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Car autonomous driving technology is a key development direction in the future, but road environment 

data is relatively complex, and single sensor-driven autonomous driving algorithms have the problem 

of insufficient trajectory prediction accuracy. In response to this, this study uses fuzzy information to 

construct a fuzzy neural programming network for data processing and uses a fuzzy sample dataset for 

training. The multi-sensor autonomous driving tracking algorithm is used to fuse and calculate the 

data collected by the sensors. The data are transformed into a Cartesian coordinate system to 

calculate the predicted lateral and longitudinal distance, velocity, and acceleration of the tracking 

algorithm. The experiments were conducted using an 80 Hz radar sensor, a 72-line lidar, and a 1080p 

vision sensor. Two sets of each of the three roadway test environments were used. The initial distance 

between the experimental vehicle and the target vehicle was 30m. The results demonstrated that the 

distance and speed predicted by the driving tracking algorithm were consistent with the true values, 

and the longitudinal distance was 0.34 m and 0.28 m higher than the square root Kalman filtering 

algorithm and the extended Kalman filtering algorithm, respectively. The longitudinal velocity 

denoising accuracy of the algorithm has been improved by 18.65% and 31.27% compared to other 

algorithms. Therefore, the autonomous driving tracking algorithm was better able to maintain a safe 

distance than other algorithms, and its acceleration changes were smoother, improving the ride 

comfort and safety of the vehicle. The tracking algorithm has a stronger ability to remove noise from 

sensors and can adapt to more diverse environments. The designed fuzzy information and multi-sensor 

fusion tracking algorithm for car autonomous driving provides a reference for subsequent research on 

automotive autonomous driving technology. 

Povzetek: Raziskava uvaja tehnologijo sledenja za avtonomno vožnjo na osnovi nejasnih informacij in 

združevanja več senzorjev, kar povečuje kvaliteto sledenja in izboljšuje varnost ter udobje vožnje.

1 Introduction 

In recent years, with the gradual increase in per capita car 

ownership, the number of traffic accidents caused by 

factors such as distracted driving or violating traffic rules 

is constantly increasing [1]. The increase in vehicles has 

led to traffic congestion and the efficiency of road traffic 

is constantly decreasing. As of January 2024, the amount 

of motor vehicles in China has reached 435 million, and 

accidents caused by driver issues account for 94% of the 

total accidents [2]. The deep improvement of information 

technology has made assisted driving and even intelligent 

Car Autonomous Driving (CAD) technology a hot 

research direction in intelligent transportation [3]. 

Intelligent driving technology can not only improve road 

traffic efficiency, but also reduce accident rates, liberate 

productivity, improve people’s work efficiency and travel 

comfort, and ensure people's travel safety [4]. Both  

 

domestic and foreign technology companies have  

invested plenty of research and development funds in 

intelligent driving, promoting the continuous progress of 

intelligent vehicles. However, the existing intelligent 

CAD technology still has some problems in data 

acquisition and analysis of multiple targets, such as single 

data acquisition mode, inability to effectively remove 

environmental noise interference, and low data accuracy 

after data fusion of different sensors. Meanwhile, 

prolonged occlusion of sensors or the presence of 

multiple vehicles with similar characteristics in the 

surrounding area can significantly impair the accuracy of 

target tracking and trajectory prediction, thereby 

compromising the safety of autonomous driving. 

Regarding the issue of sensor data fusion, Nathan et al. 

found that excessive task volume in autonomous driving 

can lead to imbalanced learning outcomes, and therefore 
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proposed a deep multitasking learning model. The model 

received input data from different sensors in multiple 

locations of the vehicle and used intermediate sensors for 

data fusion and semantic segmentation. It could also have 

good performance with fewer parameters, occupy less 

memory during data processing, and have faster 

computing speed [5]. Senel et al. discovered the 

importance of sensor data in intelligent transportation and 

proposed a modular sensor data fusion framework. This 

framework adopted classic data fusion algorithms, using 

coordinate change modules and object association 

modules. This algorithm had low requirements for the 

number and type of sensors, and the data fusion time was 

much less than 10ms. It could quickly detect changes in 

the external environment and identify sensor faults [6]. 

Zhang et al. developed a new visual localization method 

to solve the problem of insufficient localization accuracy 

of autonomous vehicles. This method used the results of 

vehicle inertial motion and visual sensor image sequences 

to construct a semantic map, and then compared the map 

with the database, using neural networks to simplify the 

map-matching problem. The vertical and horizontal 

positioning errors of this method were 0.017 m and 0.039 

m, respectively, and the positioning accuracy met the 

predetermined requirements [7]. Wang et al. proposed a 

fusion method that optimizes complementary sensors to 

address the offset problem in autonomous driving 

technology. This method established a global pose map 

through a multi-level optimization strategy, obtained the 

pose map using radar sensors and visual sensors, used 

GPS geographic information, and corrected cumulative 

offsets in the optimization layer. The average offset error 

of this method was 0.804%, and the average rotation error 

was 0.0043 m [8]. 

