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The integration of high-tech in electric vehicles enhances the driving experience, which is more 

environmentally friendly. However, the uneven distribution of charging stations and limited battery 

capacity require a balance between travel time and charging cost during long-distance travel. 

Different charging strategies and path planning can lead to different charging cost and travel time. 

Introducing artificial intelligence into path planning aims to enhance the long-distance travel 

experience for drivers and passengers. Therefore, the study adopts topology graphs to isomerize the 

roads during travel, and the algorithm topology graph is improved to remove redundant paths. Then, it 

is combined with ant algorithm to construct a path optimization model. The experiment used the 

electricity price in C1 city and the charging charging parameters in the parking lot at Ya as 

experimental data to simulate the real environment. The simulation results showed that the research 

algorithm achieved convergence after the 23rd iteration, with a comprehensive total cost of 38. The 

computational efficiency and results are superior to other algorithms. The average total cost of the 

travel path optimization model based on improved topology and ant algorithm was 7% -26% lower 

than other models. The results indicate that the research model has a better balance effect when 

considering travel time and charging cost comprehensively, which can plan the optimal travel strategy. 

The research results can make a positive contribution to autonomous driving. 

Povzetek: Predlagan je izboljšan pristop optimizacije poti električnih vozil, ki združuje topološke grafe 

in algoritem kolonije mravelj, znižuje skupne stroške potovanja ter uravnoteži čas in stroške polnjenja.

1 Introduction 

With the rapid development of battery energy storage 

technology and intelligent interaction between humans 

and vehicles, electric vehicles have environmental 

protection, intelligence, diverse choices, and high 

cost-effectiveness. More people choose to purchase 

electric vehicles [1-2]. However, in long-distance travel, 

the distribution of charging stations is not as wide as that 

of gas stations, and electric vehicles have a shorter range 

than gasoline vehicles. Frequent visits to charging 

stations for energy storage make it difficult for drivers to 

balance the time and charging cost of long-distance travel 

[3]. Due to different congestion situations during visits to 

charging stations, there are differences in tiered 

electricity prices, resulting in varying levels of electricity 

when arriving and leaving the stations. This greatly  

 

 

increases the difficulty of planning the optimal travel plan. 

Therefore, finding an electric vehicle path optimization 

method that comprehensively considers time and 

charging cost can greatly enhance the driver's 

long-distance travel experience. However, Algorithm 

Topology Graph (ATG) can isomerize complex road 

networks and charging stations into point and edge sets 

during travel, with clear connectivity and sequential 

relationships, which can simplify complex path problems 

[4-5]. Ant Colony Optimization (ACO) algorithm 

simulates ant foraging and has a global self-organizing 

search and positive feedback mechanism. After iteration, 

it gradually obtains the global optimal solution from the 

local optimal solution, which is suitable for travel path 

optimization [6-8]. Many scholars and experts have 

conducted relevant research on ATG and ACO. Details 

are shown in Table 1. 
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Table 1: The summary table of the reviewed research 

Reference Method Result Inadequacy 

Dawen [9] 
Based on bidirectional heuristic 

search A-star and ACO algorithm 

Compared with the heuristic 

search A-star algorithm, 

acyclic algorithm, and 

Gurobi algorithm, it reduces 

102.73m, 73.27m and 

23.08m, respectively 

ACO algorithm can fall into 

local optimal solution, and its 

robustness and generalization 

ability have not been explored 

Dong et al 

[10] 

Multi-objective ACO for ship pipeline 

path design method 

The actual ship pipeline path 

design and simulation 

experiments show that this 

method improves the 

efficiency of the design work 

ACO has strong optimization 

ability, and it needs to be 

verified for path planning 

Zhao et al 

[11] 

A multi-material, multi-volume 

topology optimization framework 

Compared with the 

conventional frame, the 

optimized frame has a 17.4% 

reduction in steel content and 

fewer cracks under the 

ultimate load 

The topology of steel 

structure is deterministic, 

while the topology of the path 

planning is multivariate and 

uncertain 

Kai et al 

[12] 

