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We present an empirical study of process parameter tuning in industrial continuous casting of steel where
the goal is to assure the highest possible quality of the cast steel through proper parameter setting. The
process is assumed to be under steady-state conditions and the considered optimization task is to set 18
coolant flows in the caster secondary cooling zone to achieve the target surface temperatures along the slab.
A numerical model of the casting process was employed to first investigate the properties of the parameter
search space, and then iteratively improve parameter settings. For this purpose, two stochastic optimization
algorithms were used: a steady-state evolutionary algorithm and next-descent local optimization. The
results indicate the difficulty of the optimization task arises not from a complicated fitness landscape but
rather from high dimensionality of the problem.

Povzetek: V članku predstavljamo uglaševanje procesnih parametrov za industrijsko kontinuirano ulivanje
jekla na osnovi numeričnega modela procesa in z uporabo stohastičnih optimizacijskih metod.

1 Introduction

Manufacturing and processing of materials are nowadays
largely based on numerical analysis and computer support.
Material scientists and engineers rely on computational ap-
proximation both in process design and control. Numerical
simulators enable insight into process evolution, allow for
execution of numerical experiments and facilitate manual
process optimization by trial and error. In addition, reliable
process simulators and efficient optimization techniques al-
low for automated optimization of process parameters and
improvement of material properties. These goals can be
achieved by interconnecting a process simulator with an
optimization algorithm through a cost function which al-
lows for automatic assessment of the simulation results.
This framework has recently been extensively studied and
applied to a number of material processes under the project
COST 526: Automatic Process Optimization in Materials
Technology (APOMAT) [5].

Continuous casting is a predominant technology of steel
production in modern steel plants. It is a complex metal-
lurgical process in which liquid steel is cooled and shaped
into semi-manufactures of desired dimensions. To achieve
proper quality of cast steel, it is essential to control the

metal flow and heat transfer during the casting process.
They depend on numerous parameters, such as the cast-
ing temperature, casting speed and coolant flows. Finding
optimal values of process parameters is difficult since dif-
ferent, often conflicting criteria may be applied, the num-
ber of possible parameter settings is high, and parameter
tuning through real-world experimentation is not feasible
because of costs and safety risk. Over the last years, how-
ever, several computational techniques have been used to
enhance the process performance and product characteris-
tics, including knowledge-based heuristic search [4], ge-
netic algorithms [10, 2], and evolutionary multiobjective
optimization [3].

In this paper we report on preliminary numerical exper-
iments in optimizing secondary coolant flows on a casting
machine of the Rautaruukki steel plant in Finland. Calcu-
lations were done for a selected steel grade under the as-
sumption of steady-state caster operation. Their objective
was to get better insight into the properties of this opti-
mization task and tune the coolant flows with respect to the
given temperature distribution requirements. The paper de-
scribes the optimization problem, the applied mathematical
model of the casting process and the experimental setup,
and reports on numerical experiments and results.
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2 The Optimization Problem

Figure 1 shows a schematic view of a continuous casting
machine. In the continuous casting process molten steel
is poured into a bottomless mold which is cooled with in-
ternal water flow. The cooling in the mold extracts heat
from the molten steel and initiates the formation of the solid
shell. The shell formation is essential for the support of the
slab after mold exit. After the mold the slab enters into
the secondary cooling area in which it is cooled by water
sprays. The secondary cooling region is divided into cool-
ing zones where the amount of the cooling water can be
controlled separately.

The secondary cooling area of the considered casting de-
vice is divided into nine zones. In each zone, cooling water
is dispersed to the slab at the center and corner positions.
Target temperatures are specified for the slab center and
corner in every zone. Water flows should be tuned in such
a way that the resulting slab surface temperatures match the
target temperatures. Formally, a cost function is introduced
to measure the differences between the actual and target
temperatures. It is defined as
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1
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+
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where Nz denotes the number of zones, li the length of the
i-th zone, T center

i and T corner
i the slab center and corner

temperatures, while T center∗
i and T corner∗

i the respective
target temperatures in zone i. The optimization task is to
minimize the cost function over possible cooling patterns
(water flow settings). Water flows cannot be set arbitrar-
ily, but according to the technological constraints. For each
water flow, minimum and maximum values are prescribed.

Table 1 shows an example of the prescribed target tem-
peratures and water flow intervals for continuous casting
of the steel grade analyzed in this study. The slab cross-
section in this case was 1.70 m × 0.21 m and the casting
speed 1.4 m/min.

