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As research progresses, biometric technologies have achieved notable effectiveness in personal 

identification. However, despite these advancements, there persists a demand for improved performance 

in security applications. ALMMo-0, the Autonomous Learning Multi-Model Classifier of zeroth order 

introduces a novel approach to address this challenge. It effectively addresses the challenges of 

Enhancing global efficiency in supervised 3D palmprint identification, autonomy, non-iterative 

procedures, and complete transparency. This study presents an innovative method Utilizing ALMMo-0 for 

enhancing 3D fingerprint-based authentication systems. The approach utilizes a feedforward 

methodology driven solely by data and non-iterative processes, leveraging three primary Techniques such 

as Local Phase Quantization (LPQ), GIST, and Binarized Statistical Image Information (BSIF) are 

employed to extract relevant details from three-dimensional palmprint images. Following feature 

extraction, ALMMo-0 autonomously generates AnYa Fuzzy Rule Base (FRB) sub-classifiers for individual 

categories, establishes a multimodal framework, and extracts data clouds. For authentication, the system 

utilizes a 'winner-takes-all' strategy for classifying incoming data, generating a confidence score that 

reflects the mutual distribution objectively. Tests performed on a 3D Palmprint dataset illustrate the 

efficacy of ALMMo-0, showcasing its performance using metrics Examples include metrics such as 

receiver operating characteristic (ROC) curves, rank-1 accuracy, equal error rate (EER), and cumulative 

match curve (CMC). The experimental evaluations demonstrate outstanding performance of the proposed 

method, achieving perfect rank-1 accuracy, minimal EER, and significant features such as interpretability 

and computational efficiency. 

Povzetek: Prispevek predstavlja inovativni pristop z ALMMo-0, samoučečim klasifikatorjem, za 

izboljšanje 3D prepoznavanja dlani. 

 

1 Introduction 
The pervasiveness of social media and online networks 

presents a double-edged sword: fostering potential 

addiction while simultaneously serving as a cornerstone 

for businesses. Across these vast data landscapes, 

however, securing personal information remains 

paramount. Biometric systems address this concern by 

leveraging scientific methods, like iris scans and 

fingerprint recognition, to verify user identity through 

unique physical and behavioral traits. Among these 

techniques, 3D palmprint technology is particularly 

noteworthy, as evidenced by a growing body of research 

[1-2], attracting significant interest across diverse 

disciplines. 

To address issues associated with 2D palmprint 

recognition systems, 3D palmprint-based personal 

recognition methods have recently been introduced [1–2]. 

For instance, Zhang et al. [3] proposed using Gaussian 

curvature images (GCI), mean curvature images (MCI), 

and surface type (ST) map features with matching metrics 

similar to Hamming distance. Additionally, Li et al. [4]  

 

presented a framework that extracts MCI from the original 

depth data along with baseline and orientation features. 

Despite these advancements, illicit access and advantages 

can still be gained by exploiting vulnerabilities in 

biometric systems [5]. Traditional 3D palmprint systems 

employing methods such as GCI and MCI also face 

challenges, including managing the growing number of 

registered templates and adapting to data distribution 

shifts, leading to high Equal Error Rates (EER) and 

reduced accuracy. 

Conversely, incorporating score-level fusion with facial 

recognition offers a promising solution for advanced 

multi-modal 3D palmprint systems. This approach enables 

efficient processing of multiple templates and fosters 

adaptation through feedback adjustments, ultimately 

enhancing overall performance. Furthermore, a new 

method, Multiple Scale Recognition (MSR), which has 

not been used before, is proposed as a more robust 

alternative to classical methods like GCI and MCI, 

offering significant improvements in accuracy and 

reliability. Although biometric systems have advanced 

significantly, 3D palmprint technology has received 
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comparatively limited attention. Addressing these 

challenges, there is an urgent requirement to develop new 

3D palmprint biometric systems to mitigate false 

acceptance rates and EER. 

This paper proposes a novel biometric system utilizing the 

0-order Autonomous Learning Multiple Model (ALMMo-

0) classifier, specifically tailored for 3D palmprint 

recognition. The ALMMo-0 classifier, introduced by 

Angelov et al. (2017), offers a unique advantage in 

biometrics. Unlike traditional supervised machine 

learning methods that require constructing functions from 

training data, ALMMo-0 operates with complete 

autonomy. This is achieved through its multi-model 

framework, which continuously adapts its internal 

parameters based on incoming data without any prior 

assumptions. 

Unlike conventional machine learning approaches that 

rely on training data with predefined categories, ALMMo-

0, as introduced by Xing et al. in 2022, operates 

autonomously without requiring iterative parameter 

tuning or known category memberships. This is achieved 

through its feedforward architecture. By directly 

analyzing observational data, ALMMo-0 automatically 

identifies convergence points, eliminating the need for 

explicit training. It utilizes Voronoi Tessellation to 

construct fuzzy Rule-Based (FRB) AnYa subclassifies for 

each class directly from the non-parametric data. These 

subclassifiers assign confidence scores to incoming data 

samples. The final classification is determined by a 

"winner-takes-all" strategy, where the subclassifier with 

the highest confidence score assigns the class label to the 

new sample. 

This research achieves two main advancements: 

1. A New Biometric System for 3D Palmprints: The 

study proposes a novel biometric system specifically 

designed for 3D palmprint recognition. This system 

leverages the ALMMo-0 classifier, known for its 

efficient and autonomous operation without iterative 

training. The ALMMo-0 classifier itself is composed 

of a collection of fuzzy Rule-Based (FRB) AnYa 

subclassifiers. 

2. Highly Effective ALMMo-0 Classifier: The research 

demonstrates the ALMMo-0 classifier's effectiveness 

through empirical testing on a dedicated dataset. The 

results show that the classifier achieves impressive 

accuracy with minimal errors. Additionally, it offers 

significant interpretability of its decision-making 

process, all while maintaining low computational 

complexity. 

The remaining structure of the article follows a logical 

flow: 

• Section 2: Background and Related Work - This 

section reviews existing research and relevant 

literature in the field. 

• Section 3: Proposed System with ALMMo-0 - This 

section dives into the details of the proposed 

biometric system, focusing on the ALMMo-0 

classifier's role. 

 

 

 

• Section 4: Experiments and Analysis - This section 

presents the experimental results obtained by testing 

the proposed system and compares it to other 

approaches. 

• Section 5: Conclusion and Future Work - The final 

section summarizes the key findings of the research 

and suggests potential areas for future exploration. 

2 Related works 
Biometric identity and recognition systems have seen 

significant advancements in both 2D and 3D palmprint 

technologies to meet growing security demands. Sun et al. 

[6] introduced the Orthogonal Line Ordinal Feature 

(OLOF) to improve stability in palmprint recognition. 

Zhang et al. [7] applied Hamming distance-based 

matching along with surface type maps (ST maps) and 

Gabor filters to enhance feature extraction. In 2010, Zhang 

et al. [8] developed a robust authentication system by 

merging 2D and 3D palmprint characteristics, leveraging 

surface curvature maps and normalized local correlation. 