Elastoplastic continuum topology 

optimization method based on SIMP 

framework 

The stable load bearing 

capacity of the elastoplastic 

continuum is increased by 

6.1% 

This study uses SIMP 

framework to optimize the 

topology structure, which is 

not suitable for the content of 

the study 

 

To solve the traffic congestion and increased fuel 

consumption caused by blind navigation during travel, 

Xia et al. proposed a bidirectional heuristic search 

algorithm based on A-star and ACO. The research results 

indicated that the length of the shortest path 

recommended by this algorithm was 102.73m, 73.27m, 

and 23.08m shorter than heuristic search A-star algorithm, 

acyclic algorithm, and Gurobi algorithm, respectively [9]. 

Dong et al. proposed a multi-objective ACO-based ship 

pipeline path design method, which addressed the 

extremely complex nature of ship pipelines and the high 

workload and low design efficiency involved in designing 

ship pipeline paths. The study conducted simulation 

experiments and applied this method to the ship pipeline 

path design in reality. The feasibility and effectiveness of 

this method were verified through simulation experiments 

and practical use, which improved the efficiency of 

design work [10]. Zhao et al. designed a multi material 

and multi volume topology optimization framework to 

address the cost increase caused by the need for a large 

number of crack control steel bars in deep beam design. 

Compared with traditional frameworks, the optimized 

framework reduced steel content by 17.4% and had fewer 

cracks under ultimate load. The topology structure can 

reduce the steel cost in deep beam design [11]. Li and 

Cheng proposed a topology optimization method for 

elastic-plastic continuum based on SIMP framework to 

address the low stability load bearing performance of 

elastic-plastic continuum. The experimental results 

showed that the stability load bearing capacity of the 

elastic-plastic continuum was improved by 6.1%. From 

this, the topology optimization of elastic-plastic 

continuum can effectively improve performance [12]. 

The above research indicates that some scholars 

have conducted relevant research on ATG and ACO, 

which are helpful for path planning and cost control. 

However, there is very little research on the combination 

of ATG and ACO for electric vehicle path planning. 

Therefore, this study combines ATG and ACO to the 

travel path optimization, constructing an optimal 

long-distance travel path selection model that can balance 

travel time and charging cost. It is expected that this 

model can take into account different drivers' perceptions 

of time and cost, fully consider all traffic related time and 

toll cost during travel, and select the optimal travel path 

to improve the driver's driving experience. The 

innovation of this study lies in the proposed model, which 

combines the roads, starting points, endpoints, and 

charging stations in long-distance travel into a topology 

graph. The topology graph is iteratively optimized using 

the ATG-ACO algorithm to calculate the optimal path for 

comprehensive time and cost. The contribution of the 

research lies in not only being able to calculate the global 

optimal solution for long-distance travel, but also 

automatically balancing charging cost and overall travel 

time based on different user preferences through 

conversion and weighting coefficients. At the same time, 

the proposed optimization strategy for electric vehicle 

travel routes has broad application prospects and 

promotion value, which is expected to make positive 
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contributions to the development of industries such as 

autonomous driving and logistics distribution. 

The research is mainly divided into five parts. The 

first part is the introduction, which analyzes the research 

results of long-distance travel solutions and briefly 

describes the optimization strategies proposed in the 

study. The second part designs a travel path planning 

model based on the ATG-ACO algorithm. The third part 

is model simulation testing. The fourth part discusses the 

simulation test results. The fifth part summarizes the 

research results. The path optimization model based on 

ATG and ACO can calculate the optimal travel strategy 

that comprehensively considers travel time and charging 

cost. 

