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To solve the low-performance problem of the krill herd algorithm in the face of multi-modal optimization 

problems, this study proposes an improved krill herd algorithm based on a hybrid frog leaping algorithm 

and meme grouping method. This study analyzes the global optimization and local distribution behavior 

characteristics of the krill herd algorithm. Then, combined with the hybrid frog leaping algorithm, the 

krill individuals are optimized through meme grouping to enhance the algorithm's global and local 

search capabilities. This study conducted MATLAB simulation experiments to test the Schaffer and 

Griebank functions and compared the results with traditional krill herd algorithms. The results 

demonstrated that the enhanced algorithm commenced convergence at the 32nd iteration of the Schaffer 

function search and reached a minimum error of 3% at the 64th iteration. The conventional Krill 

foraging optimization algorithm reached convergence at the 72nd iteration with a minimum error of 5%. 

The convergence of the improved algorithm was improved by 11.1% and the error was reduced by 2%. 

In the search for the Griewank function, convergence commenced at the 68th iteration and was largely 

completed at the 130th iteration, with a minimum error of 5%. In comparison, the traditional krill 

foraging optimization algorithm was completed at the 143rd iteration, with a minimum error of 8%. The 

convergence of the enhanced algorithm was enhanced by 9.1%, and the error was diminished by 3%. 

This study further validated the algorithm through logistics scheduling and showed that the optimized 

algorithm shortened the completion time of scheduling tasks by 3 hours and reduced costs by 13,500 

yuan. Research has shown that the proposed method performs outstandingly in improving global 

optimization capability and computational efficiency, and has practical application value. 

Povzetek: Raziskava izboljšuje algoritem jat krila z združitvijo pristopa žabjih skokov in meme gručenja, 

kar povečuje učinkovitost pri večciljni optimizaciji in logističnem razporejanju.

1 Introduction 

Global Optimal Solution (GOS) has always been an 

important and complex problem in optimization. 

Traditional optimization algorithms often fall into Local 

Optimal Solutions (LOS) when facing multi-objective 

optimization [1]. With the development of computational 

intelligence and swarm intelligence technologies, bionic 

algorithms have received widespread attention for their 

excellent performance in solving optimization problems 

[2-3]. Among them, the Krill Herd (KH) algorithm for 

optimizing krill foraging has demonstrated strong 

exploration and global optimization capabilities by 

simulating the foraging behavior of krill populations and 

has been widely applied by scholars. For example, 

Hamad R K et al. conducted a comprehensive analysis of 

the application of the KH algorithm in medicine and 

health and found that the algorithm has good feasibility in 

this field and can complete tasks such as medicine 

recognition and classification [4]. Neelamkavel PS used 

adaptive methods to improve the KH algorithm to 

optimize multi-objective problems in wind power 

generation, including optimizing various power  

 

generation costs, actual power consumption, etc. In the 

experiment, this method had significant advantages 

compared to the artificial bee colony algorithm, Particle 

Swarm Optimization algorithm (PSO), and flower 

pollination algorithm [5]. Gupta et al. improved the KH 

algorithm to address reactive power issues in power 

systems. This method considered traditional control 

parameters, as well as flexible AC transmission systems, 

combined with the objective function to minimize energy 

loss and operating costs. This method demonstrated 

superior performance in solving the reactive power 

problem of AC transmission system equipment used in 

power systems [6]. Bhatti et al. proposed a 

multi-objective fuzzy KH algorithm. To minimize 

network congestion by achieving fast convergence, this 

algorithm combined five objectives. In the simulation 

results, the algorithm showed significant improvements in 

transmission rate, throughput, fairness, and friendliness 

indicators. In addition, it also reduced packet loss, latency, 

queue size, energy consumption, and congestion [7]. The 

research progress of optimization algorithm in recent 

years is summarized. Many scholars have explored the 

application of KH algorithm and its variants in different 
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fields, and the summarized results are shown in Table 1. 

As shown in Table 1, existing optimization 

algorithms have obvious defects in solving complex 

multi-modal problems, especially in terms of 

convergence speed and dependence on the initial 

population. Although certain algorithms demonstrate 

proficiency in terms of accuracy and error rates, they 

frequently fail to identify a GOS in a shorter timeframe or 

exhibit constraints when confronted with more intricate 

and dynamic environments. Given these shortcomings, 

the Shuffled Frog Leaping Algorithm (SFLA) is adopted 

to improve the global convergence of the traditional KH 

algorithm and overcome the strong dependence of the 

algorithm. By strengthening global search and local 

optimization, this algorithm has significant advantages in 

solving the problems of slow convergence and initial 

population sensitivity. Specifically, SFLA's grouping 

strategy can effectively improve the diversity of the 

population and reduce the dependence on the initial 

population, thereby speeding up the convergence rate and 

reducing

 
Table 1: Algorithm performance comparison table 

Algorithm name Goal problem 
Convergence 

time 

Accura

cy 

Error 

rate 

Krill feeding Optimization 

Algorithm (KH) 
Multi-modal problem Relatively slow 0.95 0.05 

Improved Genetic Algorithm 

(IGA) 