Meanwhile, Yang et al. [9] proposed using Gabor 

wavelets and local binary patterns (LBP) to extract fine 

geometric details from 3D palmprints, while Li et al. [10] 

focused on joint line and orientation features to further 

improve recognition. 

The shift towards multimodal systems began with Liu and 

Li [11], who tackled alignment challenges using a cross-

correlation-based method alongside OLOF. Meraoumia et 

al. [12] introduced a multimodal biometric system 

integrating 2D and 3D palmprint data with PCA and 

Discrete Wavelet Transform (DWT) using Hidden 

Markov Models (HMM) for feature modeling. In 2014, 

Cui et al. [13] proposed a fusion-based system combining 

Principal Component Analysis (PCA) with a Two-Phase 

Test Sample Representation (TPTSR) for more accurate 

person recognition. Zhang et al. [14] presented 

collaborative representation techniques with block-wise 

feature extraction for enhanced 3D palmprint 

identification. 

The trend towards advanced feature extraction continued 

with Chaa et al. [15], who employed Bank-Binarized 

Statistical Image Features (B-BSIF) and Gabor wavelets 

for score-level fusion. More recently, Chen et al. [16] 

proposed a hybrid multimodal system integrating finger 

vein and palmprint data for improved person 

identification. Li et al. [17] introduced a deep learning-

based 3D palmprint system using CNNs, achieving robust 

performance even in real-time settings. Finally, Zhang et 

al. [18] utilized transformer-based models for palmprint 

recognition, setting new benchmarks for accuracy and 

efficiency in biometric recognition systems. Table 1 

provides a summary of key research contributions in the  

field, highlighting the different methodologies, features, 

and fusion techniques employed to advance 2D and 3D 

palmprint recognition systems. 
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Table 1: Summary of research efforts in 2D and 3D palmprint recognition systems 

 

 

 
Figure 1: Diagram depicting the structure of the proposed method 

 

 

 
 

Figure 2: Extracting the region of interest (ROI) from a 3D palmprint image involves the following steps. 

 

Methods 2D Features 3D Features Matching 

Scheme 

Fusion 

Scheme 

Tasks Years 

Sun et al. [6] Orthogonal Line Ordinal Feature 
(OLOF) 

N/A Cross-correlation 
and OLOF 

Matching Identification 2005 

Zhang et al. [7] Surface Type Maps (ST), PCA, 

Gabor Filters 

ST Binary 

Features 

Bitwise logical 

'AND' 

Matching Verification 2008 

Zhang et al. [8] Surface Curvature Maps Normalized 
Local 

Correlation 

Matching Matching Verification 2010 

Yang et al. [9] Gabor Wavelets + Local Binary 
Pattern (LBP) 

N/A Score-level 
Fusion 

Fusion Recognition 2011 

Li et al. [10] Joint Line and Orientation Features Extracted from 

MCI 

Feature-level 

Fusion 

Fusion Recognition 2011 

Liu and Li [11] Mean Curvature Image (MCI) Curvature Maps 
(MCI-based 

features) 

Cross-
correlation based 

Fusion Identification 2012 

Meraoumia et 

al. [12] 

PCA + Discrete Wavelet Transform 

(DWT) 

2D+3D 

Palmprint 
Fusion 

Hidden Markov 

Model (HMM) 

Score-level 

Fusion 

Recognition 2013 

Cui [13] PCA + Two-Phase Test Sample 

Representation (TPTSR) 

N/A Matching Fusion Recognition 2014 

Zhang et al. 

[14] 

Collaborative Representation 

Techniques 

Block-wise 

Features 

Matching Fusion Identification 2015 

Chaa et al. [15] Bank-Binarized Statistical Image 

Features (B-BSIF) 

Gabor + Self-

Quotient Images 

Score-level 

Fusion 

Fusion Recognition 2017 

Chen et al. [16] Multimodal Palm + Finger Vein 

Data 

2D + 3D 

Integration 

Hybrid Matching Score-level 

Fusion 

Identification 2019 

Li et al. [17] CNN-based Features 3D Depth Maps Deep Learning 

Matching 

Feature-level 

Fusion 

Recognition 2020 

Zhang et al. 

[18] 

Transformer-based Features N/A Deep Learning 

Matching 

Feature-level 

Fusion 

Recognition 2021 
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3 Proposed system 
This study introduces an innovative biometric system for 

3D palmprints, emphasizing the palmprint modality. At 

the heart of our methodology is the ALMMo-0 classifier, 

utilizing 0-order AnYa-type fuzzy rule-based (FRB) 

systems. Our approach integrates three specific 

descriptors—LPQ, BSIF, and GIST to capture essential 

features, which are then automatically classified by 

ALMMo-0. The system operates in a multi-stage process. 

First, it establishes a framework that incorporates different 

data modalities (multimodal framework) and identifies 

areas where these modalities come together (convergence 

points). Next, it leverages AnYa-like fuzzy rules to 

generate data representations independent of specific 

shapes (shape-free data clouds). These data clouds are 

then classified using sub-classifiers, each trained for a 

specific class and assigned a confidence score. Finally, the 

system employs a "winner-takes-all" approach to label 

additional samples. The effectiveness of this process is 

measured using metrics like False Acceptance Rate 

(FAR), Equal Error Rate (EER), True Positive Rate 

(TPR), Genuine Acceptance Rate (GAR), and Rank-1  

accuracy. The proposed system employs a comprehensive 

architecture that integrates feature extraction techniques 

using LPQ, BSIF, or GIST filters. The classification task 

is handled by the ALMMo-0 classifier, which is supported 

by a Filter Bank descriptor for feature extraction. This 

architecture is illustrated in Figure 1, which outlines five 

primary phases. The first stage begins with capturing a 3D 

palmprint image, which undergoes preprocessing with 

multi-scale Retinex to improve image quality. The Filter 

Bank descriptor is employed to extract crucial features, 

utilizing either LPQ, BSIF, or GIST filters. These features 

form the basis for designing the classifier's model 

architecture. During feature extraction, the ALMMo-0 

classifier acts as a gatekeeper, differentiating between 

legitimate users and imposters. The key to this biometric 

system lies in the Filter Bank, which meticulously selects 

relevant features from the data stream. ALMMo-0 

operates in a sequential manner for autonomous data 

classification. It first builds multimodal representations 

and basic linguistic rules by analyzing the provided data. 

Then, it generates non-parametric data clusters, locates 

convergence zones, and leverages fuzzy rules extracted 

from these clusters to construct AnYa-type sub-classifiers 

for each category. Finally, ALMMo-0 assigns confidence 

levels to each class and employs a "winner-takes-all" 

strategy to label new data samples. To ensure accuracy, it 

evaluates its performance before delivering the final 

classification. 

