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Large metro station IoTs used to face congestion while access to terminals was going on a large scale. 

Due to this, low success rate in access and delay in monitoring critical equipment was observed, which 

included elevators and escalators. This paper presented a congestion control method for large-scale 

elevator terminal data access in metro stations using IoT. Business data were categorized based on volume 

and latency requirements: Slot ALOHA (SA) direct access mode was used for delay-insensitive, small data 

services, and Access Class Barring (ACB) random access was used for time-sensitive, large data services. 

ACB control parameters were dynamically adjusted by estimating access requests. Using uniform and 

Beta distribution models, the method's effectiveness was validated through experiments. With 4000 access 

requests, the hybrid method achieved a 52.43% success rate and a 76.72 ms average delay under the 

uniform model, and a 42.07% success rate with an 82.02 ms average delay under the Beta model. These 

results demonstrated the method's ability to meet Quality of Service (QoS) requirements for high-priority 

services, ensuring efficient and reliable communication in large-scale IoT environments. 

Povzetek: Prispevek predstavlja hibridno metodo za nadzor preobremenjenosti do podatkov naprav IoT, 

ki uporablja kombinacijo direktnega in naključnega dostopa, s prilagajanjem parametrov glede na obseg 

zahtev. 

 

1 Introduction 
Based on the current urban development and people's 

travel needs, the number of elevators inside large metro 

stations is also growing [1]. The stability of elevator 

operation is closely related to the safety of residents. 

However, due to the quality, maintenance, supervision, 

and other influencing factors, elevator accidents often 

occur. How to conduct unified real-time monitoring of 

elevator equipment in large and medium-sized Spaces to 

reduce daily lightweight failures and prevent heavyweight 

accidents has become a hot topic of scholarly attention [2, 

3].  

The increasing global population and urbanization 

have heightened the demand for elevators, necessitating 

advanced, safe, and efficient systems. China’s elevator 

demand grows by 5%–7% annually due to the need to 

replace outdated units and comply with new regulations, 

increasing maintenance workloads and risks. Innovative 

designs must prioritize safety, including weight capacity, 

emergency alarms, and secure installation sites. Energy-

efficient elevators can reduce operational costs 

significantly. Traditional monitoring systems, like video 

surveillance, fail to reflect the elevator's condition and 

failure rates adequately. With its advantages of low power 

consumption, significant connection, low delay, and high 

reliability, the Internet of Things (IoT) can realize the  

 

 

transmission and processing of multiple types and large-

scale data [4].  

Based on this, some scholars use IoT technology to 

monitor elevators' operating status data, dramatically 

improving elevator operation security and effectively 

reducing equipment operation and maintenance costs. 

Mao et al. [5] discussed the integration of Internet of 

Things (IoT) technology to enhance the remote security 

management of elevators, addressing the associated safety 

risks. They proposed an IoT-based architecture for 

elevator fault diagnosis and maintenance. The study 

established a fault diagnosis management system centered 

on IoT, outlining maintenance methods to ensure the 

safety and stability of elevator operations. This approach 

aims to improve the overall security and efficiency of 

urban transportation through advanced technology.  Lai et 

al. [6] adopt the more predictive state maintenance method 

to realize the remote monitoring of highly distributed 

elevator equipment status, effectively improving the 

safety and reliability of equipment operation. 

IoT devices, ranging from consumer products to 

industrial components, are becoming ubiquitous, driving 

the concept of "Smart homes" with enhanced safety and 

energy efficiency. Wearable fitness and health monitors, 

network-enabled medical devices, and smart traffic 

systems contribute to “smart cities” that reduce congestion 

and energy use. IoT also promises to improve the 

independence and quality of life for people with 
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disabilities and the elderly. The impact of IoT extends to 

agriculture, industry, and energy sectors, enhancing 

information flow along the production value chain. 

Companies and research organizations predict significant 

economic effects [7]. A market research report revealed 

that the global IoT market was valued at $1.90 billion in 

2018 and is projected to grow to $11.03 billion by 2026. 