Combination optimization, continuous 

optimization 
Intermediate 0.96 0.04 

Particle swarm Optimization 

(PSO) 
Multi-objective problem Fast 0.94 0.06 

Leapfrog Algorithm (SFLA) Multi-modal problem Intermediate 0.95 0.05 

Fuzzy KH algorithm Network congestion optimization Quicker 0.97 0.03 

 

 

the error rate. 

The innovation of this method lies in enhancing the 

global search and local optimization capabilities of KH 

algorithm through the grouping and jumping mechanism 

of SFLA. By combining Meme Grouping Method 

(MGM), the distribution and interaction process of krill 

are optimized, improving the performance of handling 

complex Multi-peak Optimization Problems (MPOPs). 

2 Methods and materials 

2.1 Construction of KH algorithm 
KH is an algorithm that mimics the foraging behavior of 

krill populations. This algorithm provides a new swarm 

intelligence strategy to solve optimization problems 

during the search for GOS [8-9]. Due to its simulation of 

the natural behavior of krill populations, this algorithm 

can effectively avoid LOS and find GOS when dealing 

with MPOP. This algorithm can be applied in fields such 

as engineering optimization, machine learning and data 

mining, control system design, scheduling problems, etc. 

The KH algorithm mainly exhibits three behaviors, 

namely movement, foraging, and group effects [10]. In 

terms of mobile behavior, this study assumes that the 

induced movement velocity of neighbors around krill is 

B , which is expressed as formula (1) [11]. 
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In formula (1), ia  is the induced orientation. 
local

ia  and 
argt er

ia  are the induced orientations of neighboring krill 

and the current global optimal individual. w  is the 

induced inertia weight. Formula (1) determines the 

direction and intensity of krill movement in the search 

space, which is influenced by the location of neighbors 

and the global best individual. For 
local

ia , this study 

requires calculating the sensitive interval between krill, as 

shown in formula (2). 
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In formula (2), L  is the population size, x  is the 

individual's location information, and d  is the sensitive 

interval. Formula (2) determines the spatial distance at 

which krill form neighbor relationships. Logically, this 

means that if other individuals are within this interval 

range, they will be considered neighbors to each other 

and can affect the individual's movement [12]. Based on 

formula (3) and the distribution of krill positions, the 

neighbor positions of krill are circular areas generated 

with the particle as the center and the sensitive interval as 

the radius. The specific distribution is shown in Figure 1. 
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Figure 1: Neighbor distribution of krill particles 

 

In Figure 1, each krill particle has a certain number of 

neighbors or companions. The location and behavior of 

these neighbors will affect the decisions made by the krill 

particles. In KH, the distribution information of neighbors 

helps determine how krill particles interact socially, 

thereby affecting the direction and distance of their 

movement. When other krill particles move within the 

sensitive interval of a particle, it will be more sensitive to 

changes in the position of its surrounding companions 

and adjust its position accordingly. The induced 

orientation of neighboring particles can be represented by 

formula (3) [13]. 
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L
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In formula (3), .i jK  is the influence generated by 

neighboring particles. ,i jx  is the direction of the current 

particle towards its neighbors. By normalizing .i jK  and 

,i jx  in this study, particles can undergo certain 

movements, which helps determine their social 

interaction patterns and movement directions. The 

expression for the unitization of .i jK  and ,i jx  is shown 

in formula (4). 
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In formula (4), K  and .i jK  are the fitness values of 

particles and units.   is a small positive integer that 

serves to prevent the calculation formula from being 

meaningless. Formula (4) unitizes the fitness values of 

krill particles, which can to some extent eliminate the 

differences between different fitness value scales and 

provide a relative measure in the algorithm. The 

induction direction of the globally optimal individual in 

the algorithm is shown in formula (5). 

arg
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max2( / )

t et best

i i best i best
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a Z K x

Z rand t t

 =


= +
        (5) 

In formula (5), bestZ  is the perturbation variable. rand  

is a random function with a value range of [0,1]. mt  is 

the number of iterations. Formula (5) considers 

perturbation variables and iteration times to calculate the 

induced direction of the globally optimal individual, 

providing a target direction for particles to move towards 

GOS. The individual movement speed of krill is shown in 

formula (6). 
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In formula (6), V  is the movement speed of krill. fv  

is the maximum foraging speed of krill. i  is in the KH 

direction. Formula (6) defines the movement speed of 

individual krill, which combines foraging direction and 

foraging inertia weights to provide speed for krill 

foraging activities in the search space. The individual 

diffusion rate of krill is shown in formula (7) [14]. 