2 Methods and materials 

Topology graphs can isomerize the positions and 

paths during travel in the form of point and edge sets, 

better representing dependency relationships and 

execution order, making it easier for algorithms to find 

the optimal path [13-14]. This study improves the 

topology algorithm and decomposes the total cost of 

travel time and charging cost to establish a cost 

calculation method that considers conversion coefficients, 

weighted coefficients, and mutual constraints between 

sub-items. The ant algorithm is introduced into the 

preprocessed topology to form a travel path planning 

model based on the ATG-ACO algorithm. Through 

algorithm iteration, the global optimal solution is 

gradually obtained from the local optimal solution, which 

comprehensively considers the time and charging cost of 

the optimal path. 

 

2.1 Design of improved ATG algorithm based 

on electric vehicle travel path 
Electric vehicles have fewer charging stations than 

gas stations, which greatly increases the difficulty of path 

optimization due to frequent charging, queuing for 

charging, and tiered electricity prices. An improved ATG 

that heterogeneous travel locations is proposed, 

characterized by clear hierarchical structure, acyclic and 

traversal characteristics. These advantages facilitate the 

modeling of travel paths, allowing algorithms to 

efficiently find the optimal path from a large number of 

calculations. Considering the objective relationship 

between remaining electricity, storage capacity, and 

charging time, when constructing a topology diagram, the 

following constraints must be met. Firstly, the 

uni-directionality of the battery electrochemical 

conversion process makes it impossible to charge and 

discharge simultaneously. Therefore, there is a mutually 

exclusive constraint, as shown in equation (1). 

 

1 +                 (1) 

 

In equation (1),   represents the charging state of 

the vehicle, and  0 1, = . 0 = , indicates that the 

vehicle is not charging. 1 = , it indicates that the 

vehicle is currently charging.   is the discharge state of 

the vehicle, and  0 1, = . When 0 = , the vehicle is 

not discharging. When 1 = , the vehicle is discharging. 

In addition, the constraint of battery capacity should be 

considered. Firstly, when reaching the charging station, 

the amount of electricity must be greater than or equal to 

0. Secondly, the amount of energy stored cannot exceed 

the battery capacity ME . The constraint of remaining 

battery capacity xE  is shown in equation (2). 
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In equation (2), xQ  is the charging power of the 

charging station.   is the charging efficiency of the 

vehicle. xT  is the charging time at charging station x . 

Finally, because there is a relationship between the 

locations, it is necessary to consider the time constraint of 

reaching the charging station. The expression for the 

arrival time constraint is shown in equation (3). 
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In equation (3), bT  is the time to reach charging 

station b . abD  is the distance between charging station 
a  and b . iabV  is the estimated average speed of the 

section. sT  is the starting time. aT  is the time to leave 
a . WbT  is the waiting time for the vehicle to be charged 

in queue at b . CbT  is the charging time of the vehicle at 

b . The set of rechargeable locations around a  is aB . 

  is the collection of charging stations where the car 

undergoes charging.   is the collection of all charging 

stations for charging during travel, including fast 

charging stations and regular parking lots with charging 

stations. Taking into account the above constraints, the 

topology diagram presents an extremely complex 

structure that requires a significant amount of 

computational time. Therefore, the ATG is optimized to 

improve computational efficiency. The traditional 

simplified topology and the improved ATG are shown in 

Figure 1. 
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BT1

BT2

(a) A simple example of path planning

(c) The entry and exit status of vehicle 

charging stations is subdivided 

based on electricity consumption

(b) Location and endpoint nodes are subdivided 

based on electricity consumption

(d) Preprocessing rendering 

of algorithm topology diagram

 

Figure 1: Newly constructed algorithm topology graph 

Figure 1 (a) shows a simplified topology structure. 