3 Mathematical Model of the
Casting Process

The simulation model calculates the temperature field of
the steel slab as a function of the casting parameters. We
consider steady-state casting conditions, i.e. the parameters
are constants in time. We denote the 3D geometry of the
slab by V = Ω × [0, LZ ], where Ω = [0, LX ] × [0, LY ]
is a 2D cross-section of the slab and LZ is the length of
the strand. Moreover, we denote by LM the length of the
mould. We divide the boundary Γ = ∂V into four parts:

Table 1: Target temperatures and water flow intervals for
continuous casting of steel considered in the empirical
study

Zone Target Flow Min. Max.
Position number [◦C] number [m3/h] [m3/h]

1 1050 1 7.1 26.1
C 2 1040 2 22.8 57.5
e 3 980 3 13.3 39.9
n 4 970 4 1.5 7.9
t 5 960 5 2.7 10.0
e 6 950 6 0.8 6.5
r 7 940 7 0.7 5.9

8 930 8 1.0 5.8
9 920 9 1.2 6.2
1 880 10 7.1 26.1

C 2 870 11 22.8 57.5
o 3 810 12 13.3 39.9
r 4 800 13 1.2 3.5
n 5 790 14 2.4 4.4
e 6 780 15 2.4 2.9
r 7 770 16 0.7 5.9

8 760 17 1.0 5.8
9 750 18 1.2 6.2

Γ0 = Ω× {0},
ΓN = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [LM , LZ ],
ΓS = {(x, y) ∈ ∂Ω : x 6= 0 ∧ y 6= 0} × [0, LZ) ∪ Ω× {LZ},
ΓM = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [0, LM ].

(2)
The mathematical model for the temperature field T =

T (x, y, z, t) of the slab can be written as





∂H(T )
∂t + v ∂H(T )

∂z −∆K(T ) = 0 in V × (0, tf ],

T = T0 on Γ0 × (0, tf ],

∂K(T )
∂n + h(T − Tw)+

+σε(T 4 − T 4
ext) = 0 on ΓN × (0, tf ],

∂K(T )
∂n = 0 on ΓS × (0, tf ],

∂K(T )
∂n = Q on ΓM × (0, tf ],

T (x, y, z, 0) = T 0 in V.
(3)

Here n is the unit vector of outward normal on ∂V , h is
the heat transfer coefficient, v is the casting speed, Tw and
Text are known temperatures, σ is the Stefan-Boltzmann
constant and ε is the emissivity. The cooling efficiency Q in
the mould is a known constant and tf is the simulation time.
H(T ) and K(T ) are the temperature dependent enthalpy
and Kirchoff functions (see [13] for details).

Equations 3 are discretized using the finite element
method (FEM) and the corresponding nonlinear equations
solved with relaxation iterative methods [7]. A more
detailed description of discretization and construction of
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Figure 1: Continuous casting machine

FEM matrices is presented in [6]. We note that in our
method it is sufficient to construct only 2D- and 1D-
matrices. Therefore, it is obvious that the model is com-
putationally much more efficient than in the case of using
the ordinary 3D-brick elements.

4 Experimental Setup

Evaluation of cooling patterns and their assessment with
respect to cost function (1) was done using the described
mathematical model implemented in the form of a com-
puter simulator. Its principal task is to dynamically track
the temperature field in the slab as a function of process pa-
rameters. In this study it was applied under the assumption
of steady-state caster operation, and the search for optimal
cooling patterns performed in the off-line manner. A single
simulator run takes about 40 seconds on a 1.8 GHz Pentium
IV computer.

Before the integration of the simulator with the opti-
mization algorithms, a number of simulator runs were per-
formed to get an initial insight into the properties of the fit-
ness landscape associated with the optimization problem.
Specifically, the cost was analyzed as a function of individ-
ual parameters and pairs of parameters, while keeping the
remaining parameters fixed at the values from the middle
of their intervals.

The resulting plots show simple dependencies between
the parameters and cost function in the form of monotonic
or at most U-shaped curves and surfaces (see examples in
Figures 2 and 3). They are much simpler than usual ar-
tificial test functions for numerical optimization, which is
understandable because of the underlying physical process.
Similar properties were found in the analysis of the fitness
landscapes in parameter tuning for a continuous casting
machine at the Acroni steel plant in Jesenice, Slovenia [11].
However, one should bear in mind that such analyses offer
a very limited view of the problem characteristics. Never-
theless, the real difficulty comes with high dimensionality

of the problem, as there are 18 independent process param-
eters subject to optimization.

Before the application of optimization procedures one
has to decide whether to search for optimal solutions in
continuous or discretized parameter space. In analogy to
previous studies performed on similar task from the Acroni
steel plant [9, 14, 8], the discrete version was considered.
The rationale behind it is in the engineering approach to
coolant flow tuning where it is meaningless to consider
changes below certain amount as they do not reflect in
changing the cost value. For the purpose of numerical ex-
periments three discretizations were defined, a very rough
one for initial tests of the optimization algorithms, another
one with medium step sizes to refine the results, and the one
with the uniform step size of 0.1 m3/h which is the mini-
mum change considered in practice for all coolant flows
(see Table 2).

Given these dicretizations, one can to calculate the num-
ber of possible parameter settings. For a parameter from
the interval [pmin

i , pmax
i ] with step size pstep

i , there are
vi = b(pmax

i − pmin
i )/pstep

i c + 1 values possible, and the
total number of settings is v =

∏Np

i=1 vi, where Np is the
number of parameters. This results in 4.6 · 1012 possible
setting for discretization 1, 4.9 · 1023 for discretization 2,
and 4.7 · 1033 for discretization 3.