Additionally, the European Union (EU), the United States 

(USA), China, and other nations have developed IoT-

related action plans. These initiatives include the IoT-An 

Action Plan for Europe and various IoT development 

plans for the years 2016–2020 [8]. 

Song et al. [9] discussed the adoption of smart 

technologies and networking solutions like the Internet of 

Things (IoT) by leading cities in China to enhance 

economic opportunities and global climate resilience. 

They presented the smart city concept as a complex 

system integrating sensors, data, applications, and 

organizational forms to make cities more agile and 

sustainable. The paper provided a comprehensive 

assessment of smart city initiatives in China, classifying 

practices into six key dimensions: energy, agriculture, 

transport, buildings, urban services, and urban security 

operations. Chinese smart city policies and practices aim 

to explore renewable energy, improve public convenience, 

and enhance urban comfort and citizen friendliness. The 

study also addressed concerns in areas such as system 

integration, governance, innovation, and finance. A policy 

vision was outlined to build public-private collaborative 

networks, encourage innovation and investment in smart 

city initiatives, and emphasize smart services. 

In practical applications, the infrastructure of the 

wireless cellular network is relatively perfect, the 

coverage area is comprehensive, and the security is high, 

which is one of the leading carrying networks of IoT 

communication. However, the original intention of 

traditional wireless cellular network design is to deal with 

the communication problem between humans and humans 

(H2H), and there are some differences in the 

communication characteristics between machine to 

machine (M2M). Machine-type communication (MTC) 

devices, integral to Industry 4.0, support smart factories, 

healthcare, and surveillance by generating data and 

making policy-based decisions. The demand for these 

devices is projected to reach 50 billion by 2025. These 

devices require robust security due to their vulnerability 

and usage in open environments. Lightweight 

cryptography is the preferred solution for MTC devices 

due to their limited computational and memory capacities. 

This cryptographic approach ensures strong encryption 

while being efficient and cost-effective, enhancing 

security for the growing number of IoT devices. MTC 

devices are autonomous and central to automating IoT 

frameworks, evolving to support the advancements of 

Industry 4.0. They form Machine-to-Machine (M2M) 

communication networks, also known as cyber-physical 

systems and edge nodes, creating an autonomous system 

of resource-constrained devices [10]. 

The six key features of Machine Type 

Communication (MTC) in 6G are ultra-low latency and 

high reliability, massive connectivity, energy efficiency, 

scalable and flexible network architecture, enhanced 

security and privacy, and advanced AI and machine 

learning integration. These features ensure instantaneous 

and reliable data transmission for critical applications, 

support billions of IoT devices, extend the battery life of 

remote sensors, allow dynamic resource allocation, 

protect sensitive data, and optimize network performance 

through predictive maintenance and anomaly detection. 

These features collectively create an efficient, reliable, 

and secure communication environment for the 6G era 

[11]. 

Due to the limitation of channel resources, when the 

IoT at metro stations has a large number of elevators, and 

other equipment data access, the time delay indicator of 

the system is higher, and the throughput will decrease 

significantly. Therefore, there is a great demand for a 

large-scale terminal access algorithm tailored to the 

communication characteristics of the IoT at large metro 

stations to ensure the reliable transmission of information 

data of crucial equipment. In response to the above issues, 

Chou et al. [12] used Bayesian theory to estimate the 

number of access applications, preamble code conflict 

rate, and the number of following time-slot applications at 

the current time-slot. Furthermore, the optimal ACB 

control parameters are discussed by judging the number of 

applications for the subsequent access time slot through 

quantitative prediction methods. The scheme is based on 

the premise that the current time-slot access conflict 

makes direct rebleeding at the next time-slot, with some 

error from the system of refeeding in the actual access 

process. 