In Figure 1 (b), based on the remaining power of the 

vehicles at the starting and ending points, the study 

divides the starting and ending points into 5 new nodes 

using a 20% gradient. In Figure 1 (c), the charging station 

is divided into 10 new nodes based on the remaining 

battery capacity of the vehicle after leaving the charging 

point and arriving at the next charging point, using a 20% 

gradient. The edge formed between two charging points 

increases from one edge to 15 edges. The study proposes 

an improved algorithm for preprocessing the topology 

graph, aiming to evaluate whether to add new edges and 

remove edges connecting two long-distance charging 

stations to construct a sparser topology. As shown in 

Figure 1 (d), an improved topology is obtained by 

removing these two redundant edges. The specific 

preprocessing algorithm flow is shown in Figure 2. 

Start
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Figure 2: Preprocessing process of algorithm topology graph 
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In Figure 2, the starting point, ending point, and road 

network in travel are first heterogeneous into point set 

0U . Based on the above partitioning strategy, a new 

point set NU  is obtained. Then, whether a  is within 

the NU  is determined. If so, the ATG NM  is 

constructed based on the point set NU  and edge set NS . 

If not, a  and b  form a new edge nP  from newly 

generated nodes. If the absolute value of the difference in 

the comprehensive cost of all existing paths mP  between 

nP  and a , and b  is greater than the threshold nP , it 

indicates that the new path nP  can be added to the edge 

set. The original path will be removed as a redundant path. 

Through the above algorithm process, topology 

optimization and simplification are achieved, 

significantly improving the efficiency and performance of 

the topology structure. 

 

2.2 Comprehensive cost calculation method 

for balancing time and charging cost 
The improved ATG simplifies complex path 

planning problems. To find the optimal comprehensive 

cost solution that balances travel time and charging cost 

from the improved topology graph, mathematical 

modeling is performed on the comprehensive cost. The 

modeling approach is to break down the total cost and 

calculate it separately. The schematic diagram of total 

cost division is shown in Figure 3. 
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Figure 3: The comprehensive cost of electric vehicle travel 

 

In Figure 3, starting from the starting point, the five 

types of costs continue to increase as the travel distance 

increases. Different drivers have different understandings 

of the value of time and have different requirements for 

the overall budget. Therefore, different weighting 

coefficients are set for different drivers regarding driving 

time, charging time, waiting time for charging, fast 

charging fees, and regular charging fees. In addition, 

conversion factors are set for travel time, charging time, 

and waiting time for charging, converting time into 

expenses and simplifying the calculation of target cost. 

Therefore, the comprehensive minimum cost is shown in 

equation (4). 

 

a 1ll all allmin( A ) min( T ( )C )  =  + −   (4) 

 

In equation (4), allA  represents the total 

comprehensive cost.   is the weighting coefficient.   

is the conversion factor. allT  is the sum of three time sub 

items. allC  represents the total charging cost. Firstly, the 

total driving time dT  is calculated, as shown in equation 

(5). 

a

ai

d ai ai aia U
ai
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v
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= +        (5) 

 

In equation (5), the road section that the car passes 

through is set aU . ail  is the length of road section ai . 

aiv  is the average speed of the road segment calculated 

based on traffic data. ai  is the set  0 1, . 1 represents 

the presence of traffic lights on the road section ai , and 

0 represents the absence of traffic lights on the road 

section ai . ai  is the probability of a car encountering 

a red light on section ai . ai  is the time when cars wait 

for red lights on the section ai . Then, the total waiting 

time for charging is calculated. To calculate the waiting 

time for charging, whether all charging stations are 

occupied should be considered. The probability antP  of 

all charging stations being occupied is calculated using 

equation (6). 
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In equation (6), at  is the car arrival rate. a,t  is 

the parameter charging rate. aW  is the total number of 

charging stations. 0a tP  represents the probability that all 

charging stations are not used within t . The 0a tP  is 

shown in equation (7). 
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In equation (7), i  is the count of charging stations 

in a  charging station. According to equation (6), the 

average queue length atS  of charging station a  within 

time slot t  is shown in equation (8). 
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According to queue probability, length, etc., the total 

waiting time for charging in the queue is shown in 

equation (9). 