Given the problem of multi-sensor data acquisition, 

Zaghari et al. found that ordinary methods could not 

accurately detect the speed change of autonomous 

vehicles, so they proposed a hybrid method of fuzzy 

algorithm and NMS algorithm. This method was trained 

by establishing a set of safe driving information under 

different conditions, and continued obstacle detection 

using non-maximum threshold fuzziness. This method 

effectively improved detection accuracy and increased 

detection speed by 64.41% [9]. Awad et al. found that 

noise interference greatly affected the path planning of 

autonomous driving, and therefore proposed a 

comprehensive path-tracking control strategy for 

autonomous driving. This strategy used a fuzzy logic 

switching system to design and modify the linear model 

control parameters to obtain the optimal vehicle turning 

angle and angular velocity. This strategy could 

effectively eliminate noise interference in the data 

acquisition process, significantly improve path planning 

accuracy and calculation speed, and perform significantly 

better than other tracking control methods [10]. Sun et al. 

developed a new dual hidden layer network for path 

tracking in autonomous driving. This network outlined 

the lateral dynamics and steering angular velocity of 

autonomous vehicles during path tracking through their 

kinematic models. This network had higher robustness 

and faster convergence speed compared to traditional 

methods [11]. 

In summary, existing methods have studied the 

issues of multi-sensor data acquisition and fusion, as well 

as sensor noise interference removal in intelligent 

vehicles from multiple aspects, and have achieved certain 

results. However, the accuracy of autonomous driving 

path planning can no longer meet the growing demand. 

Therefore, this study improves the autonomous driving 

algorithm and innovatively introduces fuzzy information 

to construct a Fuzzy Neural Network (FNN), converting 

the vertical coordinate system of the vehicle into 

Cartesian coordinates. The Automatic Driving Tracking 

Algorithm (ADTA) fuses and analyzes the data from 

different sensors to calculate the position correlation 

between the intelligent car and the target car. ADTA aims 

to improve the accuracy of multi-sensor data fusion, and 

enhance the driving safety and riding comfort of 

intelligent vehicles. This study has three parts in total. 

Part 1 optimizes data collection and data fusion methods. 

Part 2 evaluates the performance of optimization 

algorithms. Part 3 summarizes the paper and provides the 

prospects for future directions. 

The current research is limited by certain 

shortcomings. When some of the sensors are occluded for 

an extended period or when there are multiple vehicles in 

the surrounding area that are similar to the target vehicle, 

the accuracy of target tracking and trajectory prediction is 

significantly diminished. This negatively impacts the 

safety of autonomous driving. This research aims to fill 

the gap in multi-sensor data fusion and noise interference 

removal. Based on the above relevant studies, Table 1 is 

summarized, which summarizes the topics of related 

studies, the main index methods, and the shortcomings of 

related studies. 

 

 
Table 1: Summary of relevant studies 

Author Research theme Main index Mthod Insufficient 

Natan O et al. 

[5] 

Balance of 

learning effect 

Memory usage and 

computing speed 

Multi-sensor data 

collectionand 

intermediate sensor data 

fusion 

The requirements on 

parameters are high 

Senel N et al. [6] Sensor data fusion Data fusion time 
Coordinate changes, 

object associations 

Performance may be 

limited when the target 

size is large 
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Zhang Z et al. 

[7] 

Positioning 

accuracy 

Longitudinal and 

lateral positioning 

errors 

Construct semantic map 

and simplify map 

matching 

High requirements on 

the database 

Wang K et al. 

[8] 
Autopilot offset 

Rotation error and 

offset error 

Global pose map and 

cumulative offset 

correction 

The multi-level 

computing time is too 

long 

Zaghari N et al. 

[9] 

The speed of the 

self-driving car 

changes 

Detection accuracy 

and Detection speed 

Non-maximum threshold 

ambiguity 

The requirements for 

safe driving information 

collection are higher 

Awad N et al. 

[10] 
Noise removal 

Path planning 

accuracy and 

calculation speed 

Fuzzy logic switching 

system and linear model 

control parameters 

Face challenges High 

precision of control 

parameters is required 

Sun Z et al. [11] 
Autopilot path 

tracking 

Robustness and 

speed of 

convergence 

The double hidden layer 

neural network plans 

lateral dynamics and 

steering angular velocity 

The prediction accuracy 

is low when the scene is 

complex 

This study 

Multi-sensor 

fusion and 

automated driving 

tracking 

Speed prediction 

accuracy and 

denoising 

performance 

Construct FNN and 

multi-sensor data fusion 
/ 

 

2 Methods and materials 

2.1 Intelligent vehicle driving tracking 

technology based on fuzzy information 
The tracking technology of intelligent CAD mainly 

focuses on speed planning research. Based on the 

vehicle's surrounding environment and its state, the next 

step of the vehicle's motion trajectory is to calculate 

immediately. Fuzzy information is used to construct an 

FNN for car speed planning. In the offline learning stage, 

FNN extracts rich experience from manual driving and 

transforms it into a dataset of fuzzy rules. FNN constructs 

a triple FNN model by continuously learning fuzzy rules. 

The speed planning of the model is described as the 

mapping relationship between the collected state 

variables and the output data. The car captures the 

velocity and distance information of obstacles while 

driving, and the distance X  and speed V  are fuzzified 

into a language variable set as shown in equation (1) [12]. 

 
( )

( )

1 2 1

1 2 1

, ,..., ,

, ,..., ,

m m

n n

X X X X X

V V V V V

−

−

=


=
 (1) 

In equation (1), m and n  are the quantity of 

language variables for distance and speed. The language 

variable set for outputting data is equation (2). 

 ( )1 2 1, ,..., ,t tC C C C C−=  (2) 

In equation (2), C  represents the language variable 

dataset, and t  represents the number of language 

variables in the output data. Based on the membership 

relationship between the collected state variables and the 

output data [13], the constructed fuzzy rule table is listed 

in Table 2. 