3.1 The region of interest 

This section focuses on extracting the Region of Interest 

(ROI) from 3D palmprint data. Li et al. [19] employed a 

structured-light technology-based 3D acquisition system, 

enabling concurrent capture of 2D and 3D palm images 

(Figure 2). The ROI extraction process involves several 

steps. First, a Gaussian smoothing filter is applied to the 

original image, followed by thresholding using an 

automatically determined threshold T (Figure 2a, 2b). 

Otsu's method [20] facilitates this automatic threshold 

selection, converting the grayscale image to a binary 

representation. Next, a border tracking technique (Figure 

2c) is employed to efficiently extract the boundaries of the 

binary image. By analyzing this boundary information, 

points P1 and P2 are identified to define the 2D ROI 

template. Finally, a rectangle is used to delineate and mark 

the ROI (Figure 2d). Figure 2e showcases the extracted 2D 

ROI, while Figure 2f presents the original 3D palmprint. 

The final 3D ROI is obtained by aligning the cloud points 

corresponding to the 2D ROI pixels, as detailed in [21]. 

 

3.2 Pre-processing  

In the preprocessing phase, Multiscale Retinex (MSR) is 

applied. Retinex theory, originally formulated by Land 

and McCann [22], aims to replicate the human visual 

system's processing of visual information. Their work 

demonstrated that the visual system perceives relative 

lightness, focusing on variations in brightness within local 

image regions rather than absolute lightness levels. 

Multiscale Retinex (MSR) is particularly noted for its 

ability to achieve high-quality color rendition and a broad 

local dynamic range. The MSR output results from a 

weighted combination of outputs produced by multiple 

Single Scale Retinex (SSR) processes. Jobson et al. [23] 

further refined the formulation of multiscale Retinex 

based on these principles. 

 

Where 𝑁 represents the number of scales, ωn indicates the 

weight assigned to each scale, and Ii(x, y)refers to the 

input image on the i-th color channel.  RMSRi 
 denotes the 

output image from Retinex processing on the i-th color 

channel. F represents the normalized surround function. 

Figure 3 shows the original images of various individuals 

before applying Multiscale Retinex (MSR) and the results 

obtained after the application of Multiscale Retinex 

(MSR). 

 𝐑𝐌𝐒𝐑𝐢 
= ∑ 𝛚𝐧𝐑𝐧𝐢 

= ∑ 𝛚𝐧

𝐍

𝐧=𝟏

𝐍

𝐧=𝟏

[𝐥𝐨𝐠𝐈𝐢(𝐱, 𝐲)

− 𝐥𝐨𝐠(𝐅𝐧(𝐱, 𝐲) ∗ 𝐈𝐢(𝐱, 𝐲))] 

(1) 
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3.3 Feature extraction  

The process of feature extraction using LPQ, BSIF, or 

GIST descriptors entails identifying and isolating salient 

features from a broad spectrum of image characteristics. 

In-depth descriptions of each descriptor are presented in 

the following subsections: 

3.3.1 Local phase quantization (LPQ) 

Ojansivu's LPQ method exploits the phase of the Fourier 

transform in localized regions to induce spatial blurring. 

This technique achieves blurring by applying a point 

spread function (PSF) to attenuate image intensity, 

analogous to multiplication in the frequency domain. 

𝐆(𝐮) = 𝐅(𝐮) · 𝐇(𝐮) (2) 

Considering only the phase spectra, the Fourier transforms 

G(u), H(u), and F(u) of the blurred image, point spread 

function (PSF), and original image, respectively, exhibit a 

summation relationship. 

∠𝐆(𝐮) = ∠𝐅(𝐮) + ∠𝐇(𝐮) (3) 

where ∠G(u), ∠H(u) and ∠F(u) are phase angle of G(u), 

H(u) and F(u), respectively. If PSF is centrally symmetric, 

namely h(x) = h(−x), the transform H(u) becomes real 

valued and the phase angle ∠H(u)can be represented by a 

two-valued function: 

∠𝐇(𝐮) = {
𝐎 𝐢𝐟 ∠𝐇(𝐮) > 𝒐 
𝟏 𝐢𝐟 ∠𝐇(𝐮) < 𝒐

 (4) 

In all angles where ∠H(u)≥0, if ∠G(u)=∠F(u) and 

considering the shape of H(u) resembling a regular Point 

Spread Function (PSF) like Gaussian or sinc-function, it 

ensures that low-frequency values of ∠H(u) remain non-

negative at a minimum. These frequencies maintain 

∠G(u)= ∠F(u), ensuring that ∠F(u) remains invariant to 

blurring. In the LPQ scheme, M-by-M local 

neighborhoods 𝑵𝒙 filters are applied at each pixel position 

of the image f(x) to analyze the phase. The local spectrum 

is obtained using a short-term Fourier transform. 

𝐅(𝐮, 𝐱) = ∑ 𝐟(𝐲 − 𝐱)𝐞𝐣𝟐𝛑𝐮𝐓𝐲

𝐲∈𝐍𝐱

 
(5) 

To efficiently compute the transformation at each image 

location (x ∈ {X1, X2, ..., XN}), we leverage 1D 

convolutions. These convolutions are applied sequentially 

to both the rows and columns of the image. This approach 

allows us to calculate local Fourier coefficients at four 

specific frequency points: u₁ = [a, 0] ᵀ, u₂ = [0, a] ᵀ, u₃ = 

[a, a] ᵀ, and u₄ = [a, -a] ᵀ. Here, 'a' is a carefully chosen 

small scalar that ensures H(uᵢ) ≥ 0 for all i (i = 1, 2, 3, 4). 

As a result, we obtain a vector for every pixel position. 

𝐅(𝐱) ([
𝐑𝐞{𝐅(𝐮𝟏, 𝐱), 𝐈𝐦(𝐮𝟏, 𝐱)}], …               

[𝐑𝐞{𝐅(𝐮𝟏, 𝐱), 𝐈𝐦(𝐮𝟏, 𝐱)}]
])   (6) 

The phase of each Fourier coefficient is encoded by the 

signs of its real and imaginary parts. This can be extracted 

using simple scalar quantization. 

𝐪𝐣 = {
𝟏, 𝐢𝐟  𝐟𝐢 > 𝟎
𝟎, 𝐢𝐟  𝐟𝐢 < 𝟎

 (7) 

3.3.2 Binarized statistical image features 

(BSIF) 

BSIF (Binarized Statistical Image Features) is a technique 

introduced in [21] that assigns a binary code string to each 

pixel in an image. This binary code represents the local 

descriptor for that pixel. The filter response 𝑅𝑖  for an 

image 𝐼𝑝  and a corresponding linear filter of the same size 

Wi is calculated as follows: 

𝑅𝑖 = ∑ 𝐼𝑝(𝑚, 𝑛)
𝑚,𝑛

𝑊𝑖(𝑚, 𝑛) (8) 

The equation utilizes 𝑚 and 𝑛 to represent the patch size 

in Patch Per Inch (PPI).  ∀𝑖 ∈ {1,…, n}. Filters is denoted 

by 𝑊𝑖(𝑚, 𝑛). The filter responses are calculated and 

binarized, generating a binary string as described in [22]. 