a
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Afterwards, the total charging time CT  is shown in 

equation (10). 
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In equation (10), 
live

aE  is the amount of electricity 

that the car leaves a . 
arrive

aE  is the amount of 

electricity that the car reaches a . aE  is the amount of 

electricity stored. aQ  is the power of the a  charging 

station. After obtaining the three-time costs, the charging 

fees are calculated separately. The regular charging fee is 

equal to the cost in a regular parking lot. The study 

considers that cars discharge electricity in the parking lot 

to obtain partial income from the power grid. Therefore, 

the detailed composition of the total cost breakdown is 

shown in Figure 4. As shown in Figure 4, driving time 

consists of driving time and waiting time at red lights, 

while the slow charging fee is the difference between the 

charging fee and the discharge income. The fast-charging 

fee fC  is shown in equation (11). 
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In equation (10), at  is the time to reach the a  

charging station. T  is the time spent on 

decision-making. fQ  is the fast charging power. t  is 

a tiered electricity price. The ordinary charging fee SC  

is shown in equation (12). 
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e e

T T

S s t dis t tt T t T
C Q T Q T  

= =
=   −    (12) 

In equation (12), t  represents the purchase price 

of electricity from the power grid. eT  is the end time of 

this trip. nsT  is the start time of the next trip. disQ  is the 

discharge power. sQ  is the slow charging power. 

 

2.3 Construction of comprehensive cost 

travel path planning model based on 

ATG-ACO 
The preprocessed ATG is introduced into the path 

optimization algorithm to obtain the optimal path for 

electric vehicle travel. Considering that the preprocessing 

process of ATG includes judgment and feedback 

mechanisms, and finding the optimal path from a 

topology with numerous elements is a highly complex 

problem, the study introduces ACO. The ACO algorithm 

has the characteristics of positive feedback, 

self-organization, and global search, making it very 

suitable for complex path planning [15]. The principle of 

ACO is shown in Figure 5.
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Figure 4: Detailed composition of total cost 
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Figure 5: Ant algorithm schematic diagram 

 

Figure 5 (a) shows the initial state of ants foraging, 

with four passing points in the ant nest away from food. 

In Figure 5 (b), the leading ant passes through point 2 to 

reach the food, leaving behind pheromones between them. 

In Figure 5 (c), a large number of ants reach the food, 

leaving behind pheromones that form multiple paths. In 

Figure 5 (d), Path 2 leaves the most pheromones, and 

most ants will search for food along this shortest path. 

Ants leave more pheromones on the path of the optimal 

solution through the action of pheromones, attracting ants 

to choose this path and guiding the ant colony to the 

optimal path. The path finding process of applying ACO 

to ATG is as follows. Firstly, the initialization parameters 

include the number of ants sA , the total amount of 

released pheromones, volatility factor  , importance 

factor  , the importance factor   of the heuristic 

function, the number of iterations  , and the 

concentration of pheromones  . If charging station b  

is adjacent to charging station a , then the edge ab  

between a  and b  is 1. If not adjacent, then ab  is 0. 

Ants start from the starting point and reach the next node 

according to probability abp
. The probability calculation 

for ants from node a  to node a  is shown in equation 

(13). 
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In equation (13),   is the heuristic function [16]. 

When all ants in the  -th iteration stop searching, the 

time and charging cost of the electric vehicle represented 

by all ants to the endpoint are calculated, and obtain the 

local optimal solution for the  -th iteration. The path 

decision variable abx  is updated based on the arrival of 

ants at the node. The decision variable is shown in 

equation (14). 

1

0
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x
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
= 
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      (14) 

In equation (14), when 1abx = , the vehicle's battery 

level represented by the ant is updated. The battery level 

update calculation is shown in equation (15). 

1
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In equation (15), antq '  is the updated electricity 

level. 1E  and abDis( x )  represent the power 

consumption per unit distance and the distance of a  and 

b , respectively. If the ant fails to find the global optimal 

solution, it updates the pheromone for the next iteration 

and triggers a positive feedback mechanism. The 

pheromone updating is shown in equation (16). 