Zhang et al. [13] addressed the growing need for 

improved communication content and quality in the 

context of advancing network and communication 

technologies. This research concerns the optimal data 

collection and path planning of multi-unmanned aerial 

vehicle (UAV) to achieve extensive terminal accessibility 

in IoT scenarios. The novelty of the approach consists of 

integrating sensor area partitioning with the flight 

trajectory planning of multiple UAVs with the main 

objectives of load balancing while the overall completion 

time for the tasks at hand is minimized. A novel k-means 

algorithm has been developed to balance the quantity of 

data in each cluster. Accordingly, the flight trajectories of 

the UAVs were represented discretely by an enhanced 

genetic algorithm including the 2-opt optimization 

operator for solving the multiple traveling salesman 

problem (MTSP) problem, improving the computational 

effectiveness. Extensive simulations have validated the 

efficiency of the suggested approach in smoothing out the 

imbalances in the distribution of tasks among UAVs and 

significantly reducing the duration of tasks. The 

convergence rate for this methodology was higher than the 

conventional genetic algorithm; hence, this proved that it 

was computationally efficient. Equipped with a new, 

efficient methodology for multi-UAV-assisted IoT 

terminal data gathering, it brings balance and efficiency in 

task distribution, unfolding the full power of professional 

algorithm solutions when acquiring optimal results in 

more complicated engineering scenarios. 
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Varsha et al.[14]  proposed an innovative intelligent 

traffic management system for wireless cellular networks 

to enhance M2M connections, pivotal for IoT. They 

focused on improving Access Class Barring (ACB), a 

method traditionally relying on a static factor to manage 

machine-type communication device (MTCD) traffic. The 

study introduced a Bayesian inference-based learning 

automatons (BI-LA) approach that dynamically adjusts 

the ACB factor. This system leverages learning automata's 

self-adaptive learning to estimate and manage M2M 

traffic more effectively. By framing the problem around 

collision probability and using Bayesian inference to adapt 

the ACB factor, the proposed method was tested using 

network simulator-3 (NS3). The performance metrics—

average access delay, access attempts, access success rate, 

and access success—demonstrated that the BI-LA ACB 

technique outperformed traditional and contemporary 

ACB methods, achieving minimal access delays of 

approximately 1876 ms and 27.6 ms. 

The main problem arises due to a large amount of UEs 

present in the RA techniques, as discussed by Piao and Lee 

[15], where increased collisions and delays arise. They 

propose a new RA scheme that combines four-step RA 

with two-step RA, based on the 3rd Generation 

Partnership Project Release 16. This work tries to avoid a 

conflict with the available RA resource, then achieves a 

better performance of efficiency and brings down the 

average RA delay. This solution aims to optimize the two-

step RA probability and thus provides a resource 

configuration and parameter setting algorithm that allows 

the UEs to carry out both RA methods simultaneously. 

Then, the authors proved further that the proposed 

approach is valid using a Markov chain model. The 

proposed approach also has its potential confirmed in 

extensive comprehensive simulations on supporting RA 

procedures in the case of massive and heterogeneous 

device access for 5G and 6G communication applications. 

Yu et al.  [16] investigated the performance of 

massive machine-type communications (mMTC) in status 

update systems, where numerous machine-type 

communication devices (MTCDs) send status packets to a 

base station (BS) for system monitoring. The authors 

identified that packet collisions due to massive MTCDs 

negatively impact status update performance. To address 

this, they proposed a joint access control, frame division, 

and subchannel allocation scheme. They first analyzed 

access control, packet collisions, and packet errors, 

deriving a closed-form expression of the average age of 

information for all MTCDs as a performance metric. Their 

proposed scheme was shown through simulations and 

numerical results to achieve near-optimal performance, 

comparable to exhaustive search methods, and 

outperformed benchmark schemes. Bui et al. [17] present 

an access protocol based on distributed queue (DQ) 

mechanisms to deal with M2M communication large-

scale access problems for cellular networks. To maximize 

the DQ mechanism performance, first of all, the base 

station in the random-access opportunities is roughly the 

number of conflict detection equipment to avoid excessive 

division of DQ. Then based on the probing results, the 

base station randomly divides the device into a determined 

number of groups and "pushes" these groups to the end of 

the logical access queue. Finally, the validity and 

feasibility of the proposed protocol are verified by 

simulation. 