𝑏𝑖 =   {
1   𝑖𝑓 𝑅𝑖 > 𝑜

      0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9) 

3.3.3 Gist descriptor 

To tackle scene classification challenges, the GIST 

descriptor [24] proves effective. It achieves this by 

leveraging Gabor filters, which analyze scenes using 

localized frequency information. These filters offer a 

Figure 3: Top: Original images of various individuals prior to multiscale retinex (MSR) 

application. bottom: results obtained after applying multiscale retinex (MSR). 
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compressed and efficient feature representation. In our 

work, we utilized GIST descriptors with 8 orientations 

across 5 scales and a 6x6 grid to extract features. This 

involved convolving each image with a set of Gabor filters 

spanning the specified orientations and scales, resulting in 

feature vectors. Mathematically, In the spatial domain, a 

Gabor filter is formed by multiplying a complex sinusoid 

with a Gaussian envelope. This operation essentially 

defines a 2D Gabor filter with the function 

𝑯𝝁,𝒗  representing it. 

𝑯𝝁,𝒗 =
𝒇𝝁

𝟐

𝝅𝒏𝝀
𝒆𝒙𝒑 [− (

𝒇𝝁
𝟐

𝒏𝟐
) 𝒙𝒑

𝟐

− (
𝒇𝝁

𝟐

𝝀𝟐
) 𝒚𝒑

𝟐] 𝒆𝒙𝒑(𝒋𝟐𝝅𝒙𝒑) 

 

 

(10) 

With 𝑥𝑝  =  𝑥𝑐𝑜𝑠(𝜃𝜈) +  𝑦𝑠𝑖𝑛(𝜃𝜈) and 𝑦𝑝  =

 −𝑥 𝑠𝑖𝑛(𝜃𝜐)  +  𝑦 𝑐𝑜𝑠(𝜃𝜐).The parameters of Gabor 

filter are: 𝑦𝑝 =  − 𝑥𝑠𝑖𝑛(𝜃𝜈)  +  𝑦𝑐𝑜𝑠(𝜃𝜈)    𝑓𝜇 =
𝑓𝑚𝑎𝑥

2
𝜇
2

     and    𝜃𝑣 = 𝑣𝜋
8⁄  

Where:  𝑓𝜇 = center frequency, fmax = maximal 

frequency and  𝜃𝑣  = orientation 

To capture multi-scale orientation information, 2D 

Gabor filters were employed with fmax set to 0.25 and n 

= λ = √2, where n and λ represent the Gaussian envelope's 

size along the x and y axes, respectively. These Gabor 

filters generate feature maps that encode orientation 

information at various scales, effectively capturing the 

image's intricate spatial structure and characteristics. 

 

3.4 Reduction of the dimensionality 

High-dimensional data, characterized by numerous 

feature vectors, can pose hurdles for processing and 

classification tasks. To overcome these challenges, 

dimensionality reduction techniques come into play. 

These methods offer several advantages: managing large 

datasets more efficiently, enhancing prediction accuracy, 

reducing computational time, and unlocking a deeper 

understanding of the data itself. A popular and effective 

approach is Linear Discriminant Analysis (LDA). LDA 

seeks to find a transformation matrix, denoted by 𝑊, that 

optimizes the separation between classes while 

simultaneously minimizing variation within each class 

[25-26]. 

𝑇(𝑊) = 𝑊𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑊𝑚𝑎𝑥
|𝑊𝑇𝑆𝐵𝑊|

|𝑊𝑇𝑆𝑇𝑊|

= [𝑊1𝑊2 … … . 𝑊𝑑] 

 

(11) 

 

The Fisher discriminant criterion, denoted as T(W), is 

maximized by constructing the matrix 𝑊 through 

concatenating the top 𝑑 eigenvectors. This matrix 𝑊 is 

obtained by solving the following equation: 

𝑆𝑊
−1𝑆𝐵𝑊𝑗 = 𝑊𝑗𝜆𝑗 (12) 

 In this study, Linear Discriminant Analysis (LDA) was 

chosen as the primary dimensionality reduction technique 

due to its focus on maximizing class separability, which is 

crucial for 3D palmprint recognition. Unlike Principal 

Component Analysis (PCA), which reduces 

dimensionality by preserving variance without 

considering class labels, LDA explicitly optimizes for 

separation between different classes. This makes LDA 

more suitable for supervised learning tasks where distinct 

classification boundaries are essential. While t-SNE is 

effective for visualizing high-dimensional data by 

projecting it into lower-dimensional space, it is primarily 

used for unsupervised learning and exploratory data 

analysis. t-SNE tends to emphasize local structure, making 

it less ideal for classification tasks where global class 

separability is needed, especially when working with 

larger datasets and multiple classes. LDA was selected 

because its primary objective is to maximize the between-

class variance while minimizing the within-class variance, 

making it well-suited for this study where the focus is on 

ensuring robust class separability between different 

palmprint features. The experimental results demonstrated 

that LDA, in combination with the ALMMo-0 classifier, 

led to optimal performance in terms of accuracy and Equal 

Error Rate (EER), outperforming PCA and t-SNE in this 

context. 

3.5 The ALMMo-0 classifier 

The core of the proposed 3D palmprint biometric 

system lies in the ALMMo-0 classifier, a novel machine 

learning approach. This classifier autonomously builds a 

multi-model framework from experimental data. The 

design hinges on two key steps: 1) Automatic 

identification of focal points and generation of individual 

data clouds through Voronoi Tessellation [27]. 2) 

Construction of AnYa Fuzzy Rule-based (FRB) sub-

classifiers for each class, utilizing these data clouds for 

classification of new data points. The initial stages of the 

ALMMo-0 classifier architecture are depicted in Figure 4. 

Table 2 shows the symbols used in the ALMMo-0 

classifier. Figure 4 highlights four key components: 

1. Data Preprocessing: This layer normalizes the 

incoming data, ensuring optimal performance 

and improved classifier functionality. 

2. AnYa Fuzzy Rule-based Sub-classifiers: This 

layer leverages non-parametric data to construct 

a collection of sub-classifiers, each utilizing 

AnYa fuzzy rules. 

3. Winner Selection: This layer employs a "winner-

takes-all" strategy to classify new data points. 

The classification is based on confidence scores 

provided by each sub-classifier. 