max

max(1 / )iD D t t = −          (7) 

In formula (7), iD  and   are the speed and orientation 

of arbitrary diffusion of krill. Formula (7) is the random 

diffusion rate of an individual while exploring the 

environment. It allows particles to perform random 

searches in the search space, which can help algorithms 

escape LOS and increase the possibility of exploring 
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potential solutions. Finally, the particle velocity is 

composed of induced migration velocity, individual 

migration velocity, and diffusion migration velocity, as 

shown in formula (8). 

i

i i i

dx
B V D

dt
= + +          (8) 

Formula (8) combines induced velocity, individual 

velocity, and diffusion velocity to calculate the total 

velocity of particles at a specific moment. The expression 

for updating the position of krill particles is shown in 

formula (9). 
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In formula (9), R  is the step size scaling factor. t  is 

the time increment.   and   are the upper and lower 

limits of decision variables. u  is the dimensionality of 

the variable. Formula (9) updates the position of krill 

based on the velocity and time increment of particles, and 

also includes a step size scaling factor and upper and 

lower bounds for decision variables to ensure that 

particles do not exceed the search space. After the above 

steps, the KH algorithm performs crossover, mutation, 

and selection operations, as shown in formula (10). 
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In formula (10),   is the crossover probability,   is 

the mutation probability,   is the coefficient of 

variation, and f  is the fitness function. Formula (10) 

allows for information exchange between solutions 

through crossover operations. Mutation operation 

introduces new features and selects individuals with high 

fitness as potential solutions for the algorithm based on 

the fitness function. The specific process of the KH 

algorithm mentioned above is shown in Figure 2. 

 

Start
Initialize populations, parameter 

settings
Calculate individual fitness values

Motion component calculation, 

particle position calculation

Genetic manipulationRecalculate individual fitness values

Satisfy termination requirements?Output the optimal solution

Finish

NY
 

Figure 2: KH algorithm flowchart 

 

In Figure 2, KH first randomly generates a certain 

number of krill, which represents a potential solution in 

the problem space. Then KH calculates the fitness value 

of krill, and updates the position of krill based on the 

current fitness value of each krill and the location 

information of other krill in the population. Next, it 

adopts improvement strategies to optimize the position of 

krill, including local search, crossover operation, 

mutation operation, etc. Then, based on the position and 

fitness value of each krill, the inertia weight is updated. 

Finally, whether the termination condition is met is 

checked, such as reaching the maximum number of 

iterations or meeting specific convergence conditions. 

 

2.2 Improved KH algorithm based on frog 

leaping algorithm and meme grouping 
In the construction of KH, this algorithm has certain 

advantages. For example, it has a fast global convergence 

speed, can find solutions close to the optimal solution in a 

short time, can effectively deal with optimization 

problems in high-dimensional space, and has good search 

ability. However, the algorithm still has some limitations. 

The KH algorithm is sensitive to the quality and quantity 
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of the initial population. The selection of the initial 

population may have a significant impact on the results. 

To address the shortcomings of the KH algorithm, this 

study uses SFLA and MGM for improvement. MGM is a 

meta-heuristic algorithm that combines the advantages of 

multiple heuristic algorithms. MGM introduces heuristic 

rules when solving complex problems, which can better 

utilize the advantages of different algorithms and improve 

their performance. SFLA is a heuristic optimization 

algorithm that simulates the behavior of frogs in 

searching for food. It explores and optimizes the solution 

space by simulating the jumping of frogs [15]. The search 

process of the SFLA algorithm in Figure 3. 

In Figure 3, the position of each frog represents a feasible 

solution, and there are a certain number of stones in the 

frog's search range, to which each generation of frogs will 

be assigned. Frogs will adjust according to their position, 

first jumping towards the optimal position on the same 

stone. If the new position is worse than the original 

position, the frog jumps towards the global optimal 

position. If the position is still worse than the original 

position, it randomly jumps once in the solution space. 

Each frog has only two attributes: one is the location 

attribute and the other is the current location fitness value 

attribute. Each generation of frogs is sorted according to 

their position, as shown in Figure 4. In Figure 4, there are 

frogs on stones M1 to M5, and the frog with the worst 

position in each generation will jump towards the frog 

with the best position on the current stone, that is, F21 

will jump towards F1, and F12 will jump towards F2. If 

frogs with poor positions do not find a better solution, 

they will all jump towards the global optimal position. If 

the new position is still poor, the frog will randomly jump 

to the selected position. This study assumes that in a 

D -dimensional space, the expression for the frog's 

positional fitness value is shown in formula (11) [16]. 