Congestion control and optimization methods 

overview in IoT applications-the methodologies, the 

datasets used, the results, and the limitations are 

represented in Table 1. This comparison identifies the 

gaps that this paper will address with the proposed hybrid 

access method. 

Table 1: Summary of related works on congestion control and access optimization Methods in IoT applications 

highlighting limitations and positioning the hybrid access method as a novel solution 

Study Method Datasets Key Results Limitations 

Mao et 

al. [5] 

IoT-based architecture 

for fault diagnosis 

Elevator operational 

data 

Improved safety and 

stability of elevator 

operations through IoT 

monitoring 

Limited scope to fault 

diagnosis only 

Lai et al. 

[6] 

Predictive maintenance 

with IoT integration 

Distributed elevator 

equipment data 

Enhanced safety and 

reliability of elevator 

systems 

Focused only on 

maintenance, lacks 

scalability analysis 

Chou et 

al. [12] 

Bayesian theory-based 

ACB optimization 

Simulated data Improved ACB 

parameters, reduced 

conflict rate 

Errors in real-time 

predictions 

Zhang et 

al. [13] 

Multi-UAV data 

collection and path 

optimization 

Simulated IoT 

scenarios 

Balanced task distribution, 

reduced completion time 

High computational 

overhead 

Varsha 

et al.[14]   

Learning Automaton-

based ACB scheme 

(LA-ACB) 

Cellular Base 

Station data 

Controlled M2M data, 

reduced H2H interference 

High implementation 

complexity 

Piao and 

Lee [15] 

Integrated 2-4 step 

Random Access (RA) 

methods 

Cellular network 

simulations 

Reduced collisions and 

delays 

Limited to specific RA 

configurations 
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Bui et al. 

[17] 

Distributed Queue 

(DQ)-based access 

protocol 

LTE/LTE-A 

network data 

Reduced congestion, 

improved success rate 

Requires precise group 

partitioning 

 

This paper proposes a hybrid access methodology that 

combines Slot ALOHA with Access Class Barring for 

large-scale IoT scenarios in metropolitan transit stations. 

The proposed methodology, by dynamically changing 

ACB control parameters and implementing predictive 

modeling on access requests, should be able to provide 

high QoS for important applications like elevator 

monitoring under different traffic conditions. This novel 

strategy overcomes some fundamental limitations of the 

previous approaches by providing a scalable, reliable, and 

economic solution to congestion management in IoT 

systems with complex networks. Therefore, the key 

contributions of the paper are as follows: 

The key contributions of the paper are as follows: 

1. Congestion control method: Developed a 

method for managing large-scale elevator 

terminal data access in metro stations using IoT, 

addressing low access success rates and delays. 

2. Data categorization: Divided business data 

based on volume and latency requirements, using 

Slot ALOHA (SA) for delay-insensitive data and 

Access Class Barring (ACB) for time-sensitive 

data. 

3. Dynamic ACB adjustment: Proposed 

dynamically adjusting ACB control parameters 

by estimating access requests to optimize 

terminal access. 

4. Performance evaluation: Demonstrated 

through simulations that the hybrid access 

method improves access success rates and 

reduces delays, especially with high access 

requests. 

5. Application in IoT environments: Ensured 

Quality of Service (QoS) for high-priority 

services in large-scale IoT environments in metro 

stations. 

6. Predictive access application: Developed a 

method to predict access applications for better 

access control. 

7. Experimental validation: Validated the method 

in a Shanghai metro station, showing practical 

advantages over traditional methods. 

2 Systems model and custom MAC 

layer protocol for IoT 

communication in large metro 

stations 

2.1 Systems model 

Based on the practical application, a metro station 

communication model is built with large-scale MTCD to 

simulate the congestion caused by frequent network 

access by communication devices. Illustration of IoT 

communication model for large metro stations in Fig. 1 

shows how the MTCDs will be sending their data to the 

server via the eNB. 