4. Class Assignment: This layer assigns a class 

label to new data samples based on their strongest 

likelihood of belonging to a specific class. 
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Table 2: Explanation of symbols used in the ALMMo-0 classifier 

.Notation Signification 

𝒙∗𝒊 

𝑪𝒍𝒂𝒔𝒔𝒊 

𝑹 

𝑪 

   𝑹𝒅 

𝒊 

𝒌 

𝒌 

𝝀ί 

𝒙𝒌
𝒊  

µ𝒌 

𝑫𝒌(𝒙𝒊) 

𝑿𝒌𝒌 

𝑴
𝑭𝒊
∗𝒊  

𝒓
𝑭𝒊
∗𝒊  

𝒙𝑵
∗𝒊 

𝑭𝒊 

 

-The point of convergence 

- datasetth -The class assigned to the i 

- The number of fuzzy rules 

-A variety of classes across the dataset 

- Euclidean space for data 

- th instance-Dataset observed at the i 

- Incoming data 

- th instance-The average of all data samples at the K 

- Confidence level 

- th class-normalized data point in the iThe kth  

- Overall average 

- mode -th data sample at time k, under a single-Density of the i

distribution 

- Average scalar product 

- Number of members in data clouds 

- Influence radius in the area 

- where the nearest data cloud convergesThe convergence point  

- Count of convergence instances 

  

 

Algorithm 1: The fundamental algorithm of the ALMMo-0 classifier 

 

While there is a novel coming data simple  

i. Normalization  

𝒙𝒌
𝒊 ←

𝒙𝒌
𝒊

‖𝒙𝒌
𝒊 ‖

 

ii. Initialization 

 

                                     

𝟏. µ𝟏
𝒊 ← 𝒙𝟏

𝒊  𝟐. 𝑭𝒊 ← 𝟏 𝟑. 𝑴𝟏
∗𝒊 ← 𝟏 𝟒. 𝒙𝟏

∗𝒊 ← 𝒙𝟏
𝒊  𝟓. 𝒓𝟏

∗𝒊 ← 𝒓𝟎 

iii. Classification 

ELSE 

𝟏. 𝑼𝒑𝒅𝒂𝒕𝒊𝒏𝒈 µ𝒌−𝟏
𝒊  𝒕𝒐 µ𝒌

𝒊 : µ𝒌 =
𝒌 − 𝟏

𝒌
µ𝒌−𝟏 +

𝟏

𝒌
𝒙𝒌: µ𝟏 ← 𝒙𝟏 

𝟐.Calculate the unimodal density 𝑫𝒌  𝒐𝒇 𝒕𝒉𝒆 𝒅𝒂𝒕𝒂 𝒔𝒂𝒎𝒑𝒍𝒆 𝒙𝒌
𝒊 : 

               𝑫𝒌(𝒙𝒊) =
𝟏

𝟏+
‖𝒙𝒊−µ𝒌‖𝟐

𝝈𝒌
𝟐

=
𝟏

𝟏+
‖𝒙𝒊−µ𝒌‖𝟐

𝑿𝒌−‖µ𝒌‖𝟐

 

3.Update 𝑫𝒌(𝒙𝒌
∗𝒊)(𝒋 = 𝟏, 𝟐 … … 𝑭𝟏) 

                 𝑫𝒌(𝒙𝒊) =
𝟏

𝟏+
‖𝒙𝒊−µ𝒌‖𝟐

𝝈𝒌
𝟐

=
𝟏

𝟏+
‖𝒙𝒊−µ𝒌‖𝟐

𝑿𝒌−‖µ𝒌‖𝟐

 

              

𝟒. 𝑰𝑭 (𝑫𝒌(𝒙𝒌
𝒊 ) > 𝒎𝒂𝒙𝒋=𝟏.𝟐...𝑭 (𝑫𝒌 (𝒙𝒋

∗𝒇
))) 𝒐𝒓 (𝑫𝒌(𝒙𝒌

𝒊 ) < 𝒎𝒂𝒙𝒋=𝟏.𝟐...𝑭 (𝑫𝒌 (𝒙𝒋
∗𝒇

))) 𝑻𝑯𝑬𝑵 

– Create a new data cloud around 𝒙𝒌
𝒊  and initialize the parameters :  

                       𝑭𝟏 ← 𝑭𝟏 + 𝟏 ; 𝒙
𝑭𝒊
∗𝒊 ← 𝒙𝒌

𝒊  ;  𝑴
𝑭𝒊
∗𝒊 ← 𝟏 ; 𝒓

𝑭𝒊
∗𝒊 ← 𝒓𝟎  

5.  Else  

– Find the nearest data cloud to 𝒙𝒌 
𝒊 : 
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                                               𝒙𝑵
∗𝒊 ← 𝒂𝒓𝒈𝒎𝒊𝒏𝒋=𝟏.𝟐...𝑭𝒊(‖𝒙𝒌

𝒊 − 𝒙𝒋
∗𝒊‖); 

– 𝐈𝐅 (‖𝒙𝒌
𝒊 − 𝒙𝑵

∗𝒊‖)  ≤ 𝒓𝑵
∗𝒊 𝑻𝑯𝑬𝑵  

– Update the meta parameters of the data cloud : 

𝒙𝑵
∗𝒊 ←

𝑴𝑵
∗𝒊

𝑴𝑵
∗𝒊 + 𝟏

𝒙𝑵
∗𝒊 +

𝟏

𝑴𝑵
∗𝒊 + 𝟏

; 𝒓𝑵
∗𝒊 ← √𝟎. 𝟓((𝒓𝑵

∗𝒊)
𝟐

+ (𝟏 − ‖𝒙𝑵
∗𝒊‖

𝟐
))  ; 

– ELSE  add new data cloud : 𝑭𝟏 ← 𝑭𝟏 + 𝟏 ; 𝒙
𝑭𝒊
∗𝒊 ← 𝒙𝒌

𝒊  ;  𝑴
𝑭𝒊
∗𝒊 ← 𝟏 ; 𝒓

𝑭𝒊
∗𝒊 ← 𝒓𝟎 

– ENDIF 

6.ENDIF 

ENDIF  

END WHILE 

 

 

The ALMMo-0 classification process is data-driven and 

unfolds in a series of steps. 

1. Data preprocessing: Prior to analysis, all input 

data undergoes normalization, where each sample is 

divided by its own norm. This ensures all data points 

are on a similar scale. 

2. Initial model generation: The first data point 

becomes the foundation for the initial model, 

with its support (significance) set to 1. 

3. Data cloud construction: Subsequent data points 

are assigned to the most relevant class using 

confidence scores generated by sub-classifiers. 

These classifications establish "data clouds" 

representing clusters of similar data points. 

4. Dynamic model update: The algorithm 

continuously monitors the global data density. If 

a new data point falls outside the established 

density range (too high or low), a fresh data cloud 

is created around it. Otherwise, the existing data 

cloud closest to the new point is identified and 

updated by adjusting its support and radius to 

incorporate the new information. 

5. Classification: Finally, the classifier leverages 

the constructed data clouds and associated 

confidence scores to determine the final class 

label for a new data point. 

The ALMMo-0 procedure establishes a robust framework 

for 3D palmprint biometric systems by achieving accurate 

and efficient data categorization through a four-step 

process. These steps include: 

1. Normalization: This initial phase standardizes 

the input data, ensuring consistency for further 

analysis. 

2. Meta-Parameter construction: Here, the 

normalized data is leveraged to construct meta-

parameters, which will be instrumental in the 

classification stage. 

3. Classification: This stage utilizes the calculated 

global density and mean values to classify the 

data points. 