5 Numerical Experiments and
Results

Two stochastic optimization techniques were applied to the
coolant flow optimization problem, the steady-state evolu-
tionary algorithm [1] and the next-descent local optimiza-
tion algorithm. They were selected as they performed well
in solving similar optimization problems for the Acroni
steel plant [9, 14]. Both methods iteratively improved
candidate solutions represented as real vectors of coolant
flow values. The evolutionary algorithm was run with the
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Figure 2: Examples of cost function dependencies on individual process parameters
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Figure 3: Examples of cost function dependencies on pairs of process parameters

Table 2: Parameter discretizations used in the optimiza-
tion process; #val denotes the number of values possible
for each parameter

Discretization 1 Discretization 2 Discretization 3
Flow Step Step Step
no. [m3/h] #val [m3/h] #val [m3/h] #val

1 4.7 5 1.0 20 0.1 191
2 8.6 5 1.0 35 0.1 348
3 6.6 5 1.0 27 0.1 267
4 1.6 5 0.5 13 0.1 65
5 1.8 5 0.5 15 0.1 74
6 1.4 5 0.2 29 0.1 58
7 1.3 5 0.2 27 0.1 53
8 1.2 5 0.2 25 0.1 49
9 1.2 5 0.2 26 0.1 51

10 4.7 5 1.0 20 0.1 191
11 8.6 5 1.0 35 0.1 348
12 6.6 5 1.0 27 0.1 267
13 0.5 5 0.2 12 0.1 24
14 0.5 5 0.2 11 0.1 21
15 0.1 6 0.1 6 0.1 6
16 1.3 5 0.2 27 0.1 53
17 1.2 5 0.2 25 0.1 49
18 1.2 5 0.2 26 0.1 51

population of 20 solutions, applying arithmetic crossover
and Gaussian mutation adjusted to perform vector varia-
tion with prescribed discretization. The local optimization
algorithm relied on the neigborhod relationship among can-
didate solutions. Two solutions were considered neighbors
if differing in the i-th vector component for ±pstep

i . In this
way each solution, with the exception of those on the edge
of the search space, had 2Np = 36 neighbors. The al-
gorithm started from a randomly selected point and was

restarted after reaching a local minimum.
For each of the three search space discretizations the al-

gorithms were run five times and their results evaluated
statistically. The number of solutions checked (parame-
ter settings evaluated) in each algorithm run was 200 for
discretization 1, 500 for discretization 2, and 2000 for dis-
cretization 3. No other parameter adjusting was involved
as this empirical study was a preliminary one.

The performance of the algorithms under different
search space discretizations is illustrated in Figure 4 and
the results in terms of cost summarized in Table 3. For
discretization 1, the performance of random search is also
shown to provide an empirical upper bound for the results.
In this case, the local optimization algorithm clearly out-
performs the evolutionary algorithm, but the cost values
produced are still high which indicates the discretization
is too rough to allow for detection of the near-optimal solu-
tion. With the refinement of discretization better results
are found by both methods and their performance com-
pares differently. The finer the discretization, the closer
the final results, while in the initial stage of the search the
evolutionary algorithm outperforms the local optimization
algorithm. The solutions found with local optimization
are however not dispersed as with the evolutionary algo-
rithm. It turns out that the more complex the search space
the more obvious the efficiency of the evolutionary algo-
rithm in identifying the promising regions which suggests
an appropriate hybrid of the two algorithms would reduce
the number process simulations needed in the optimization
procedure.

Certainly, the key result for material engineers at the
plant are the optimized coolant flows. Their values will
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Figure 4: Performance of the optimization algorithms av-
eraged over five runs of each algorithm for parameter dis-
cretizations 1 (top), 2 (center), and 3 (bottom)

Table 3: Summary of the optimized cost values found for
three parameter discretizations; EA denotes the steady-
state evolutionary algorithm, and ND next descent local
optimization

Discr. Method Best Average Worst St. dev.
1 EA 24988.8 28965.9 32842.5 2800.8

ND 13417.9 13794.9 15062.7 716.3
2 EA 10371.3 12466.6 14092.0 1790.4

ND 9592.9 9592.9 9592.9 0.0
3 EA 9078.5 9194.0 9247.2 73.7

ND 9070.4 9070.4 9070.4 0.0

be compared with the empirical settings used in practice,
and checked for possible contribution to the improvement
of steel quality.

6 Conclusion

Optimization of coolant flow settings in continuous casting
of steel is a key to higher product quality. It is nowadays
to a high degree performed through virtual experimenta-
tion involving numerical process simulators and advanced
optimization techniques. In this preliminary study of op-
timizing 18 cooling water flows for a Rautaruukki casting
machine under steady-state conditions, an empirical inves-
tigation of the problem properties was done, two stochastic
algorithm applied and their performance compared.

The results indicate the importance of the applied search
space discretization and suggest the construction of a hy-
brid algorithm to find near-optimal solutions in smaller
number of solution evaluations. With the same objective in
mind, the algorithms will be systematically tuned and en-
hanced with the mechanisms of gradual refinement of the
search focus, such as dynamic parameter encoding [15] or
the multilevel technique [12]. On the practical side, the op-
timized coolant flows will be evaluated with respect to the
settings used on the caster machine and checked for poten-
tial further improvements of the casting process.
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