. After that, duplicate, unclear, and 

inconsistent images are manually filtered out of the 

gathered image data. Following screening, 896 excellent 

images are chosen to make up the first image set. These 

images are then similarly processed to have a resolution of 

416 × 416 pixels. 

3.2 Pre-Processed using histogram 

equalization 

Through the redistribution of intensity values throughout 

the image, an approach known as histogram equalization 

is applied in image processing to enhance the general 

quality and contrast of the image. An image's dark and 

light areas may not have the best contrast, making features 

difficult to identify. Brighter parts become brighter and 

darker areas become darker as a result of histogram 

equalization spreading out the intensity levels. 

When the intensity levels in a digital image fall 

inside range [0, 𝐾 − 1], the histogram becomes a discrete 

function 𝑔(𝑞𝑙) = 𝑚𝑙 , where 𝐾  represents the number of 

the level, 𝑞𝑙  is the 𝑙𝑡ℎ  intensity value, and 𝑚𝑙 

represents the number of pixels in the image with intensity 

𝑞𝑙. A popular method for standardizing a histogram is to 

divide all of its fundamentals by the total amount of pixels 

in the image, symbolized by 𝑁 × 𝑀 , where 𝑁 𝑎𝑛𝑑 𝑀 

represent the image's column and row dimensions. We can 

obtain a normalized histogram using the Equation (1), 

𝑜(𝑞𝑙) =
𝑚𝑙

𝑁𝑀
𝑓𝑜𝑟 𝑙 = 0,1,2, … 𝐾 − 1                     (1) 

Where 𝑜(𝑞𝑙)  represents an approximation of the 

possibility that an image will include intensity level 𝑞𝑙 , 

which is shown in Equation (2). 

∑ 𝑜(𝑞𝑙) = 1𝐾−1
𝑙=1                                                     (2) 

 Let 𝑞  represent the intensities of an image while 

considering the constant intensity values. 𝑞 appears to be 

within range [0, 𝐾 − 1] . The focus is directed towards 

transformations, or intensity mappings, of the type 𝑡 =

𝑆(𝑞) where 0 ≤ 𝑞 ≤ (𝐾 − 1)generates an output intensity 

level 𝑡 for each pixel in the input image given intensity. 

3.3 DBH-DCGAN 

An improved technique known as the DBH-DCGAN is a 

procedure for changing the panoramic tracking capabilities 

of power equipment in power systems. Developed from 

power system design and deep learning, the overview of a 

new method for monitoring and assessing power 

equipment tries to achieve higher accuracy and efficiency 

that has never existed before. DBH is employed to enhance 

the deep convolutional neural network structure by 

allowing the DBH-DCGAN. By integrating these two 

methods, the network can obtain high-quality images of 

the panoramic environment of power equipment faster, 

thereby improving the amount of monitoring and detailed 

evaluation. 

The integration of DBH with DCGAN has several 

modifications: The DBH parameters are fine-tuned for 

each iteration, where several parameters like gravitational 

and black hole parameters are fine-tuned to optimally 

balance between exploration of solutions and exploitation 

of good solutions. This enables the network to escape from 

the local minima and achieve a global optimum. DBH is 

incorporated into the DCGAN structure to fine-tune the 

generator and discriminator networks, adjusting the weight 

of the networks in response to the generation of high-

quality panoramic images and the identification of the 

anomalies present in the generated images. Although 

DBH-DCGAN is computationally expensive because of 

the real-time processing and iterative learning, real-time 

monitoring and early warning of possible problems justify 

its computational overhead, while dynamic optimization 

makes it capable of real-time monitoring of power 

equipment. 

The method also helps in giving the right degree of 

accuracy when determining power equipment errors, 

problems, or even probable threats because of the learning 

capability of the method to look at certain trends and 

characteristics from a large data set. Consequently, the 

real-time assessment of the panoramic images indicates 

that the DBH-DCGAN can distinguish between the 

anomalies and the errors from the normal state. This 

enables it to offer warnings and in addition more 

recommendations on what can be done to prevent a 

breakdown. Additionally, incorporating dynamic 

optimization into the training process of the black hole will 

augment the functionality and performance of the network 

that is being trained as the parameters are being adjusted 

in training sessions. For instance, DBH-DCGAN can 

capture information from all the relevant information 

sources and adjust settings based on new conditions in the 

power system environment for this type of flexible 

optimization solution. 
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3.3.1 Deep convolutional generative adversarial 

network (DCGAN) 

The Deep Convolutional Generative Adversarial Network 

(DCGAN) generates high-resolution images of power 

equipment faults. By training a generator and 

discriminator together, DCGAN improves anomaly 

detection and equipment monitoring, providing detailed 

and accurate insights into potential issues and fault 

conditions. 