The evolved Node B (eNB) receives, controls, and 

allocates up/down dynamic resources. MTCD data is 

transmitted to a fixed gateway through the narrowband 

IoT, which forwards the data to the server. In the IoT 

model, when two or more MTCDs use the same preamble 

code simultaneously, it indicates that the decision is in 

conflict and the device access fails.

Application 

Server

Single RAN 

G/N/L/NB-LoT

NB-LoT New

Single EPC 

G/U/L

LoT EPC

MI

Wireless 

network side

Core network 

side

IoT 

Support Platform

HLR/PCRF

M2M Platform

MTCD

eNB

 

Figure 1: Illustration of the IoT communication model for large metro stations, showcasing the flow of data from 

MTCDs to servers via the eNBCustom MAC Layer Protocol 

Given that complex signaling can reduce the success 

rate of device access, the network employs the Media 

Access Control (MAC) protocol [18]. The MAC layer 

protocol combines Selective Acknowledgement (SA) and 

Access Class Barring (ACB) controls to adapt to various 

types of business data and enhance access speed and 

success. For services with small amounts of valid data and 

low sensitivity to delay, SA direct access is utilized. 

Conversely, ACB random access is applied to delay-

sensitive and data-intensive services. Fig. 2 illustrates the 

hybrid MAC layer protocol diagram, where 𝑇𝑖  is the i-th 

access timeslot. 

The hybrid MAC layer protocol divides each 

incoming data packet into four parts: 
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1. Broadcasting data access information and ACB 

control parameters for the current timeslot. 

2. Assigning preamble codes to randomly accessed 

services. 

3. Handling SA direct access business. 

4. Conducting data transmission. 

Using the hybrid MAC layer protocol for the 

classified transmission of different business data 

effectively reduces signaling consumption, accelerates 

data access, and ensures the Quality of Service (QoS) 

demands of high-priority business services.
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Figure 2: Hybrid MAC layer protocol 

3 Design of hybrid access method 

3.1 SA method and improvement 

The SA transmits data by speaking first. Signal overlap is 

likely to occur during concurrent operations, leading to  

 

network congestion. Therefore, a random wait period is 

introduced before attempting to resend the data. The data 

transmission process is illustrated in Fig. 3.

Resend

Resend Resend

Resend

Node 1

Node 2

Node 3

Channel

success success success collisionsuccess success success collision
 

Figure 3: Data sending process for traditional SA method 

In the traditional Slot ALOHA (SA) method, the time 

for retransmission is random, leading to a high probability 

of complete or partial collisions. This randomness reduces 

the efficiency of information utilization and decreases 

system throughput. 

To address these issues, the data transmission process 

has been improved. The transmission period is divided 

into several time slots, and data can only be sent at the 

initial point of a time slot. By ensuring that nodes transmit 

information within their designated time slots, the 

likelihood of collisions is significantly reduced, as nodes 

are not transmitting simultaneously. This structured 

approach allows for more efficient use of the available 

bandwidth and improves overall system throughput. 

The improved SA data-sending process, which 

mitigates collisions and enhances throughput, is illustrated 

in Fig. 4. This method ensures that each node's 

transmission is independent of others, leading to more 

reliable and orderly communication within the network.

Node 1

Node 2

Node 3

Channel
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Figure 4: Data sending process for improving the SA method 

The relationship between the throughput rate 𝑄 and 

the sent packet quantity 𝐺 can be expressed as Eq. (1): 

𝑄 = 𝐺𝑒−𝐺 (1) 

When two nodes transmit within the period 𝑇′, the 

data transmission delay function is given in Eq. (2): 

 

𝑇𝑌 = 2𝑇
′ + 𝑡𝑑 + [𝜑𝑇

′ + (𝐵 + 1)𝑇′](𝑒𝐺 − 1) (2) 

 

Where 𝜑 represents the waiting time for a response, 

𝑡𝑑 represents the propagation duration and 𝐵 represents 

the maximum value of the backoff time slot. 