 

1 2( , ,..., )i i i iDF f f f=        (11) 

 

In formula (11), iF  is the frog's positional fitness value. 

In the initial frog population, its 

Group 1
Group 2

Group 3

Insects

 

Figure 3: SFLA process 
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Figure 4: Position arrangement diagram of SFLA 
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number was set to S . Each frog is sorted according to its 

degree of adaptation, and the ranking decreases gradually. 

The entire group is split again into m  subgroups, each 

containing n  frogs, satisfying formula (12). 

 

S m n=              (12) 

 

Regarding the allocation method of frogs, this study starts 

from the first subgroup and arranges frogs in sequence, 

starting from the frog with the highest fitness. Then, the 

second frog in the second subgroup is placed, and this 

process is repeated until the m-th subgroup is assigned a 

frog with the m-th level of adaptability. After all 

subgroups have placed frogs in order, if there are still a 

number of frogs, they will be relocated from the first 

subgroup until all frogs have been relocated. The specific 

allocation expression for frogs is shown in formula (13). 

 

 ( 1) 1 1k

k m lM X S l n k m+ −=      (13) 

 

In formula (13), kM  is the set of frogs in the module. 

Assuming that the best fitness frog in different subgroups 

is bF  and the worst fitness frog is wF , then in the 

process of population evolution, wF  will be updated, as 

shown in formula (14). 
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In formula (14), C  is the step size. In formula (14), if 

the best solution is obtained, the worst solution is 

replaced. If no better solution is obtained, the best 

position in the entire population is used to replace the 

best position in the sub-population, and then the 

calculation is performed. If a better solution cannot be 

obtained, generate a completely new random solution to 

replace the worst individual. Once the local search 

reaches the maximum number of iterations, all frogs 

within the sub-population are remixed. All frogs are 

sorted according to their fitness values and their memes 

are reclassified based on these sorting results. This study 

aims to accelerate the convergence efficiency of the KH 

algorithm and improve its performance. The SFLA 

algorithm mentioned above has been applied to the KH 

algorithm, and its process is shown in Figure 5. 
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Figure 5: Flowchart of SFLA-KH algorithm 

 

In Figure 5, the SFLA-KH mainly improves and 

optimizes the offspring search of KH, grouping krill 

through SFLA and updating their positions. This further 

expands the search range of the SFLA-KH algorithm and 

enables it to quickly jump out of LOS. 

 

 

3 Results 

3.1 Performance analysis of SFLA-KH 

algorithm 
To verify the performance of the proposed model, this 

study conducts simulations using MATLAB. The specific 
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experimental environment is as follows: the CPU clock 

speed is 2.80GHz, the memory is 8GB, and the operating 

system is Windows 10. The experiment conducts testing 

and analysis using the Schaffer function and Griebank 

function. Schaffer is a binary test function with a Local 

Minimum Point (LMP) and multiple peaks and valleys. 

Griebank is a commonly used multivariate testing 

function that also has multiple LMP functions. By testing 

and analyzing these two functions, the performance of the 

optimization algorithm in handling challenging problems 

with multiple LMPs can be evaluated, and the 

effectiveness and robustness of the proposed model can 

be verified. Therefore, this study sets the population size 

to 25 and the algorithm iteration times to 200. Schaffer is 

solved using an Improved Genetic Algorithm (IGA), as 

shown in Figure 6. 

Figures 6 (a) to 6 (f) show the results of the first, 10th, 

22nd, 32nd, 64th, and 98th iterations of the algorithm. 

The research algorithm gradually shows convergence in 

the 32nd iteration and basically completes convergence in 

the 64th iteration. In this study, Schaffer's fitness curve 

and iterative error curve are used as evaluation indicators 

of algorithm performance and are compared with the KH 

algorithm to verify the effectiveness and progressiveness 

of the improved algorithm. The results are shown in 

Figure 7. 
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Figure 6: Test results of schaffer function 
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Figure 7: The fitness and iteration error of schaffer function 



68   Informatica 48 (2024) 61–72                                                                      R. Wang 

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

X

Y

(a) 1st iteration

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

X

Y

(b) 6th iteration

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

X

(c) 68th iteration

Y

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

X

(d) 142nd iteration

Y

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

X

(e) 200th iteration

Y

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

X

(f) 250th iteration

Y

 

Figure 8: Test results of griebank function 

 

In the fitness curve of Figure 7 (a), the KH algorithm 

begins to converge at the 48th iteration, the research 

algorithm begins to converge at the 42nd iteration, and 

the algorithm has a solution value of 1.5 for the 

multivariate unimodal function. In the iteration error 

curve of Figure 7 (b), KH reaches the minimum error at 

the 60th iteration, with a minimum error of 5%. The 

research algorithm reaches the minimum error at the 53rd 

iteration, with a minimum error of 3%. This indicates that 

the SFLA-KH algorithm can have high computational 

efficiency while ensuring computational accuracy. In 

Griebank, a function has two extrema in its domain, and 

the local minima have a regular arrangement. This study 

sets the population size to 100 and the maximum number 

of iterations to 250. The results of solving the Griebank 

function through IGA are shown in Figure 8. 