1 1
1

R
R

( )
R

    + = − + 
=

     (16) 

In equation (16), 1 +  represents the concentration 

of pheromones after the next iteration. R  is the number 

of ants that reach the endpoint after 1 +  iterations. 
R  is the pheromone increment [17]. The pheromone 

increment is shown in equation (17). 

R

R

T ,CA
 =              (17) 

In equation (17), 
R

T ,CA  is the distance to the 

destination. The calculation method for determining 

whether to continue iteration is shown in equation (18). 

 

1next n max  = +           (18) 

 

The above steps are repeated to the maximum 

number of iterations max . The ants search for the global 

optimal solution. The above process uses ant simulation 

to find the optimal path for electric vehicles. The process 

of searching for the optimal comprehensive cost in the 

preprocessed topology is shown in Figure 6. 
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Figure 6: A Topology preprocessing ant colony path optimization algorithm framework 

 

 

As shown in Figure 6, the road network diagram 1M  is 

first heterogeneous into an improved ATG NM . Then, 

ants simulate the travel scenario of electric vehicles, 

randomly select charging nodes from the starting point on 

the journey, and optimize the selected path through 

iteration. Finally, the most cost-effective travel route is 

determined. 

 

 

 

3 Results 

The travel path planning model based on ATG-ACO 

algorithm is simulated and tested. A simulation 

environment using road network 1M  is established, and 

relevant parameters are set.  
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The improved ATG-ACO algorithm is iteratively trained 

to test the convergence efficiency of the algorithm. The 

ACO is compared with ATG-ACO algorithm to analyze 

the effect of the ATG on improving computational 

efficiency. Finally, a comparative experiment is 

conducted between the designed model and other models 

to verify that the proposed model can find the optimal 

path considering time and charging cost. 

3.1 Simulation environment and parameter 

settings 
To simulate a real environment, the electricity step tariff 

in C1 city and the charging station parameters in the 

parking lot at Ya are selected as experimental data. The 

detailed information of the sample is shown in Table 2. 

 
Table 2: Data samples selected from the case western storage bearing dataset 

Electric vehicle parameters 
Charging station 

parameters 
Parking lot parameters Time-of-use 

Parameter Value Parameter Value Parameter Value  
Peak 

period 

Ordinar

y 

segmen

t 

Low 

valley 

sectio

n 

Unit energy 

consumption 

(kWh/km) 

0.15 
Charging 

power 
90 

Charging 

power (kW) 
20 Period 

of 

time 

7:00-1

1:00 

23:00-7

:00 the 

next 

day 

11:00-

19:00 

Battery 

capacity (kWh) 

22.6 
Charge 

efficiency 
80% 

Discharge 

power (kW) 
20 

19:00-

23:00 

/ 

Profit 

coefficien

t 

Random 

numbers 

between 

[1,1.5] 

Charge 

efficiency 
80% 

Chargi

ng 

price 

1.315

5 

0.0.839

9 

0.382

2 

/ / / / 
Discharge 

efficiency 
80% 

Electri

city 

purcha

se 

price 

/ 0.8399 / 

 

The study selects ACO without ATG as the 

comparison object with path planning models based on 

DPO, QLPO, and PGAPO proposed by another research. 

 

3.2 Analysis of iterative convergence and 

computational efficiency of ATG-ACO 
After constructing a simulation experimental environment, 

the ATG-ACO algorithm is iteratively trained and 

compared with other algorithms. The experimental results 

are shown in Figure 7. In Figure 7, the research algorithm 

converged after 23 iterations, and the calculated optimal 

cost was 38. The QLPO algorithm converged after 74 

iterations, and the optimal cost was 49. The convergence 

speed of PGAPO algorithm and DPO algorithm was 

relatively slow. PGAPO converged after 90 iterations, 

with an optimal cost of 73. The DPO algorithm fluctuated 

up and down as the number of iterations increased, and 

still did not converge after 120 iterations. From this, the 

proposed ATG-ACO has better convergence speed than 

other algorithms, and the optimal planning cost is the 

lowest. To analyze the improvement effect of improved 

topology in ATG-ACO, a comparative experiment is 

conducted between ACO and ATG-ACO. The results are 

shown in Figure 8.
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Figure 7: Comparison chart of algorithm iteration training convergence 
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Figure 8: Comparative experimental results of ATG and ATG-ACO 