The fixed transmission channel and the number of 

inherent node parameters determine the transmission 

delay of SA. Therefore, the improved method is only 

suitable for processing delay-insensitive and small data 

volume services. Otherwise, the transmission error will 

increase, and the availability of information will be 

reduced. 

3.2 Estimation of access applications based 

on time series prediction 

3.2.1 Estimation of current timeslot access 

applications 

For services using the ACB (Access Class Barring) 

random access mode, the application amount of the 

service should be estimated based on the occupation of the 

preamble code [19, 20]. Assume that 𝑤𝑖  represents the 

state of the 𝑖 -th preamble code. The states are defined as 

follows: 

- When 𝑤𝑖 = 1, the preamble code is not selected 

and is idle. 

- When 𝑤𝑖 = 1, an MTCD (Machine-Type 

Communication Device) has selected the 

preamble code and it is busy. 

- When 𝑤𝑖 ≥ 2, two or more MTCDs have 

selected the preamble code, resulting in a conflict 

status [21]. 

The probabilities of the 𝑖 -th preamble being in these 

three states is given by the following Eq. (3): 

 
𝑃(𝑤𝑖)

=

{
 
 
 

 
 
 (1 −

1

𝑁𝑝
)

𝑛𝑎

,                                𝑤𝑖 = 0

𝑛𝑎
𝑁𝑝

⋅ (1 −
1

𝑁𝑝
)

𝑛𝑎−1

,                       𝑤𝑖 = 1

1 − (1 −
1

𝑁𝑝
)

𝑛𝑎

−
𝑛𝑎
𝑁𝑝

⋅ (1 −
1

𝑁𝑝
)

𝑛𝑎−1

, 𝑤𝑖 ≥ 2

 
(3) 

 

Where 𝑁𝑝 represents the number of available 

preamble codes in the current timeslot, 𝑛𝑎 indicates the 

number of access requests for the current timeslot. 

Assume that the number of preamble codes satisfying 

wi = 0, wi = 1, and wi ≥ 2 in the current timeslot are L1, 

L2, and L3, respectively. Then, the maximum likelihood 

estimation of the number of access applications in the 

current timeslot is expressed as Eq. (4): 

 

𝑃 = 𝑃(𝑤𝑖 = 0|𝑁𝑎)
𝑛1 ⋅ 𝑃(𝑤𝑖 = 1|𝑁𝑎)

𝑛2 ⋅ 𝑃(𝑤𝑖
≥ 2|𝑁𝑎)

𝑛3  
(4) 

 

The principle is to ensure that the number of access 

requests in the next time slot is optimal. The estimated 

number �̂�𝑎 of access requests in the current timeslot can 

be obtained by setting 𝑁𝑎 to the maximum value. The 

expression is given in Eq. (5): 

 

�̂�𝑎 = 𝑎𝑟𝑔  max∑𝑙𝑛𝑃 (𝑤𝑗|𝑁𝑎)

𝐽

𝑗

 (5) 

 

After ACB, the comparison results between the 

maximum likelihood estimate and the actual application 

amount are shown in Fig. 5. It can be seen from the figure 

that the trend changes of the two lines are relatively 

consistent, indicating that the estimated value aligns well 

with the actual value.
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Figure 5: Comparison results of maximum likelihood estimation and actual application volume (After passing the 

ACB) 

According to the maximum likelihood estimation 

after passing the ACB, the actual number of access 

applications can be calculated as �̂� = �̂�𝑎/𝑎, where 𝑎 is 

the ACB control parameter of the current timeslot. Before 

passing the ACB, he comparison between the maximum 

likelihood estimates and the actual number of applications 

is shown in Fig. 6.