Figures 8 (a) to (f) show the results of the first, sixth, 68th, 

142nd, 200th, and 250th iterations of the algorithm. The 

SFLA-KH algorithm gradually converges at the 68th 

iteration and basically completes convergence at the 

130th iteration. SFLA-KH can effectively find GOS 

when dealing with complex optimization problems 

containing multiple LMPs, demonstrating its superior 

performance. This study uses Griebank's fitness and 

iteration error curves as evaluation metrics for algorithm 

performance, as shown in Figure 9. 

In Figure 9, the KH algorithm begins to converge at 

the 72nd iteration and reaches its minimum error of 8% at 

the 200th iteration. The solution value of the research 

algorithm for multivariate unimodal functions is 2.0. The 

SFLA-KH algorithm begins to converge at the 65th 

iteration and reaches its minimum error of 5% at the 

164th iteration. Based on Figures 8 and 9, the SFLA-KH 

algorithm has good global optimization ability and fast 

convergence, and its effectiveness has been verified. To 

further evaluate the model, the real data set is used to 

compare and analyze the SVA-KH, GA, and PSO 

algorithms. The real data set is mainly the actual delivery 

order data of a large logistics company, including the 

number of orders, delivery routes, and estimated delivery 

time. The dataset consists of a total of 1,000 shipping 

orders with order characteristics including order ID, start 

and end point, estimated distance, estimated time, and 

priority. The evaluation results are shown in Table 2. 

In Table 2, the convergence speed of the SVA-KH 

algorithm on the real data set is good, with 85 iterations, 

which is significantly lower than GA and PSO algorithms. 

Fewer iterations mean faster convergence. When the 

FLA-KH algorithm solves the logistics scheduling 

problem, the minimum error of the final solution is 4.5%, 

which is significantly better than GA, PSO, and 

First-Come, First-Served (FCFS) algorithms. This shows 

that the proposed method can provide higher solution 

quality in practical applications. The CPU running time 

of the SVA-KH algorithm is 45.7 seconds, showing high 

efficiency, which is lower than the 58.3 seconds of GA 

and 50.1 seconds of PSO. In terms of memory usage, the 

150 MB required by the SVA-KH algorithm is better than 

that of GA and PSO, which require 200 MB and 180 MB, 

respectively. This also shows the advantages of SVA-KH 

in resource utilization. Through the evaluation on real 

data set, the SVA-KH algorithm shows good performance 

in iteration times, minimum error, and CPU running time, 

which proves its effectiveness in practical  
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Figure 9: The fitness and iteration error results of the griebank function

Table 2: Performance evaluation of the model in the real data set 

Algorithm name 
Number of 

iterations 

Minimum error 

(%) 

CPU runtime 

(s) 

Memory Requirements 

(MB) 

SFLA-KH 85 4.5 45.7 150 

Genetic Algorithm 

(GA) 
120 6.2 58.3 200 

PSO 100 5.5 50.1 180 

 

application. 

 

3.2 Application performance analysis based 

on SFLA-KH algorithm 
To further validate the performance of the research 

algorithm, this study analyzes SFLA-KH through 

logistics scheduling problems. There are the related 

parameter settings of SFLA-KH. The initial population 

size is 100; The probability of crossing is 0.6; The 

mutation probability usually takes a value below 0.1. 

However, the individual samples and model iterations in 

the study are relatively small, so the mutation probability 

is appropriately increased and set at 0.3, with a maximum 

genetic iteration of 700 times. Comparative experiments 

are conducted using the FCFS algorithms for comparative 

analysis [17-18]. Assuming there are 2 main stations and 

12 task points in the logistics distribution scenario, with 

10 logistics vehicles at the main station and the same 

vehicle load capacity. The site settings are shown in 

Figure 10. 

In Figure 10, the task point information table is composed 

of the work vehicle, execution sequence, and task number. 