A system known as the DCGAN forms the foundation for 

the unsupervised learning portion of the analyzed model. 

DCGAN comprises two elements, the generator, and 

discriminator, which undergo training over each other in a 

minimax setting. The generator gains the ability to 

translate random distribution samples into output vectors 

of a given structure. An actual sample from a set of data or 

a generator output is the two inputs that the discriminator 

receives. The discriminator gains the ability to distinguish 

between created and real input. 

A cross-entropy loss coefficient based on the number of 

inputs successfully identified as produced and the number 

properly categorized as real is used by the discriminator 

during training. The definition of the cross-entropy loss 

between forecasts �̂� and true labels 𝑧 is shown in Equation 

(3), 

ℒ(𝑥) = −
1

𝑀
∑ [𝑧𝑚 log �̂�𝑚 + (1 − 𝑧𝑚) log(1 − �̂�𝑚)] 𝑀

𝑚=1                                                                       

(3) 

Were,  

𝑀 - Number of samples, and  

𝑥 - Learned vector of weights.  

Labels are expressed numerically in this computation as 1 

for real and 0 for established. Next, the cross entropy for 

accurate actual forecasts reduces when �̂�𝑞  represents the 

discriminator's forecasts for all actual inputs as shown in 

Equation (4).  

ℒ𝑞(𝑥) = −
1

𝑀
∑ log �̂�𝑞,𝑚

𝑀
𝑚=1                                    (4) 

Since all of the correct forecasts in this instance are ones, 

likewise, if �̂�ℎ stands for the discriminator's forecasts for 

every produced input, then the cross entropy for accurate 

forecasts of generated outputs reduces to Equation (5), 

ℒ𝑒(𝑥) = −
1

𝑀
∑ log(1 − �̂�ℎ,𝑚)𝑀

𝑚=1                       (5) 

Therefore, all zeros are the right forecasts in this particular 

instance. The discriminator's overall loss is determined by 

adding the prior two terms ℒ𝑐 = ℒ𝑞 + ℒ𝑒. The generator 

similarly makes use of a cross-entropy loss, but this loss is 

expressed as the number of created outputs that were 

mistakenly identified as real as shown in Equation (6). 

ℒℎ(𝑥) = −
1

𝑀
∑ log (�̂�ℎ,𝑚)𝑀

𝑚=1                             (6) 

As a result, the generator's loss decreases with increasing 

ability to generate outputs that the discriminator perceives 

as real. After adequate training phases, this causes the 

generator to finally create outputs. 

3.3.2 Dynamic Black Hole Algorithm (DBH) 

The Dynamic Black Hole (DBH) algorithm enhances the 

monitoring of power equipment by optimizing parameters 

iteratively. It balances exploration and exploitation to 

improve the network's ability to escape local minima and 

accurately detect anomalies in real-time equipment data. 

The DBH's primary stages were as follows,  

i) Development of the initial population 

The initial population of the black hole method, which was 

extensively utilized in adaptive algorithms, was generated 

at random. However, the computation results were affected 

by the possibility of assembling a large number of initial 

candidate solutions (CSs) in a small local space while 

utilizing this strategy. Consequently, several strategies for 

building a quality initial population have been proposed. 

In this research, the Small Region Creation Method 

(SRCM) was one of the strategies employed to generate an 

appropriate initial population. Using this strategy, the 

search range was initially consistently separated into 

several small zones equal to the size of the population. 

Subsequently, in every small location, a single original CS 

was generated at random. Consequently, the initial CSs 

might be dispersed equally over the search space utilizing 

the SRCM. 

ii) The black hole algorithm included certain steps, such as 

those responsible for black hole choice, the motion of 

a star, star substitution, and black hole updating. 

iii) Procedure for selection. 

Enhanced random competition, with variable 
𝑚

2
, is an 

instance of an improved stochastic competition framework 

used for the selection process. This operation's 

fundamental steps are listed below, 

It was believed that the population that occurred before the 

black hole updating process was the parent population, and 

that a new population was the offspring population. A 

union population was created by combining the parent and 

offspring populations. From the combined population the 

CSs whose total number of 
𝑚

2
 was chosen. The fitness 

values (FVs) of each CS 𝑤  in the combined population 

were contrasted to those of the chosen CSs and the total 
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amount of CSs whose FVs were higher than those of CS 𝑤 

was the CS (𝑤(𝑤. 𝑠𝑐𝑜𝑟𝑒)). 