 

 
Table 2: Fuzzy rules of variables 

 1X  2X  ... kX  ... m-1X  mX  

1V  11C  21C  ... 1kC  ... ( )1 1m
C

−  1mC  

2V  12C  22C  ... k2C  ... ( )m-1 2
C  m2C  

... ... ...  ...  ... ... 

hV  1hC  2hC  ... khC  ... ( )m-1 h
C  mhC  

... ... ...  ...  ... ... 

1nV −  ( )1 1n
C

−  ( )2 n-1
C  ... ( )1k n

C
−  ... ( )( )m-1 n-1

C  ( )m n-1
C  

nV  1nC  2nC  ... knC  ... ( )m-1 n
C  mnC  
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In Table 2, khC  represents the acceleration 

language variable obtained by jointly outputting the k-th 

distance language variable and the h-th velocity language 

variable. The mapping relationship between the collected 

state variables and the output data is equation (3). 

 ( ),kh k hc f x v=  (3) 

In equation (3), khc , kx , and hv represent the 

maximum membership degrees of language variables 

khC , kX , and hV . A three-layer neural network model is 

established based on the rules obtained from the fuzzy 

rule table. The number of neurons is defined as the 

number of collected states, the neurons in the output layer 

are the number of output data, and the neuron in the 

hidden layer is i. The hyperbolic tangent function is used 

to transfer data between levels, and the Back Propagation 

(BP) algorithm is utilized to train the weights and bias 

vectors [14]. The model calculates the real-time 

acceleration based on the real-time collected velocity and 

distance state variables, as shown in equation (4). 

( )( )( )2 1 1 2tan tan ,
T

t t ta sig q sig q x v b b=   + + (4) 

In equation (4), T  is the time variable. 1b  and 2b  

represent the bias vectors of the hidden and output layers 

after training. 2q  and 1q  are the weight vectors of the 

output and hidden layers after training. ta  represents the 

normalized real-time acceleration. After detecting 

surrounding vehicles, the intelligent car calculates its 

real-time acceleration based on the model, allowing the 

car following the preceding car while maintaining a 

secure distance and speed. The collected state variables 

include the relative distance x  between the intelligent 

car and the front car, as well as the relative velocity v  

with the front vehicle.  

The time interval 
x

v



=


 is increased as the input 

state variable reduces the dimensionality of the model. 

Based on the dataset of manual driving experience, the 

membership degree set of relative speed language 

variables has been determined as shown in equation (5) 

[15]. 

  5, 3, 1,0,1,3,5v = − − −  (5) 

Table 3 shows the model constructed based on fuzzy 

rules that automatically follows the sample set. 

 

 
Table 3: Sample set of smart car tracking driving 

  
v  

-5 -3 -1 0 1 3 5 

0.25 -1 -1 -2 -2 -3 -3 -5 

0.50 -0.5 -1 -1.5 -2 -4 -4 -5 

0.75 0 -0.5 -1 -2 -3 -4 -4 

1.00 0.5 0 -1 -2 -3 -3 -4 

1.25 1 0.5 0 -0.5 -1 -2 -3 

1.50 2 1 0.5 0 -0.5 -1 -2 

1.75 3 2 1 0.5 0 -0.5 -1 

2.00 4 3 2 1 0.5 0 -0.5 

3.00 5 4 3 2 1 0.5 0 

4.00 4 3 2 1 0.5 0 -0.5 

5.00 3 2 1 0.5 0 -0.5 -1 

10.0 2 1 0.5 0 -0.5 -1 -2 

15.0 1 0.5 0 -0.5 -1 -2 -3 

 

FNN is trained using the dataset in Table 3, and the 

intelligent vehicle FNN model is offline modified through 

training and self-learning. The modified model is used to 

calculate the real-time Acceleration of the Vehicle (AoV). 

When driven by driving needs and allowed by the 

surrounding environment, lane changing operations can 

be carried out in a timely manner [16]. However, the 

driving environment of vehicles is complex and fuzzy, 

making it difficult to perform lane changing operations 

through accurate and standardized information, and the 

correlation between road environment and lane changing 

intentions is non-linear. The process of learning the 

human brain through FNN and simulating the ability to 

change lanes for driving is shown in Figure 1. 
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Figure 1: Flow chart of FNN lane change 

 

In Figure 1, the language variables of relative speed 

and distance are inputted into the model, and the data are 

fuzzified to determine whether the surrounding 

environment meets the lane changing requirements. If it 

is not met, the language variables of the relevant data will 

be collected again after the waiting time t . If the lane 

change requirement is met, the fuzzy set is calculated to 

obtain a specific output fuzzy set. Based on the fuzzy rule 

library, the fuzzy set is deblurred to convert the data into 

accurate conclusions. When calculating the probability of 

lane change, the range of distance distribution between 

vehicles and surrounding vehicles is defined as [0, 1], and 

the membership range is equation (6) below. 

 
 

 
1

2

0,0.25,0.5,1

0.25,0.5,0.75,1

x

x

 =

 =

 (6) 

In equation (6), 1x  and 2x  are the membership 

range of the distance between the intelligent car and the 

front-car/vehicleon the left and right lanes. The decision 

to perform a lane change operation is determined based 

on the intensity of the lane change requirement and the 

feasibility of the lane change process. 

 

2.2 Intelligent driving tracking algorithm for 

intelligent vehicles based on multi-sensor 

data collection 
The visual sensor target detection method of smart cars 

has poor detection performance in harsh environments 

such as dark night, sandstorms, and haze, while the 

detection method using radar sensors is less affected by 

the environment. However, the sensor target detection 

method has weak ability to analyze target categories and 

cannot take corresponding measures in a timely manner. 