The homework vehicle is represented by Q. The number 

represents the order of tasks in the assignment task. The 

task number is represented by T. This study first solves 

the scheduling task problem using two algorithms and 

automatically generates a Gantt Chart for the Work 

Vehicles Scheduling (GC-WVS) based on the results, as 

shown in Figure 11. 
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Figure 10: Visualization of site and task point plan
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Figure 11: GC-WVS generated by different algorithms 
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Figure 12: Scheduling path plan of work vehicles generated by different algorithms 

 

Figure 11 (a) shows the GC-WVS results generated by 

the FCFS algorithm. The Gantt chart mainly consists of 

three parts, including task number, travel time, and work 

completion time. In Figure 11 (a), each group’s layout 

distribution is messy, as team levels of 1 or 2 have higher 

execution efficiency. To minimize the cost produced 

during this period, most tasks are allocated to the 1st 4 

groups, while the fifth group only has one task. Figure 11 

(b) shows the GC-WVS result generated by the 

SFLA-KH algorithm. The task allocation is relatively 

even, and the priority order of task scheduling generally 

meets the requirements. Compared with the former, the 

scheduling model that takes into account the overall time 

for task-finishing and idle hourly wages ensures the total 

journey’s distance and handles the issue of extremely 

uneven distribution. The scheduling path plan generated 

based on the Gantt chart results is shown in Figure 12. 

In the FCFS algorithm shown in Figure 12 (a), the route 

planning is complex and the driving path is inadvisable. 

After simulation, overall, the time is about 2min and 20s. 

The delay loss is 421,000 yuan, showing that there is a 

delay phenomenon. The overdue is 125,000 yuan, 

proving the overdue phenomenon in the overall plan. The 

whole time needed to finish the task is 16.8 hours, 

resulting in a travel cost of 25,400 yuan, for a gross of 

571,400 yuan. The SFLA-KH results in Figure 12 (b) 

show that the optimization process completed the 

scheduling path in 2min and 30s. The delay loss is 

408000 yuan, and the overdue loss is 124,000 yuan. 

There are also delays and overdue phenomena. The time 

to deliver the planned task is 14 hours, which is 3 hours 

earlier than the former. The generated driving 

expenditure is 25,900 yuan, which is a certain degree of 

reduction compared to the former. The speeding of idle 

hourly pay is 1,500 yuan, and the cost calculated for the 

former's idle hourly wages is 5,800 yuan. In contrast, the 

human resource cost is significantly lower in this 

optimization. The total cost is 557,900 yuan. 
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4 Discussion 

The proposed SVA-KH algorithm shows remarkable 

performance advantages in solving multi-modal 

optimization problems. To fully evaluate this algorithm, it 

is compared with the State-of-the-art (SOTA) in terms of 

convergence speed, minimum error, computational 

complexity, and applicability. Convergence speed is an 

important index to evaluate the performance of 

optimization algorithms. In the experiment of the 

Schaffer function, the SVA-KH algorithm begins to 

converge at the 32nd iteration, while the traditional KH 

algorithm begins to converge at the 48th iteration. In 

contrast, IGA also shows relatively slow convergence in 

solving similar problems, usually requiring around the 

55th iteration to approach the convergence state [19]. For 

the Griewank function, the SVA-KH algorithm converges 

at the 68th iteration, significantly faster than the 72nd 

iteration of the KH algorithm. The PSO algorithm shows 

the same slow performance on the same problem, and the 

convergence time is generally after the 80th iteration [20]. 

In addition, the convergence rate of the fuzzy KH 

algorithm is relatively slow, failing to reach convergence 

in a short number of iterations. Therefore, the proposed 

algorithm shows obvious advantages in convergence 

speed. In the performance of dealing with the minimum 

error, the SVA-KH algorithm is also superior to other 

methods. On the Schaffer function, the FLA-KH 

algorithm can achieve a minimum error of 3%, which is 

significantly lower than 5% of KH and 6% of PSO. The 

IGA also shows better accuracy, with an error of about 

4%. In the test of the Griewank function, the SVA-KH 

algorithm again shows its advantage, with a minimum 

error of 5%, while the KH algorithm reaches 8%. The 

results show that the SVA-KH algorithm can provide 

higher-quality solutions when dealing with complex 

multi-modal optimization problems. Although the 

SVA-KH algorithm is superior in performance, its 

computational complexity is relatively high. Compared 

with the KH algorithm and PSO algorithm, the SVA-KH 

algorithm introduces an MGM algorithm and an MPOP 

algorithm, which leads to an increase in complexity to a 

certain extent. Especially in high-dimensional problems, 

the computational burden can be even more significant. 