To modify a CS's score, a thickness measure of a certain 

kind might be included based on the restraining and 

stimulative response in an artificial immune mechanism. A 

CS's premature character was apparent if its thickness was 

large. Therefore, it is necessary to constrain a CS with a 

high thickness and increase the selection probability of a 

CS with significant fitness. The score of a CS was 

increased by the change depending on the CS's fitness and 

thickness, which was explained in Equation (7) as follows, 

𝑤′. 𝑠𝑐𝑜𝑟𝑒 = 𝑤. 𝑠𝑐𝑜𝑟𝑒 − 0.5. 𝐷. (1 −
𝑒(𝑤)

𝑒𝑚𝑎𝑥
) . 𝑤. 𝑠𝑐𝑜𝑟𝑒 +

0.5.
𝑒(𝑤)

𝑒𝑚𝑎𝑥
. 𝑤. 𝑠𝑐𝑜𝑟𝑒                   (7) 

Where 𝐷 represented the thickness of a CS, which was the 

combined population as a whole divided by the number of 

people whose fitness was nearly identical to that of 

individual 𝑤.It was stated in the following Equation (8), 

𝐷 =
(0.9.𝑒(𝑤)→1.1.𝑒(𝑤)

𝑀
                                            (8) 

Where 𝑀 represents the union's entire population, 𝑒(𝑤) is 

the FV of a potential solution𝑤, and 𝑒𝑚𝑎𝑥 is the maximum 

FV of the union's population. The numerator was the sum 

of all the individuals whose fitness falls within 

0.9∗𝑒(𝑤) 𝑎𝑛𝑑 1.1∗𝑒(𝑤). The CSs in the union population 

were sorted in descending order based on the scores of 

every CS; the first half was chosen for the subsequent 

iteration. 

iv) Termination criteria. 

Similar to the black hole algorithm, this process was 

carried out. 

4 Result  

Our proposed DBH-DCGAN approach was implemented 

on a Python 3.10 platform using an Intel i5 5th Gen laptop 

running Windows 11. This demonstrates the approach’s 

feasibility on moderately powered hardware, highlighting 

its potential scalability and adaptability to more resource-

constrained environments commonly found in real-world 

monitoring systems. We evaluate the performance of our 

proposed approach here by contrasting it with 

conventional approaches, including multi-scale dynamic 

graph convolutional network (D-GCN) attention [17], 

class-specific residual attention (CSRA) [17], and -Driven 

Dynamic Graph Convolutional Network (ADD-GCN) 

[17]. 

The precise nature of the data gathered, which guarantees 

an accurate understanding of the operation of the 

equipment, is referred to as accuracy. Loss is the measure 

of the difference between anticipated and actual values, 

which indicates ineffectiveness in the entire structure. This 

technology helps with preventive maintenance, which 

lowers delay and improves overall system dependability in 

the ever-changing world of contemporary power systems 

by decreasing loss and enhancing accuracy. Figure 1 

displays the output of accuracy and loss. 

 

Figure 1: Output of a) accuracy and b) loss 

The confusion matrix indicates the performance of the 

binary classification model as illustrated in the following 

Figure 2. It compares true labels (vertical axis) with 

predicted labels (horizontal axis) across four classes: The 

scale is made up of Normal, Slightly Abnormal, 

Moderately Abnormal and Severely Abnormal, with the 

values ranging from 3 to 10 and the darker shades of blue 

corresponding to higher qualities. For instance, the model 

successfully identified 10 instances of a specific class 

while at the same time, classified 6 instances of that class 

to another class. This tool can be used to assess the model's 

diagnostic accuracy and reliability and stresses that the 

model's performance in discriminating between various 

degrees of abnormality needs improvement. 

 

Figure 2: Confusion matrix 

ROC curve evaluates the performance of a binary classifier 

in the context of our study. The curve plots True Positive 

Rate against False Positive Rate across different 

thresholds. The orange line represents the ROC curve, 

while the blue dashed line signifies random chance. With 

an Area Under the Curve (AUC) of 0.97, the model 

exhibits exceptional accuracy. This visualization is crucial 
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for assessing the model's effectiveness in distinguishing 

between different fault conditions and equipment 

categories in our monitoring system. 