Therefore, visual sensors and radar sensors are combined 

for target detection. The Multi-sensor Driving Tracking 

Algorithm (MS-DTA) converts the target's motion state 

to a Cartesian coordinate system through radar sensors, as 

shown in equation (7). 

 
( )

( )

sin

cos

x r

y r





= 


= 
 (7) 

In equation (7), x , y , and r  represent the lateral 

distance, Longitudinal Distance (LGD), and straight-line 

distance between two vehicles. Due to the need for radar 

sensors to measure the LGD difference and Longitudinal 

Velocity (LGV) difference between the experimental 

vehicle and surrounding vehicles, the observation amount 

at time t of the target is calculated as shown in equation 

(8). 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )
( )

( ) ( )( )
( )

2 2

1 1

2 2

2 2

3 3

4 4

1

1

x

y

Q s x t y t r t

Q v x t y t r t

x t x tQ
Q a r t

T

y t y t
Q a r t

T

 = = + +

 = = + +



− −
= = +


− −

= = +


 (8) 

In equation (8), v  is the relative LGV. T  

represents the time interval for data collection. 1r - 4r  

represents the observation interference at each moment. 

xa  and ya  represent the lateral and longitudinal AoV. 

A two-degree of freedom model is used to construct the 

vehicle's state sensor. The model ignores the influence of 

steering system and air resistance on the vehicle, and 

adopts the vehicle dynamics equations of torque balance 

and lateral force balance as shown in equation (9) [17]. 
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1 1 2 2

1 2

z

x

I F x F x

M a F F

  =  − 


 = +
 (9) 

In equation (9), zI  represents the lateral torque of 

the car.  is the vehicle's yaw angle. 1F  and 2F  are 

the lateral forces acting on the front and rear wheels. 1x  

and 2x  are the lengths from the mass center of the 

vehicle to the front and rear axles. xa  represents the 

lateral AoV. M is the mass of the entire vehicle. The 

intelligent car driving tracking algorithm first 

preprocesses the data collected by sensors to determine 

the rationality of the data [18]. The algorithm analyzes 

sensor strategy data, distinguishes effective targets and 

interfering targets, and compares the consistency of 

reasonable target measurements within two cycles. If 

both the predicted and measured values of the sensor at a 

certain sampling time are less than or equal to the set 

threshold, then the measured value is valid and can 

update the motion state of the target car. If the predicted 

and measured values are greater than the threshold, the 

process of judging the consistency of the target car's 

motion state is shown in Figure 2. 

 

Target vehicle data

State consistency？

Whether the 

target exists？

The inconsistency is greater 

than the threshold？

The consistency 

exceeds the threshold？

Elimination 

target
Effective target Jamming target New target

Vehicle trajectory 

prediction

Yes

No

Yes No

YesNo YesNo

 

Figure 2: Process of judging vehicle motion consistency 

 

In Figure 2, if the motion condition of the target 

vehicle in a certain sampling is inconsistent, it is 

determined whether the target exists. If it exists, to 

determine whether the number of times the measured 

value at a certain sampling time is inconsistent with the 

target state at multiple sampling times is greater than the 

set inconsistency threshold. If it is greater than the 

threshold, the target is eliminated; If it is less than the 

threshold, the target is considered a valid target. If the 

target does not exist, it is determined whether the number 

of times the measured value at a certain sampling time is 

consistent with the target state at multiple sampling times 

is greater than the set consistency threshold. If it is less 

than the threshold, the target is considered an interference 

target, and if it is greater than the threshold, a new target 

is generated. After determining as an effective target, 

continuing with target information prediction. The 

location of the target car in ADTA is divided into three 

categories: in front of the original lane, right lane, or left 

lane. The lane relationship between the intelligent vehicle 

and the target vehicle is shown in Figure 3. 
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Figure 3: Lane distance recognition of target vehicle by ADTA 

 

In Figure 3, the sensor is located in front of the 

vehicle. Based on the data returned by the sensor and the 

Cartesian coordinate system, the vertical distance 

between the target vehicle and the intelligent car's 

longitudinal axis is calculated to distinguish which lane 

the target vehicle is in. In a straight lane, the lateral 

distance between two vehicles is calculated as shown in 

equation (10) [19]. 

 ( )sinS x =   (10) 

In equation (10), x  represents the straight-line 

distance between two cars, and   represents the angle 

between the vertical axis of the intelligent car and the 

connecting line between the two cars. When the target 

vehicle is on the right side of the smart car, ＞0, and 

when it is on the left side, ＜0. When the vehicle is 

driving in a bend, the calculation of the distance S  

between the central axes of the two vehicles is equation 

(11). 

 

( )

1 2

2 2

2 2 2

1 2 0

1

2 cos 90

S R R

R v

R R x R x






= −




=

 = + −   −


 (11) 

In equation (11), 1R  and 2R  are the driving radii 

of the target and intelligent vehicles.   and 2v  are the 

lateral velocity and LGV of smart cars. The resolution 

method for the target vehicle in the right lane is equation 

(12). 

1 2 3 1 2

1 1 1 1

2 2 2 2
L LX x x x S X x x+ + +   + +  (12) 

In equation (12), LX  represents the distance 

between the smart car and the left lane. 1x , 2x , and 3x  

represent the width of smart cars, lane markings, and 

single lanes. The resolution method for the target vehicle 

in the left lane is equation (13). 