However, this increase in computational cost is relatively 

acceptable compared to the increase in convergence 

speed and error rate. The scope of application of different 

algorithms varies. KH algorithm is suitable for dealing 

with simple multi-modal problems, but its performance 

deteriorates when the problem size and complexity 

increase. In contrast, the SVA-KH algorithm effectively 

improves the search ability of the algorithm in complex 

high-dimensional space through the introduction of meme 

grouping. PSO and SFLA also perform well in some 

cases, tending to fall into local optimal when faced with 

dynamic problems. Although the fuzzy KH algorithm 

performs well on the network congestion problem, its 

universality is poor. Therefore, the SVA-KH algorithm 

provides a more flexible and efficient solution, which is 

especially suitable for solving high-dimensional complex 

optimization problems. 

The convergence speed and accuracy of the proposed 

method exceed other SOTA algorithms mainly due to the 

following two points: the introduction of MGM and the 

advantage of the leapfrog mechanism. The MGM 

effectively enhances the diversity of the population and 

enables the algorithm to explore the solution space more 

comprehensively. This avoids the early convergence of 

individuals to the LOS to some extent. By simulating the 

hopping behavior among frogs, the SVA-KH algorithm 

can effectively search around the LOS, thus improving 

the quality of understanding. 

5 Conclusion 

To overcome the shortcomings of the KH algorithm in 

terms of initial population selection sensitivity and global 

convergence speed, this study proposed an improved KH 

algorithm based on SFLA. SFLA-KH enhanced the 

global search and local optimization capabilities of the 

KH algorithm by combining SFLA's grouping strategy. 

Experiments have shown that SFLA-KH exhibited faster 

convergence speed and lower error values compared to 

the original KH in handling Schaffer and Griebank 

functions. In practical logistics scheduling problems, this 

algorithm significantly shortened the completion time of 

optimization tasks and reduced the overall scheduling 

cost. Although the algorithm has achieved good results, 

there are still some shortcomings. For example, by 

introducing SFLA and MGM, the algorithm improves its 

search performance on complex problems but also 

increases its complexity, which may affect its efficiency 

and practicality in practical applications. The dynamism 

and stability of this algorithm in different fields and 

application scenarios still need to be verified. Future 

research can focus on simplifying algorithms and 

reducing computational costs. For dynamic optimization 

problems, intelligent optimization algorithms that can 

dynamically adjust their structure and parameters can be 

designed to maintain efficient and stable performance in 

changing environments. 

Funding 

The research is supported by Theory and Application of 

several kinds of non-smooth generalized convex 

multi-objective programming (N0.2020AYQN06). 

References 

[1] P. Kaliraj, and B. Subramani (2024) Intrusion detection 

using krill herd optimization based weighted extreme 

learning machine, Journal of Advances in Information 

Technology, vol. 15, no. 1, pp. 147-154. 

https://doi.org/10.12720/jait.15.1.147-154 

[2]  T. Mahmood, and Z. Ali (2022) Prioritized muirhead 



72   Informatica 48 (2024) 61–72                                                                      R. Wang 

mean aggregation operators under the complex 

single-valued neutrosophic settings and their 

application in multi-attribute decision-making, Journal 

of Computational and Cognitive Engineering, vol. 1, 

no. 2, pp. 56-73. 

https://doi.org/10.47852/bonviewJCCE2022010104 

[3]  N. C. Cruz, S. Puertas-Martín, J. L. Redondo, and P. M. 

Ortigosa (2023) An effective solution for drug 

discovery based on the tangram meta-heuristic and 

compound filtering, Informatica, vol. 34, no. 4, pp. 

743-769. https://doi.org/10.15388/23-infor535 

[4]  R. K. Hamad, and T. A. Rashid (2023) Current studies 

and applications of krill herd and gravitational search 

algorithms in healthcare, Artificial Intelligence Review, 

vol. 56, no. 1, pp. 1243-1277. 

https://doi.org/10.1007/s10462-023-10559-4 

[5]  P. S. Neelamkavil (2023) Development of optimal 

placement and sizing of FACTS devices in power 

system integrated with wind power using modified krill 

herd algorithm, COMPEL-The International Journal 

for Computation and Mathematics in Electrical and 

Electronic Engineering, vol. 42, no. 6, pp. 1408-1433. 

ttps://doi.org/10.1108/compel-12-2021-0502 

[6]  V. K. Gupta, S. K. Mishra, and R. Babu (2024) 

Solution of reactive power planning with TCSC and 

UPFC using improved krill herd algorithm, 

Transactions of the Indian National Academy of 

Engineering, vol. 9, no. 1, pp. 87-99. 

https://doi.org/10.1007/s41403-023-00428-5 

[7]  K. A. Bhatti, S. Asghar, and S. Naz (2024) 

Multi-objective fuzzy krill herd congestion control 

algorithm for WSN, Multimedia Tools and 

Applications, vol. 83, no. 1, pp. 2093-2121. 