 

In Figure 8, with 100 traffic points, the ATG-ACO 

algorithm took 1s longer than the ACO algorithm. As the 

number of traffic points increased, the ATG-ACO 

algorithm took less time than the ACO algorithm. The 

differences were more pronounced when there were 

multiple traffic points. When the number of traffic points 

was 300, the ATG-ACO algorithm took 20s, while the 

ACO algorithm took 33s. When the number of 

transportation nodes was 500, the ATG-ACO algorithm 

took only 43s, less than half of the time of the ACO 

algorithm. The results indicate that topology 

preprocessing has a great promoting effect on ant 

algorithm in finding the optimal solution. 

 

3.3 Comprehensive cost control analysis of 

travel path planning model based on 

ATG-ACO algorithm 
The above experiment shows that the ATG-ACO 

algorithm has better computational efficiency. The study 

compares the ATG-ACO path planning model with other 

models mentioned above. The charging cost results after 

multiple simulation experiments are averaged, as shown 

in Figure 9. In Figure 9, as the weighting coefficient of 

travel time increased from 0 to 1, the total charging cost 

of the optimal path planned by the ATG-ACO model 

gradually increased from 35 to 48 yuan. When the weight 

coefficient of the QLPO model was 0.25, the charging 

cost decreased to the lowest value of 29 yuan, and 

increased to 37 yuan as the weight value increased. From 

Figure 9, the DPO model is most affected by the 

weighting coefficient, with the largest increase, and the 

total charging cost increases from 35 yuan to 67 yuan. 

However, the QLPO model is least affected by weighting 

coefficients, and the charging cost remains around 47 

yuan. From this, the weighting coefficient, when only 

considering the total charging cost during long-distance 

travel for path optimization planning, is not entirely 

superior to other path planning models, because the 

designed model not only considers charging cost but also 

balances the time cost of travel. The total travel time after 

multiple simulation experiments to obtain the average 

value is shown in Figure 10.
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Figure 9: Nightingale diagram of three experimental results 
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Figure 10: The total travel time results of various model comparison experiment 

 

In Figure 10 (a), the total time of the ATG-ACO 

model was 252s, which was better than the total time 

264s of the DPO, but 59s more than the QLPO. The total 

time of the ATG-ACO model in Figure 10 (b) was 213s, 

which was also better than the PGAPO and DPO models, 

but 10s longer than the QLPO. The total optimal path 

time of the ATG-ACO model in Figures 10 (c), 10 (d), 

and 10 (d) were 209s, 204s, and 203s, respectively, which 

were close to the QLPO and significantly lower than the 

PGAPO and DPO models. From this, when only 

considering the single time cost, ATG-ACO is not 

entirely superior to other models. The study converts the 

total time into the total charging cost through a 

conversion coefficient. The experimental results 

considering the total comprehensive cost are shown in 

Figure 11. From Figure 11 (a), due to the conversion 

coefficient, the lowest comprehensive cost of the 

ATG-ACO model was 78 yuan, and the highest value 

was 88 yuan. Regardless of the weighting coefficient, it is 

superior to other models. The proposed ATG-ACO model 

is the optimal model for path planning, taking into 

account the balance between travel time and charging 

cost. 