1 2 3 1 2

1 1 1 1

2 2 2 2
R RX x x x S X x x+ + +   + +  (13) 

In equation (13), RX  represents the distance 

between the smart car and the right lane line. Accurate 

operation of ADTA requires the use of a distributed 

information fusion structure, which integrates the 

predicted trajectory values of target vehicles calculated 

by visual sensors and radar sensors [20]. The structure 

uses a fast and simple convex fusion algorithm for target 

trajectory fusion, and the calculation of the convex fusion 

algorithm is equation (14). 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1 1 1 1 1

1 2 1 1 1 2 2 2s P P P s P P P s
− −

− − − − − −   = +   + +  
    (14) 

In equation (14), 1s  and 2s  are trajectory data 

obtained from visual sensors and radar sensors. 1P  and 

2P  are covariance matrices, as shown in equation (15). 

 ( ) ( )
1 11

1 2P P P
− −− = +  (15) 

The MS-DTA runtime framework is shown in 

Figure 4. 
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Figure 4 Multi-sensor driving tracking algorithm 

 

 

In Figure 4, the numerical values returned by the 

radar sensor are first preprocessed to determine whether 

the target data is within the preset accuracy range. If it is 

not, the set of data is remeasured and validity is checked 

within the range. Then, based on the motion status of the 

intelligent vehicle, the effective data is used to perform 

certain motion compensation on the target car, and the 

lane where the target one is located after motion 

compensation is recognized. Finally, the tracking speed 

of the smart car is calculated built on the target lane and 

real-time motion status. Apollo Scape dataset released by 

Baidu is used for trainingin this research 

(https://apolloscape.auto/). The dataset includes scene 

analysis, 3D object instance, lane segmentation, 

self-positioning, trajectory estimation, detection and 

tracking, stereo vision, and other scene related data. The 

Track Estimation section contains more than 140K 

high-resolution GPS tracks and camera images. These 

images have a resolution of 3384×2710 and cover a 

variety of road conditions. 

 

3 Results 

3.1 Simulation Experiment of CAD tracking 

technology based on fuzzy information 
The simulation experiment scenario is set as the target 

vehicle traveling at a speed of 18m/s, with an initial 

distance of 30 m between the experimental and target 

vehicles. The experimental vehicle follows the target 

vehicle at the same speed. The front vehicle gradually 

slows down with an acceleration of -1 m/s, and after 13 

seconds, the target vehicle's speed drops to 5m/s and 

continues to drive at that speed. The initial data of the 

vehicle in another scenario are the same as the previous 

scenario, and the speed of the experimental vehicle 

continuously changes with the target one. The data for the 

interference experiment are set to add a random velocity 

measurement error of about 1m/s, and the distance 

measurement error of the sensor fluctuates randomly 

within 2m. The results obtained from the simulation 

experiment are shown in Figure 5. 
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Figure 5: Test of following speed change under different environments 

 

In Figure 5 (a), within 0-10 seconds, the distance 

between the experimental car and the target car gradually 

approaches as the preceding vehicle decelerates, but the 

experimental vehicle quickly adjusts and returns to a safe 

distance within 10-20 seconds. When the current vehicle 

speed continuously changes, the experimental vehicle can 

quickly complete adjustments in a short period of time 

and maintain a safe distance at all times. In 5 (b), the 

experimental vehicle can accurately recognize the 

velocity changes of the preceding car and adjust its own 

speed accordingly. In 5 (c), the acceleration of the 

experimental vehicle remainswithin a safe range. The 

acceleration and distance variation curves of FNN model, 

Fuzzy Programming Model (FPM), and Traditional 

Programming (TPM) are displayed in Figure 6. 
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Figure 6: Acceleration and distance curves of different models 

 

In Figure 6 (a), as the velocity of the preceding car 

changes, the acceleration change time of FNN is 0.42s 

and 1.03s faster than FPM and TPM, respectively, 

indicating that FNN has a faster reaction speed. Moreover, 

the acceleration continuous variation curve of the FNN 

model is smoother than other models, and the highest 

acceleration is also lower than the highest acceleration of 

other models, indicating its superior performance and 

safety. In 6 (b), FNN has a shorter deceleration distance 

and maintains a relatively safe distance of 1.8m and 3.9m 

longer compared to FPM and TPM, respectively. The 

comparison of FNN's anti-interference ability with other 

models is shown in Figure 7. 
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Figure 7: Acceleration and distance changes of different models under interference 

 

In Figure 7 (a), the acceleration change of FNN is 

significantly better than that of FPM and TPM, and the 

average speed of acceleration change with the preceding 

vehicle is 0.58 s and 1.67 s faster than the other two 

algorithms, respectively. The acceleration variation of 

FNN only fluctuates slightly and can maintain a stable 

following speed. In 7 (b), the average following distance 

of FNN is 2.5 m and 4.1m longer than other algorithms 

when the preceding vehicle accelerates, and 2.1 m and 

3.8 m shorter when the preceding vehicle decelerates. 

The following distance of the model is always within a 

safe range and will not leave the preceding vehicle too 

far. 

 

3.2 Simulation experiment analysis based on 

MS-DTA 
The simulation experiment uses an 80 Hz radar sensor 

and a 72 line LiDAR, with a visual sensor resolution of 

1080p. The vehicle's status is measured in real-time using 

a navigator. The experiments are compared with the test 

data of SH-EKF, SR-CKF, and RM algorithms under 

noise interference. The Root Mean Square Error (RMSE) 

of the algorithm can be tested in three environments: 

groups 1 and 2 on highways, groups 3 and 4 on urban 

loops, and groups 5 and 6 on old neighborhoods. The 

MS-DTA algorithm preprocesses and fuses the data 

returned by the radar sensor to determine whether the 

target data is within the preset accuracy range. If not, the 

dataset is remeasured. The valid data are used to perform 

certain motion compensation on the target vehicle 

according to the motion state of the intelligent vehicle, 

and the lane in which the target vehicle is located after 

motion compensation is recognized. The real-time 

tracking of the intelligent vehicle's traveling speed is 

calculated based on the lane in which the target is located 

and the real-time motion state. The comparison between 

the estimated vehicle yaw velocity and lateral velocity 

from MS-DTA and the measured values from the 

navigation instrument is shown in Figure 8. 
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Figure 8: Yaw velocity and lateral velocity estimation of MS-DTA 