https://doi.org/10.1007/s11042-023-15200-8 

[8]  A. O. Abdalrahman, D. Pilevarzadeh, S. Ghafouri, and 

A. Ghaffari (2023) The application of hybrid krill herd 

artificial hummingbird algorithm for scientific 

workflow scheduling in fog computing, Journal of 

Bionic Engineering, vol. 20, no. 5, pp. 2443-2464. 

https://doi.org/10.1007/s42235-023-00389-z 

[9]  E. Bas, and A. Ihsan (2023) Gray wolf and krill herd 

optimizations: performance analysis and comparison, 

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 

vol. 29, no. 7, pp. 711-736. 

https://doi.org/10.5505/pajes.2023.38739 

[10] Z. Gao (2023) A novel long and short-term memory 

Network-Based Krill Herd Algorithm for explainable 

art sentiment analysis in interior decoration 

environment, Journal of Cases on Information 

Technology (JCIT), vol. 25, no. 1, pp. 1-13. 

https://doi.org/10.4018/JCIT.324602 

[11] P. S. Apirajitha, and R. R. Devi (2023) A novel 

blockchain framework for digital forensics in cloud 

environment using multi-objective krill Herd Cuckoo 

search optimization algorithm, Wireless Personal 

Communications, vol. 132, no. 2, pp. 1083-1098. 

https://doi.org/10.1007/s11277-023-10649-0 

[12] K. Parthiban, Y. V. Rao, B. Harika, R. Kumar, A. Shaik, 

and S. Shankar (2023) Diagnose crop disease using 

Krill Herd optimization and convolutional neural 

scheme, International Journal of Information 

Technology, vol. 15, no. 8, pp. 4167-4178. 

https://doi.org/10.1007/s41870-023-01417-1 

[13] S. Sivamohan, S. S. Sridhar, and S. Krishnaveni (2023) 

TEA-EKHO-IDS: An intrusion detection system for 

industrial CPS with trustworthy explainable AI and 

enhanced krill herd optimization, Peer-to-Peer 

Networking and Applications, vol. 16, no. 4, pp. 

1993-2021. 

https://doi.org/10.1007/s12083-023-01507-8 

[14] Y. Li, and L. Zheng (2023) An optimisation method of 

urban road green space landscape layout based on 

leapfrog algorithm, International Journal of 

Environmental Technology and Management, vol. 26, 

no. 6, pp. 457-469. 

https://doi.org/10.1504/ijetm.2022.10052203 

[15] B. Zhang, and X. Wang (2024) A wireless sensor 

network node redeployment method based on 

improved leapfrog algorithm, International Journal of 

Information and Communication Technology, vol. 24, 

no. 1, pp. 33-47. 

https://doi.org/10.1504/ijict.2024.135313 

[16] J. Zheng, Y. Zeng, Z. Zhao, W. Liu, H. Xu, and S. Ji 

(2023) A semi-implicit parallel leapfrog solver with 

half-step sampling technique for FPGA-based real-time 

HIL simulation of power converters, IEEE 

Transactions on Industrial Electronics, vol. 71, no. 3, 

pp. 2454-2464. 

https://doi.org/10.1109/TIE.2023.3265042 

[17] M. I. Abdillah, and M. D. Irawan (2023) 

Implementation of the first come first served algorithm 

in the futsal field booking application using extreme 

programming, ZERO: Jurnal Sains, Matematika dan 

Terapan, vol. 7, no. 2, pp. 182-191. 

https://doi.org/10.30829/zero.v7i2.19163 

[18] H. A. Shehadeh, H. M. J. Mustafa, and M. Tubishat 

(2022) A hybrid genetic algorithm and sperm swarm 

optimization (HGASSO) for multimodal functions, 

International Journal of Applied Metaheuristic 

Computing (IJAMC), vol. 13, no. 1, pp.1-33. 

https://doi.org/10.4018/ijamc.292507 

[19] S. T. Shishavan, and F. S. Gharehchopogh (2022) An 

improved cuckoo search optimization algorithm with 

genetic algorithm for community detection in complex 

networks, Multimedia Tools and Applications, vol. 81, 

no. 18, pp. 25205-25231. 

https://doi.org/10.1007/s11042-022-12409-x 

[20] J. Popper, and M. Ruskowski (2022) Using multi-agent 

deep reinforcement learning for flexible job shop 

scheduling problems, Procedia CIRP, vol. 112, no. 1, 

pp. 63-67. https://doi.org/10.1016/j.procir.2022.09.039 

https://doi.org/10.47852/bonviewJCCE2022010104
https://doi.org/10.1108/compel-12-2021-0502
https://doi.org/10.5505/pajes.2023.38739
https://doi.org/10.4018/JCIT.324602
https://doi.org/10.30829/zero.v7i2.19163
https://doi.org/10.1016/j.procir.2022.09.039