4. Validation: Finally, validation data is routed to 

individual AnYa FRB sub-classifiers, which then 

generate the final labels for the data. This revised 

version emphasizes the overall functionality of 

ALMMo-0 and clarifies the role of each step 

within the system. 

Figure 4: Graphical depiction illustrating the ALMMo-0 classifier within a block diagram 
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3.5.1 Computational complexity of the 

ALMMo-0 classifier  

One of the key advantages of the ALMMo-0 framework is 

its ability to scale effectively with larger datasets and an 

increasing number of classes. The time complexity of the 

identification function, F(P×J×H), where P represents the 

number of data samples, J the number of data clouds, and 

H the number of features, ensures that the system scales 

efficiently as these factors grow. Furthermore, the 

verification function operates with a time complexity of 

F(P×J), making it highly adaptable to real-time 

classification tasks. 

The space complexity, F(P×H), is similarly manageable, 

requiring only space to store the input data. As a result, the 

ALMMo-0 classifier can handle large-scale environments, 

such as national identification systems or corporate 

security databases, without significant computational 

overhead. Unlike traditional methods like PCA and SVM, 

which have complexities ranging from 𝐹(𝑇2 × 𝑅) to  

𝐹(𝑇3 × 𝑅) (where T is the number of training samples 

and R is the number of features), ALMMo-0’s lower 

complexity allows it to maintain high accuracy and low 

Equal Error Rate (EER) without the need for iterative 

tuning or retraining. 

This combination of linear or sub-linear time and space 

complexity, along with the framework's ability to 

dynamically adapt to data distribution changes, ensures 

that the ALMMo-0 classifier remains efficient and 

scalable even under more demanding conditions. 

3.5.2 Confidence thresholding 

In the ALMMo-0 framework, the winner-takes-all 

strategy plays a crucial role in determining the final 

classification outcome. This approach relies on the 

confidence scores generated by multiple sub-classifiers, 

with the class corresponding to the highest confidence 

score being selected as the predicted class. However, to 

ensure optimal performance, it is important to analyze 

how the system's performance changes when varying the 

confidence thresholds  

used in this strategy. 

In this study, we conducted an analysis to evaluate how 

different confidence thresholds affect the accuracy and 

error rates of the system, particularly focusing on Rank-1 

accuracy and Equal Error Rate (EER). The results indicate 

that by setting an appropriate confidence threshold, we can 

strike a balance between reducing false positives (false 

acceptances) and false negatives (false rejections). 

• Low confidence threshold: When the 

confidence threshold is set too low, the system may be 

more prone to false acceptances, as even weak 

classifications can be considered valid. This can lead to 

higher EER and a lower overall accuracy, as the system 

may mistakenly classify ambiguous or borderline cases. 

• High confidence threshold: On the other hand, 

setting the threshold too high increases the risk of false 

rejections, where valid classifications are discarded due 

to insufficient confidence from the sub-classifiers. While 

this may improve security in some cases, it can reduce the 

system’s ability to recognize legitimate inputs, leading to 

an increased rejection rate. 

• Optimal threshold: Through our experiments, 

we found that a moderate confidence threshold (e.g., 0.75) 

offers the best balance, maximizing Rank-1 accuracy and 

minimizing EER. This threshold ensures that only 

classifications with strong confidence are accepted while 

maintaining the system’s ability to recognize genuine 

variations in palmprints. The analysis confirms that the 

confidence threshold has a significant impact on the 

system’s performance, and tuning this parameter 

appropriately is key to achieving robust and reliable 

biometric recognition. 

3.6 Feature fusion  

In the context of the ALMMo-0 framework, feature 

extraction techniques such as LPQ, BSIF, and GIST serve 

as integral components for capturing essential 

characteristics from 3D palmprint images. A key question 

in this process is whether these features are fused before 

the classification phase or handled independently.  

 

Upon extracting features using LPQ, BSIF, and GIST, the 

ALMMo-0 framework can handle feature fusion in a few 

distinct ways. In one approach, features from these 

descriptors are concatenated into a single feature vector, 

forming a comprehensive representation of the 3D 

palmprint before classification. This ensures that the 

classifier has access to a unified feature set, capturing 

various spatial, frequency, and texture information in a 

complementary manner.  

 

Alternatively, the features can be processed independently 

by separate sub-classifiers within the ALMMo-0 

framework. In this scenario, each feature set contributes to 

its respective classification pathway, and the final 

classification decision is made through a higher-level 

fusion process, such as score-level fusion, where the 

outputs of individual sub-classifiers are combined.  

 

This would allow the system to evaluate the strengths of 

each feature extraction method and assign weights based 

on their contribution to accurate classification. In both 

cases, the ALMMo-0 framework leverages the diversity in 

feature extraction techniques to improve classification 

accuracy and robustness, while maintaining autonomy and 

efficiency. 

Detailed experimental results from the ROC curves and 

Rank-1 accuracy evaluations further emphasize the 

effectiveness of the feature extraction and fusion 

mechanisms. 

4 Experimental procedures and 

findings 
This section delves into the intricacies of the testing 

procedures and their associated results. 

4.1 Database 

To evaluate the performance of our proposed method, we 

utilized the publicly accessible PolyU 3D Palmprint 
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Dataset provided by the Hong Kong Polytechnic 

University [28]. This dataset features 200 individuals (136 

males and 64 females) contributing a total of 8,000 3D 

palmprint samples across 400 unique palm classes. Data 

acquisition occurred in two sessions, separated by an 

average of one month, to capture variations in 3D 

palmprint characteristics. Each session involved capturing 

ten samples from both the left and right hands of each 

participant. 

4.2 Experimental setup 

The experiments were conducted using a system equipped 

with an Intel Core i5-10500H processor at 2.50 GHz, 

supported by 8 GB of RAM. This setup provides adequate 

computational power for real-time processing demands of 

biometric authentication. No external GPU was utilized; 

however, the integrated capabilities were sufficient for our 

processing needs. This hardware setup ensured that our 

experimental results were both reproducible and scalable 

on systems with similar specifications. 

4.3 The experimental methodology 

The proposed system employs three distinct filters, 

namely LPQ, BSIF, and GIST, for feature extraction. As 

illustrated in Figure 1, the feature extraction stage, 

facilitated by a descriptor called Filter Bank, precedes the 

classification process of the Autonomous Learning Multi-

Model (ALMMo-0) classifier and comprises five main 

steps. ALMMo-0 leverages 3D palmprint images for user 

authentication. The system begins by capturing a 3D 

image, which then undergoes preprocessing using a multi-

scale Retinex filter. To extract relevant features, a Filter 

Bank descriptor is employed, utilizing one of the available 

filters (LPQ, BSIF, or GIST). These features are then fed 

into the classifier, which builds its internal model. Finally, 

ALMMo-0 autonomously categorizes new data as either 

genuine or fake based on the extracted characteristics, 

effectively differentiating between authorized and 

unauthorized users. ALMMo-0 tackles classification tasks 

through a data-driven, multi-model approach. It begins by 

identifying inherent data structures and autonomously 

generates fuzzy rules. This involves shaping raw data 

points into informative clusters and pinpointing key 

convergence areas. The system then leverages these data-

derived fuzzy rules (AnYa-type) specific to each class. 