 

Figure 3: Result of ROC curve 

Figure 4 presents the outcomes of the DBH-DCGAN 

method employed to estimate the health of the 

power equipment state. The mean precision is utilized to 

quantify the evaluations of four different equipment health 

conditions. Our proposed DBH-DCGAN method has a 

mean precision of health of 96.42%, and slightly abnormal 

values of 89.49%, whereas moderately abnormal and 

severely abnormal have results of 90.34% and 95.31%, 

respectively.   

 

Figure 4: Evaluation outcomes of DBH-DCGAN 

technique for four states 

The F1-score measures efficacy by balancing recall and 

precision. It assesses the model's capacity to accurately 

recognize abnormalities in power equipment tracking, 

providing an extensive evaluation of its efficacy in 

practical situations. The F1-score of the proposed DBH-

DCGAN method is 96.3%, surpassing the F1-scores of the 

traditional ADD-GCN, CSRA, and Multi-scale D-GCN 

procedures, which are 81.1%, 80.3%, and 81.9%, as 

displayed in Figure 5. 

 

Figure 5: Result of F1-score 

The recall evaluates the system’s capacity to accurately 

recognize every pertinent occurrence of power equipment 

faults compared to the total number of actual problems to 

reduce missed detections and improve monitoring 

accuracy in the changing power system environment. With 

a recall rate of 95.4%, the proposed DBH-DCGAN 

strategy outperforms the traditional ADD-GCN, CSRA, 

and multi-scale D-GCN methods, which have recall rates 

of 78.9%, 75.8%, and 79.2%, correspondingly as shown in 

Figure 6. 

 

Figure 6: Output of recall 

The precision evaluates the power equipment defects that 

are found and diagnosed, guaranteeing dependable and 

effective operation.  
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This measures the efficiency of the system and how well it 

is identifying and analyzing the abnormalities, reducing 

delay. In comparison to the existing methods including the 

ADD-GCN, CSRA, and Multi-scale D-GCN whose 

precision values are 83.3%, 85.3%, and 84.9% and the 

precisions of the proposed DBH-DCGAN approach are 

94.2%, is shown in Figure 7. Table 2 shows the result of 

precision, recall, and F1-score. 

 

Figure 7: Result of precision 

Table 2: Result of precision, recall, and F1-score 

Methods F1-

score  

Precision  Recall 

CSRA 80.3% 85.3% 75.8% 

ADD-GCN 81.1% 83.3% 78.9% 

Multi-scale D-

GCN 

81.9% 84.9% 79.2% 

DBH-DCGAN 

[Proposed] 

96.3% 94.2% 95.4% 

 

4.1 Discussion 

CSRA [15] may be effective but they are not easily 

guaranteed to be understandable which makes it 

challenging for one to understand how a specific model 

arrived at a particular decision. This is important because 

interpretability is usually required for decision-making in 

a setting such as power equipment monitoring. ADD-GCN 

[16] may experience the greatest challenge when exposed 

to rapidly changing structures of the network or settings 

within the power system. It could be challenging to 

identify and respond to changes in the network topology. 

Since there are strong interdependencies between 

characteristics in several dimensions, the multi-scale D-

GCN [17] may be challenging to interpret. This means that 

there might be some challenges in identifying how data 

passes through the network and how all the factors affect 

the decision-making process, therefore making the 

monitoring system complex to understand. In contrast, 

DBH-DCGAN offers a promising alternative by 

addressing these challenges. The DBH-DCGAN model is 

designed to enhance the monitoring of power equipment 

by providing improved interpretability and adaptability. Its 

architecture is tailored to handle dynamic network 

structures more effectively, ensuring better performance in 

varying conditions. Additionally, the model's design 

simplifies the decision-making process, making it more 

accessible and understandable.  

5 Conclusion 

Specifically, the new environment of energy is based on 

the instant transition to distributed networks and 

renewable sources, whereas accurate monitoring 

technology constitutes a critical necessity. In this research, 

a novel approach based on a DBH-DCGAN is proposed 

for monitoring power equipment. We gathered the 

panoramic equipment image dataset. For training and 

inference, DBH-DCGAN frequently needs a large amount 

of computer power. The proposed method's efficiency is 

measured in terms of recall (95.4%), precision (94.2%), 

and F1-score (96.3%). It may be difficult to implement 

such models in continuous monitoring systems due to 

resource limits and computing efficiency, particularly in 

situations with limited resources. Future enhancements in 

effective training and implementation methodologies are 

essential. Handling computational limits will allow for 

simple incorporation into continuous monitoring systems, 

which is critical for applications that require limited 

resources. 
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