4 Discussion 

This study compares the performance of the ATG-ACO 

and analyzes the comprehensive cost control effect of the 

travel path planning model based on the ATG-ACO 

algorithm. The results showed that the ATG-ACO 

algorithm exhibited significant advantages in 

convergence speed and computational efficiency in 

optimal path planning. In the comparison of convergence 

curves, the ATG-ACO algorithm completed convergence 

after the 23rd iteration, with a total cost of 38 lower than 

other algorithms. This result is similar to the results 

obtained by Abdullah et al. in their study combining 

improved ATG and ACO [18]. This result indicates that 

the ATG-ACO algorithm can quickly find the optimal 

solution, and improve the
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computational efficiency of the optimal path. It can be 

promoted in practical travel path planning. In the analysis 

of the improvement effect of ATG preprocessing, when 

the traffic node reached 500, adding the ATG-ACO 

algorithm took only 43s, which was more than half of the 

time compared with the ant algorithm without ATG. The 

improved ATG improved the efficiency of ant algorithm 

in finding the optimal path. Feng et al. reached similar 

conclusions when conducting topology optimization on 

discrete structures in 2023 [19]. This result indicates that 

the improved topology has a clear and simplified 

structure, which can be used to design more efficient 

models for path planning. From the above results, the 

improved ATG algorithm can remove redundant paths. 

Combining with the ACO algorithm can not only 

improve iteration efficiency, but also avoid getting stuck 

in local optima and reduce computational cost, which 

other expensive algorithms do not have these effects. 

Finally, in the analysis of the comprehensive cost control 

effect of the ATG-ACO model, the results showed that 

when only considering a single cost of time or charging 

fees, the proposed model was not entirely superior to 

other models. However, considering both travel time and 

charging cost, the ATG-ACO model was completely 

superior to other models. Under different weighting 

coefficients, the average total cost of the research model 

was 7%-26% lower than other models. This result is 

similar to the research findings of Nadjib and Ammar in 

combining ATG and ACO algorithms [20]. From the 

above results, the research model introduces the 

conversion coefficient to convert the multi-objective 

problem into a single-objective problem, introduces the 

weighting coefficient to balance the weight of time and 

cost, and adopts PSO for optimization, so as to minimize 

the total cost. Other models do not have such powerful 

nonlinear programming capabilities, so the effect of the 

research model is better than other models. This result 

indicates that the travel path planning model based on the 

ATG-ACO algorithm meets the optimization 

requirements for travel paths that comprehensively 

consider travel time and charging cost. There is much 

research closely related to the path planning of electric 

vehicles. The intelligent algorithm greatly improves the 

superiority of path planning. However, the addition of 

conversion coefficient and weighting coefficient for 

different groups to balance the charging cost and travel 

time is a unique contribution of the research. 

5 Conclusion 

The study focused on how to comprehensively consider 

travel time and charging cost to plan paths during 

long-distance driving of electric vehicles. The improved 

ATG was combined with the ant path optimization 

algorithm. The combined method is used to calculate total 

travel cost. Then, a path optimization model was 

constructed. The research model introduced a topology 

graph to heterogeneous roads during travel, and improved 

the ATG. The ant algorithm was introduced into the 

preprocessed topology graph to form a new optimization 

algorithm for finding the optimal path. Combining the 

combination algorithm with the comprehensive total cost 

calculation method and iteratively finding the optimal 

path, an electric vehicle travel path optimization model 

considering balance time and charging cost was 

constructed. The study conducted simulation experiments. 

The simulation results showed that the improved ATG 

had a great promoting effect on ant algorithm path 

planning. The research model had a better balance effect 

than other models in considering the total travel time and 

total charging cost, and the comprehensive total cost of 

the optimal path was the lowest. Path planning is a 

particularly complex systemic problem, especially when 

long-distance travel is influenced by many factors. In 

addition to the electricity level and charging and 

discharging status mentioned in the article, there are other 

factors, including electric vehicle malfunctions, 

temporary traffic accidents, and congestion. Although the 

probability of an event occurring is extremely low, it can 

also have impacts on the travel path and total cost, which 

is also an area that needs improvement in the future. 
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