When presented with new data, ALMMo-0 assigns 

confidence scores using a "winner-takes-all" strategy. 

Finally, the system's analysis is evaluated to arrive at the 

most likely classification. This research employed the 

ALMMo-0 classifier for feature extraction, outperforming 

traditional methods like KNN. The study investigated both 

3D palmprint identification and verification, with 

identification results presented as the recognition rate, 

particularly the Rank-1 recognition rate. 

 

𝑅𝑎𝑛𝑘 − 1 =
𝑁𝑖

𝑁
∙ 100(%) 

(15) 

Within our verification scenario, N signifies the total 

number of image attempts for identity verification. In 

contrast, Ni denotes the successful matches where images 

are correctly linked to their corresponding identities. Our 

evaluation hinges on the Equal Error Rate (EER), which 

represents the threshold where the rate of incorrectly 

accepting imposters (False Accept Rate, FAR) aligns with 

the rate of incorrectly rejecting legitimate users (False 

Reject Rate, FRR). For identification tasks involving one-

to-many searches, the Cumulative Match Characteristic 

(CMC) curve becomes the preferred metric. This contrasts 

with verification mode, where a Receiver Operating 

Characteristic (ROC) curve is employed. The ROC curve 

depicts the trade-off between correctly identifying 

authorized users (Genuine Accept Rate, GAR) and 

mistakenly accepting unauthorized individuals (FAR) 

across various decision thresholds. 

4.3.1 Local phase quantization (LPQ) 

In assessing the efficacy of LPQ feature extraction, we 

conducted experiments using various window widths from 

3 to 9. According to Table 3, window size (WS) of 7 and 

9 demonstrated exceptional performance. At a False 

Acceptance Rate (FAR) of 1%, the verification rate (VR) 

achieved 100%, and the Equal Error Rate (EER) decreased 

to 0%. Notably, the Rank-1 identification rate achieved 

100% accuracy in both verification and identification 

modes.  

 

Table 3: The rank and Equal Error Rate (EER) results for 

LPQ feature extraction using the ALMMo-0 classifier 

were analyzed. 

WS 
Identification  Verification 

RANK_1 (%) EER (%) VR at 0.1% FAR 

3 96.00 0.86 98.50 

5 99.25 0.15 99.75 

7 100 0.00 100 

9 100 0.00 100 

 

Our experiments overwhelmingly favor LPQ feature 

extraction with a window size of 7 for achieving 

exceptional accuracy and reliability. This choice is 

substantiated by the compelling performance metrics: a 

perfect Equal Error Rate (EER) of 0.00%, a flawless 

verification rate (VR) of 100% at a strict False Acceptance 

Rate (FAR) of 1%, and a 100% Rank-1 identification rate. 

From Figure 5, the ROC and CMC curves show that a 

window size (WS) of 7 provides the best performance 

compared to WS = 3 or WS = 5. These results undeniably 

demonstrate the superiority of a window size of 7 in 

maximizing accuracy for our specific application. 
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Table 4 provides a comprehensive comparison of the 

MCI+LPQ+ALMMo-0, GCI+LPQ+ALMMo-0, 

T+LPQ+ALMMo-0, and MSR+LPQ+ALMMo-0 

palmprint recognition methods, using the LPQ descriptor 

or feature extraction and the ALMMo-0 classifier.  Among 

the four methods, MSR+LPQ+ALMMo-0 achieves the 

highest overall performance, with a perfect Rank-1 

accuracy of 100%, an Equal Error Rate (EER) of 0.0%, 

and a Verification Rate of 100% at 1% FAR. It is also the 

most efficient in terms of time cost, with 15 ms per 

identification. ST+LPQ+ALMMo-0 follows closely with 

a Rank-1 accuracy of 99.8%, an EER of 0.3%, and a 

Verification Rate of 99.8%, but requires a longer 

processing time of 25 ms. GCI+LPQ+ALMMo-0 shows 

solid performance with a Rank-1 accuracy of 99.0%, an 

EER of 0.4%, and a Verification Rate of 99.5%, with a 

time cost of 18 ms. Lastly, MCI+LPQ+ALMMo-0, while 

still performing well, has the lowest Rank-1 accuracy at 

98.5%, an EER of 0.45%, and a Verification Rate of 

99.0%, with a time cost of 20 ms. Overall, 

MSR+LPQ+ALMMo-0 stands out as the best method, 

excelling in accuracy, error rate, and efficiency. 

 

Table 4: Comparative Analysis of MSR as a Novel 

Method Against Classical GCI, MCI, and ST in 

Palmprint    Recognition with ALMMo-0 

Method 

Rank-1 

    (%) 

 

(EER) 

(%) 

VR at 1% 

FAR (%) 
Time Cost 

for 1 

Identificati

on (ms) 

MCI+LPQ+ 

ALMMo-0 

98.5 0.45 99.0 20 

GCI+LPQ+ 

ALMMo-0 

99.0 0.4 99.5 18 

ST+LPQ+ 

ALMMo-0 

99.8 0.3 99.8 25 

MSR+LPQ+ 

ALMMo-0 

100 0.0 100 15 

 

 

4.3.2 Binarized statistical image features 

(BSIF) 

To determine the optimal filter size for BSIF feature 

extraction, we experimented with various ICA texture 

filters were applied across sizes ranging from 9x9 to 

17x17.  

Table 5 and Figure 6 compares the identification and 

verification performance of ICA texture filters of various 

sizes in palmprint recognition. For identification, the filter 

size 11x11 achieves the highest Rank-1 accuracy at 

98.50%, followed closely by the 15x15 filter at 98.00%. 

However, the 9x9 filter, while having a slightly lower 

Rank-1 accuracy of 97.25%, excels in verification, 

showing the lowest Equal Error Rate (EER) at 0.44% and 

the highest Verification Rate (VR) at 0.1% FAR, with a 

value of 99.25%.  

The larger filters (13x13, 15x15, and 17x17) all have 

similar EERs (around 0.56–0.58%) and VR values of 

99.00%, indicating that increasing the filter size beyond 

11x11 does not lead to significant improvements in 

verification performance. Overall, the 11x11 filter stands 

out for identification, while the 9x9 filter is superior for 

verification due to its lower error rate and higher 

verification rate. 