 

In 8 (a), the estimated lateral velocity by MS-DTA is 

basically consistent with the actual lateral velocity, 

except that at the turning position, the fluctuation of the 

estimated value is slightly larger than the actual value. In 

8 (b), the estimated yaw velocity of the algorithm has 

good consistency with the actual yaw velocity. The 

measured values of yaw rate are well centered around the 

true value, and the dense part of the measured values is 

concentrated at the turning position of the vehicle. The 

LGD and LGV of MS-DTA vehicles are compared with 
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other algorithms, as shown in the following Figure (9).  
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Figure 9: LGD and LGV curves of various algorithms with time 

 

In Figure 9 (a), the data estimated by MS-DTA are 

closer to the true value, and the average LGD estimated 

by the RM algorithm is 0.37m higher than the true value 

on average under noise interference. The average LGD 

estimated by SR-CKF and SH-EKF is 0.34 m and 0.28 m 

lower than the true value, respectively, and the 

fluctuation at the turning is more severe, with a greater 

difference from the true value. In 9 (b), the LGV 

variation estimated by MS-DTA is smoother and closer to 

the true value. When the preceding vehicle decelerates, 

the MS-DTA estimated value is higher, the algorithm 

responds faster, and the deceleration is smoother. This 

indicates that using MS-DTA for autonomous vehicles is 

more comfortable and safer to ride. 
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Figure 10: RMSE of LGD and LGV of different algorithms 

 

In Figure 10 (a), during the 5 and 6 experiments, the 

system noise is diverse and constantly changing. The 

LGD RMSE of MS-DTA is 0.04m and 0.08m lower than 

that of SH-EKF and SR-CKF, respectively. However, in 

the highway environment, noise interference is stronger, 

so its LGD RMSE is 0.03m and 0.06m lower than other 

algorithms, respectively. The vertical distance denoising 

accuracy of the algorithm is 34.29% and 47.34% higher 

than that of SH-EKF and SP-CKF, respectively. In 10 (b), 

the average LGV RMSE of MS-DTA is 0.01m/s and 

0.02m/s lower than other algorithms, and the LGV 

denoising accuracy is 18.65% and 31.27% higher than 

SH-EKF and SP-CKF, respectively. This indicates that 

MS-DTA can effectively remove external interference, 

continuously monitor the trajectory of the preceding 

vehicle, and reduce algorithm tracking errors. 

To verify the trajectory prediction ability of the 

MS-DTA algorithm in real driving environments, 

real-vehicle tests are conducted through a variety of 

traffic scenarios, including intersections, multi-lane 

straight driving, and curved driving. The experiments 

show that the MS-DTA algorithm is able to accurately 

predict the trajectory of vehicles located in the turning 

lane at intersections, and the SH-EKF algorithm has the 

case of incorrectly predicting the turning vehicle as 

traveling straight. At the same time, the MS-DTA 

algorithm is able to effectively predict the future 

trajectory of the car based on the historical trajectory of 
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the previous car, and the trajectory prediction error of the 

vehicle is significantly smaller than other algorithms. To 

further verify the performance of the proposed algorithm, 

it is compared with baseline algorithms for automatic 

driving tracking, including Rapidly-Exploring Random 

Tree (RRT) and the Probabilistic Roadmap Method (PPM) 

based on the heuristic node enhancement strategy. The 

comparison results are shown in Table 4. 

 

 
Table 4: Performance comparison between the MS-DTA algorithm and the baseline algorithm 

Algorithm 

RMSE of the 

longitudinal 

distance 

RMSE of the 

longitudinal 

velocity 

Yaw velocity 

RMSE 

Lateral velocity 

RMSE 

MS-DTA 0.04 0.02 0.04 0.05 

RRT 0.07 0.04 0.06 0.09 

PPM 0.09 0.08 0.12 0.11 

 

In Table 4, the RMSE of each value of the MS-DTA 

algorithm is the minimum. The RMSE of the longitudinal 

distance is 0.03 and 0.05 lower than that of the RRT and 

PPM algorithms, respectively. The RMSE of the 

longitudinal velocityis 0.02 and 0.06 lower than that of 

the RRT and PPM algorithms. The RMSE of yaw 

velocity and lateral velocity of MS-DTA algorithm is 

much different from that of the two benchmark 

algorithms, indicating that the proposed MS-DTA 

algorithm is more accurate in predicting vehicle trajectory 

during turning. 

4 Discussion 

In recent years, with the continuous development of 

information technology, assisted driving or even 

intelligent vehicle automatic driving technology has 

become a popular research direction in intelligent 

transportation. However, traditional intelligent driving 

tracking algorithms suffer from low trajectory prediction 

accuracy. This study proposes an MS-DTA algorithm 

based on fuzzy information and multi-sensor data fusion, 

and verifies its good performance in automatic driving 

trajectory prediction and noise interference removal 

through experimental analysis. The lateral velocity 

predicted by the MS-DTA algorithm is basically 

consistent with the true lateral velocity of the vehicle, 

except that the fluctuation of the predicted value is 

slightly greater than the true value at the turning position. 