Table 5: The Rank-1 accuracy and equal error rate 

(EER) outcomes for BSIF feature extraction using the 

ALMMo-0 classifier were evaluated 

 Identification Verification 

ICA texture 

Filters size 
RANK_1 EER VR at 0.1% 

FAR 

9x9 97.25 0.44 99.25 

11x11 98.50 0.58 99.00 

13x13 97.55 0.58 99.00 

15x15 98.00 0.56 99.00 

17x17 97.50 0.57 99.00 

 

Figure 5: ROC and CMC curves were generated specifically for LPQ feature extraction using the ALMMo-

0 classifier 
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4.3.3  Gist descriptor 

To determine the optimal number of blocks for GIST 

feature extraction, we experimented with values ranging 

from 9 to 13. Table 6 presents the Rank-1 accuracy, Equal 

Error Rate (EER), and Verification Rate (VR) at 0.1% 

FAR for GIST feature extraction using different block 

numbers with the ALMMo-0 classifier. As block numbers 

increase from 9 to 13, a slight improvement in both 

identification and verification performance is observed. 

The Rank-1 accuracy improves from 97.25% for 9 blocks 

to 98.25% for 13 blocks, showing that increasing the 

number of blocks enhances identification performance. 

Similarly, the EER decreases from 0.19% to 0.16% as the 

block number rises, indicating a reduction in classification 

errors with more blocks. The VR at 0.1% FAR remains 

constant at a high value of 99.75% across all block sizes, 

suggesting that the verification performance is robust 

regardless of block numbers.  

 

Overall, using 13 blocks yields the best results, with the 

highest Rank-1 accuracy and the lowest EER, indicating 

that it provides the most accurate and reliable 

performance. Figure 7 presents the ROC and CMC curves 

generated specifically for GIST feature extraction using 

the ALMMo-0 classifier, illustrating the performance of 

the system in both verification and identification tasks. 

Figure 8 shows the ROC and CMC curves that compare 

the performance of the ALMMo and KNN classifiers on 

data preprocessed with LPQ feature extraction and MSR. 

The results reveal that the ALMMo classifier significantly 

outperforms KNN when using the same feature extraction 

methods. This underscores the efficacy of the ALMMo-

LPQ-MSR combination as a preprocessing pipeline.  

Remarkably, this method achieved flawless performance 

metrics: a 100% verification rate at a 1% false acceptance 

rate, a zero percent equal error rate, and a perfect 100% 

rank-one identification rate. These exceptional results 

highlight the ALMMo classifier's ability to efficiently  

utilize the extracted features, leading to a substantial 

improvement in overall system performance. 

 

 

 

 

 

Figure 6: ROC and CMC curves were plotted specifically for BSIF feature extraction using the ALMMo-0 

classifier 

Figure 7: The CMC (Cumulative Match 

Characteristic) curve at the top and the ROC 

(Receiver Operating Characteristic) curve at the 

bottom were generated specifically for GIST feature 

extraction using the ALMMo-0 classifier. 
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Table 6: The rank and Equal Error Rate (EER) results for 

GIST feature extraction with the ALMMo-0 classifier 

were analyzed 

Block 

Numbers 

Identification Verification 

RANK_1 (%) EER 

(%) 

VR at 0.1% 

FAR 

  9 97.25 0.19 99.75 

 11 97.50 0.18 99.75 

    13 98.25 0.16 99.75 

 

4.3.4 Comparison with current state-of-the-art 

techniques in 3D palmprint recognition 

Table 7 compares various personal recognition methods 

based on feature extraction techniques, Rank-1 accuracy, 

Equal Error Rate (EER), and time cost for one 

identification. The methods span across traditional 

approaches and deep learning techniques, ranging from 

2011 to 2024. The proposed method (2024) achieves the 

highest performance, with a 100% Rank-1 accuracy, 

0.00% EER, and the lowest time cost of 0.015 seconds per 

identification. In comparison, SSR+PCANet (2019) also 

performs exceptionally with a 99.98% Rank-1 accuracy, 

0.00% EER, but requires 1.28 seconds per identification. 

Other deep learning-based methods like MCI+DCTNet 

(2018) achieve 99.833% Rank-1 accuracy with a 0.0202% 

EER, but with a higher time cost of 1.25 seconds. 

Traditional methods like MCI-based DPDSF (2019) have 

a strong Rank-1 accuracy of 99.86%, but take significantly 

longer at 2.6 seconds per identification. In contrast, 

methods like CR_L2 (2015), while showing modest Rank-

1 accuracy at 99.15%, are faster, with a 0.02278 second 

time cost.  

 

Table 7: Comparison of the proposed personal recognition method, its computation time, and existing approaches 

Methods Years Feature Extraction Methods Rank-1 (%) EER (%) Time cost for 1 

identification (s) 

MCI+DCTNet [7] 2018 Deep Learning 99.833% 0.0202% 1.25 

COSDISH [8] 2020 Deep hashing  97.05% – 1.2 

CSTBR [30] 2018 Traditional methods 99.67% 1.51% 0,09747 

MCI based DPDSF [29] 2019 Traditional methods 99.86% – 2.6 

MCI based PDF [6] 2018 Traditional methods 99.89% 0.200% 0.24 

3D_GIST+KNN [5] 2023 Traditional methods 99.25% 0.2001% 1.15 

PCA + TPTSR [2] 2014 Traditional methods 98.55% – 17.65 

JLOF [15] 2011 Traditional methods 99.79% 0.16% 10.70 

SQI + Gabor + PCA + LDA [20] 2017 Traditional methods 98.96% 0.15% 5.6 

SSR+ PCANet [1] 2019 Deep Learning 99.98% 0.00% 1.28 

CR_L2 [19] 2015 Traditional methods 99.15% – 0.02278 

OUR 2024 Traditional methods 100.00% 00.00% 0.015 

 

 

 

 

 

 

 

 

Figure 8: ROC and CMC curves were plotted for various feature extraction methods using both the KNN 

classifier and the ALMMo-0 classifier. 
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This comparison highlights the balance between accuracy 

and computational efficiency, with the proposed method 

offering both superior accuracy and minimal time cost. 

5 Conclusion 
This study introduces an innovative 3D palmprint 

authentication system that harnesses the capabilities of the 

Autonomous Learning Multi-Model Classifier of 0-Order 

(ALMMo-0). This method tackles limitations prevalent in 

current biometric systems by offering a classification tool 

that is transparent, self-governing, and computationally 

efficient. By incorporating advanced feature extraction 

techniques like LPQ, BSIF, and GIST alongside ALMMo-

0, the proposed system achieves impressive performance 

indicators, including a minimal Equal Error Rate (EER), 

superior rank-1 accuracy, and efficient computation. 

While biometric research has made substantial strides, the 

paper emphasizes the continuing need for enhanced 

security applications. It underscores ALMMo-0's 

capability to establish a robust framework incorporating 

multiple models for accurate classification and adaptive 

learning from data. The system's architectural details, 

including feature extraction and classification stages, are 

thoroughly examined. The proposed methodology's 

efficacy in improving biometric system performance, 

particularly in 3D palmprint authentication, is supported 

by empirical findings. The research highlights the 

ALMMo-0 classifier's critical contribution in providing 

dependable solutions. These advancements offer 

exceptional interpretability, accuracy, and computational 

efficiency, setting a solid foundation for future 

advancements in biometric security. 
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