Since the algorithm lags behind when turning and enters 

the curve later, it is necessary to increase the lateral speed 

of the vehicle to ensure safe driving in the curve. The 

intensive part of the transverse angular velocity 

measurements are concentrated at the vehicle turning 

position to adjust the steering angle and speed of the 

vehicle in time. Compared with the deep multi-task 

learning model proposed by Natan O et al. [5], the 

MS-DTA algorithm's transverse swing angular velocity 

and lateral velocity are smaller and closer to the real 

values. Itindicates that the MS-DTA algorithm using 

multi-sensor fusion is more responsive and safer. After 

adding noise interference, compared with the hybrid 

method of fuzzy algorithm and NMS algorithm proposed 

by Zaghari N et al. [9], the longitudinal distance RMSE 

of MS-DTA algorithm gradually decreases with the 

diversity and complexity of noise, and the decrease speed 

is faster. This indicates that the MS-DTA algorithm for 

multi-sensor data fusion has stronger anti-interference 

ability, and the accuracy of longitudinal distance 

denoising has improved by 34.29% compared to Zaghari 

N et al.'s method. Compared with the existing automobile 

autopilot trajectory prediction techniques, MS-DTA 

algorithm can effectively remove the external 

interference, continuously focus on the trajectory of the 

front vehicle, and reduce the algorithm tracking error. 

5 Conclusion 

In response to the problems of complex path planning and 

insufficient trajectory prediction accuracy in traditional 

ADTA, this study proposed MS-DTA using fuzzy 

information and multi-sensor fusion. The research results 

indicated that the FNN constructed with fuzzy 

information identified the target vehicle's speed change 

time, which was 0.42 s and 1.03 s faster than other 

models. The relative distance between the predicted path 

of the model and the target vehicle was 1.8 m and 3.9 m 

longer than other models. The safe distance between the 

two vehicles was longer, and they could also closely 

follow the target vehicle within the safe distance when 

accelerating. The acceleration curve of the model 

changed more smoothly, with the highest acceleration 

being 0.13 m/s2 and 0.45 m/s2 lower. Under noise 

interference, the velocity changes of the model were 0.58 

s and 1.67 s faster than other models, and the following 

distance was 2.5 meters and 4.1 meters longer than other 

models. The vehicle lateral velocity and yaw velocity 

estimated using MS-DTA were highly consistent with the 

actual measured values. The LGD estimated by MS-DTA 

was basically consistent with the true value, and the 

average LGD of SR-CKF and SH-EKF were 0.34 m and 

0.28 m lower than the true value. The MS-DTA estimated 

longitudinal acceleration change of the vehicle was 

smoother, which could enhance the comfort of 

autonomous vehicles. In the noise interference 

experiment, the LGD RMSE of MS-DTA was 0.04m and 

0.08m lower than other models, and the LGV RMSE was 

0.01m/s and 0.02m/s lower than them. There are still 
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some shortcomings in this study, such as the fact that 

traffic lights are also an important factor affecting vehicle 

driving. In the future, research on algorithm detection of 

traffic lights will be added to improve the full scenario 

application ability of autonomous driving. 

Funding 

The research is supported by Sichuan Polytechnic 

University research project XJ2024KJ-24 (Research on 

Optimal design of target detection of millimeter wave 

radar for automotive intelligent driving). 

References 

[1] Z. Wang, and J. Fei, “Fractional-order terminal 

sliding-mode control using self-evolving recurrent 

chebyshev fuzzy neural network for MEMS 

gyroscope,” IEEE Transactions on Fuzzy Systems, 

vol. 30, no. 7, pp. 2747-2758, 2021. 

https://doi.org/10.1109/TFUZZ.2021.3094717 

[2] C. Ben Jabeur, and H. Seddik, “Design of a PID 

optimized neural networks and PD fuzzy logic 

controllers for a two‐wheeled mobile robot,” Asian 

Journal of Control, vol. 23, no. 1, pp. 23-41, 2021. 

https://doi.org/10.1002/asjc.2356 

[3] M. Elsisi, “Improved grey wolf optimizer based on 

opposition and quasi learning approaches for 

optimization: case study autonomous vehicle 

including vision system,” Artificial Intelligence 

Review, vol. 55, no. 7, pp. 5597-5620, 2022. 

https://doi.org/10.1007/s10462-022-10137-0 

[4] J. Fei, L. Liu, “Real-time nonlinear model predictive 

control of active power filter using self-feedback 

recurrent fuzzy neural network estimator,” IEEE 

Transactions on Industrial Electronics, vol. 69, no. 8, 

pp. 8366-8376, 2021. 

https://doi.org/10.1109/TIE.2021.3106007 

[5] O. Natan, and J. Miura, “Towards compact 

autonomous driving perception with balanced 

learning and multi-sensor fusion,” IEEE 

Transactions on Intelligent Transportation Systems, 

vol. 23, no. 9, pp. 16249-16266, 2022. 
https://doi.org/10.1109/TITS.2022.3149370 

[6] N. Senel, K. Kefferpütz, K. Doycheva, and G. Elger, 

“Multi-sensor data fusion for real-time multi-object 

tracking,” Processes, vol. 11, no. 2, pp. 501-527, 

2023. https://doi.org/10.3390/pr11020501 

[7] Z. Zhang, J. Zhao, C. Huang, and L. Li, “Learning 

visual semantic map-matching for loosely 

multi-sensor fusion localization of autonomous 

vehicles,” IEEE Transactions on Intelligent Vehicles, 

vol. 8, no. 1, pp. 358-367, 2022. 

https://doi.org/10.1109/TIV.2022.3173662 

[8] K. Wang, C. Cao, S. Ma, and F. Ren, “An 

optimization-based multi-sensor fusion approach 

towards global drift-free motion estimation,” IEEE 

Sensors Journal, vol. 21, no. 10, pp. 12228-12235, 

2021. https://doi.org/10.1109/JSEN.2021.3064446 

[9] N. Zaghari, M. Fathy, S. M. Jameii, and M. 

Shahverdy, “The improvement in obstacle detection 

in autonomous vehicles using YOLO non-maximum 

suppression fuzzy algorithm,” The Journal of 

Supercomputing, vol. 77, no. 11, pp. 13421-13446, 

2021. https://doi.org/10.1007/s11227-021-03813-5 

[10] N. Awad, A. Lasheen, M. Elnaggar, and A. Kamel, 

“Model predictive control with fuzzy logic 

switching for path tracking of autonomous 

vehicles,” ISA Transactions, vol. 129, no. 6, pp. 

193-205, 2022. 

https://doi.org/10.1016/j.isatra.2021.12.022 

[11] Z. Sun, J. Zou, D. He, and W. Zhu, “Path-tracking 

control for autonomous vehicles using 

double-hidden-layer output feedback neural network 

fast nonsingular terminal sliding mode,” Neural 

Computing and Applications, vol. 34, no. 7, pp. 

5135-5150, 2022. 

https://doi.org/10.1007/s00521-021-06101-8 

[12] S. Choudhuri, S. Adeniye, and A. Sen, “Distribution 

alignment using complement entropy objective and 

adaptive consensus-based label refinement for 

partial domain adaptation,” Artificial Intelligence 

and Applications, vol. 1, no. 1, pp. 43-51, 2023. 

https://doi.org/10.47852/bonviewAIA2202524 

[13] T. Liu, S. Du, C. Liang, B. Zhang, and R. Feng, “A 

novel multi-sensor fusion-based object detection and 

recognition algorithm for intelligent assisted 

driving,” IEEE Access, vol. 9, no. 12, pp. 

81564-81574, 2021. 
https://doi.org/10.1109/ACCESS.2021.3083503 

[14] V. Shepelev, S. Zhankaziev, S. Aliukov, V. 

Varkentin, A. Marusin, A. Marusin, and A. 

Gritsenko, “Forecasting the passage time of the 

queue of highly automated vehicles based on neural 

networks in the services of cooperative intelligent 

transport systems,” Mathematics, vol. 10, no. 2, pp. 

282-294, 2022. 

https://doi.org/10.3390/math10020282 

[15] S. K. Swain, J. J. Rath, and K. C. Veluvolu, “Neural 

network based robust lateral control for an 

autonomous vehicle,” Electronics, vol. 10, no. 4, pp. 

510-523, 2021. 

https://doi.org/10.3390/electronics10040510 

[16] P. J. Navarro, L. Miller, F. Rosique, C. 

Fernández-Isla, and A. Gila-Navarro, “End-to-end 

deep neural network architectures for speed and 

steering wheel angle prediction in autonomous 

driving,” Electronics, vol. 10, no. 11, pp. 1266-1273. 

https://doi.org/10.3390/electronics10111266 

[17] N. Tork, A. Amirkhani, and S. B. Shokouhi, “An 

adaptive modified neural lateral-longitudinal control 

system for path following of autonomous vehicles,” 

Engineering Science and Technology, an 

International Journal, vol. 24, no. 1, pp. 126-137, 

2021. https://doi.org/10.1016/j.jestch.2020.12.004 

[18] W. Wang, T. Qie, C. Yang, W. Liu, C. Lang, and K. 

Huang, “An intelligent lane-changing behavior 

https://doi.org/10.1109/TFUZZ.2021.3094717
https://doi.org/10.1002/asjc.2356
https://doi.org/10.1109/TIE.2021.3106007
https://doi.org/10.1109/TITS.2022.3149370
https://doi.org/10.3390/pr11020501
https://doi.org/10.1109/TIV.2022.3173662
https://doi.org/10.1109/JSEN.2021.3064446
https://link.springer.com/article/10.1007/s11227-021-03813-5
https://doi.org/10.1016/j.isatra.2021.12.022
https://link.springer.com/article/10.1007/s00521-021-06101-8
http://dx.doi.org/10.47852/bonviewAIA2202524
https://doi.org/10.1109/ACCESS.2021.3083503
http://dx.doi.org/10.3390/math10020282
http://dx.doi.org/10.3390/electronics10040510
https://doi.org/10.3390/electronics10111266
https://doi.org/10.1016/j.jestch.2020.12.004


50   Informatica 48 (2024) 37–50                                                                   D. Gao et al. 

prediction and decision-making strategy for an 

autonomous vehicle,” IEEE Transactions on 

Industrial Electronics, vol. 69, no. 3, pp. 2927-2937, 

2021. https://doi.org/10.1109/TIE.2021.3066943 

[19] C. J. Lin, and J. Y. Jhang, “Intelligent 

traffic-monitoring system based on YOLO and 

convolutional fuzzy neural networks,” IEEE Access, 

vol. 10, no. 12, pp. 14120-14133, 2022. 

https://doi.org/10.1109/ACCESS.2022.3147866 

[20] R. Dastres, and M. Soori, “Artificial neural network 

systems,” International Journal of Imaging and 

Robotics (IJIR), vol. 21, no. 2, pp. 13-25, 2021. 

https://hal.science/hal-03349542 

https://doi.org/10.1109/TIE.2021.3066943
https://doi.org/10.1109/ACCESS.2022.3147866