 

Figure 6: Comparison results of maximum likelihood estimation and actual application volume (Before passing the 

ACB) 

For services accessed in SA mode, the estimation is 

based on the physical resource block status of the current 

time slot [22]. Assuming that the total number of available 

resource blocks is 𝑈𝑠, and the number of idle rate blocks 

in the current timeslot is 𝑈𝑘,𝑖. The actual idle rate is �̃�𝑘,𝑖 =
𝑈𝑘,𝑖

𝑈𝑠
, the theoretical idle rate is 𝑃𝑘,𝑖 = (

𝑈𝑠−1

𝑈𝑠
)
𝑐𝑖

, where 𝐶𝑖 is 

the access application volume of the current timeslot. y 

equating the theoretical idle rate to the actual idle rate,  

�̃�𝑘,𝑖 = 𝑃𝑘,𝑖, the number of access requests in the current 

time slot is obtained as shown in Eq. (6): 

 

�̂�𝑖 =
𝑙𝑜𝑔( �̃�𝑘,𝑖)

𝑙𝑜𝑔(𝑁𝑖(𝑁𝑖 − 1)
 (6) 

3.2.2 Estimation of next timeslot access 

applications 

Assume that the estimated number of access applications 

in the 𝑖 -th time slot is �̂�𝑖, the number of access successes 

is 𝑊𝑖, the number of newly arrived access applications in 

the 𝑖 + 1 time slot is 𝑇𝑖+1, and the number of access 

applications that need to be retransmitted is 𝐻𝑖+1. Then the 

estimated number of access applications in the 𝑖 + 1 time 

slot can be shown as Eq. (7): 

 

�̂�𝑖+1 = {
�̂�𝑖 −𝑊𝑖 + 𝐻𝑖+1 + 𝑇𝑖+1, 𝑖 ≤ 𝐼𝐷
�̂�𝑖 −𝑊𝑖 + 𝐻𝑖+1,         𝑖 > 𝐼𝐷

 (7) 

 

Where, 𝐼𝐷 represents the last timeslot. 

Since the access request volume is a time series, the 

weighted sum of historical increments is used as an 

increment in the next time slot. The newly arrived access 

applications in the 𝑖 + 1 time slot, 𝑇𝑖+1 can be expressed 

as shown in Eq. (8): 

 

𝑇𝑖+1 =
3

5
𝑇𝑖 +

3

10
𝑇𝑖−1 +

1

10
𝑇𝑖−2 (8) 

 

Because 𝑇𝑖 = �̂�𝑖 − �̂�𝑖−1 − 𝐻𝑖 +𝑊𝑖−1, the Eq. (9) is 

as follows: 

 

𝑇𝑖+1 = 𝑚𝑎𝑥 {0， (
3

5
𝑇𝑖 +

3

10
𝑇𝑖−1 +

1

10
𝑇𝑖−2)}  

= 𝑚𝑎𝑥

{
 
 

 
 

0，

(

 
 

3

5
�̂�𝑖 −

3

10
�̂�𝑖−1 −

2

10
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(9) 

 

After transformation, the estimated amount of access 

requests for the next time slot can be obtained. The 

expression is given in Eq. (10):
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−𝑊𝑖 , 𝑖 ≤ 𝐼𝐷

�̂�𝑖 −𝑊𝑖 + 𝐻𝑖+1,                                                       𝑖 > 𝐼𝐷

 
(10) 

 

The comparison between the predicted application 

amount and the actual application amount of the time 

series is shown in Fig. 7. It can be seen from the figure that 

the curve change trend of the estimated value and the 

actual value is relatively consistent, indicating that the 

predicted result of the access application volume aligns 

well with the actual value.

 

Figure 7: Comparison results of predicted and actual application volumes of time series 

3.2.3 Parameter adjustment of predicted 

values 

Update the packet parameter 𝐿1 and ACB control 

parameter 𝑎 of the dynamic preamble code according to 

the prediction value of the service arrival to ensure the 

access success rate of the next timeslot. Since 𝑤𝑖 = 1 

indicates the successful transmission of the preamble 

code, the estimated value of the preamble code that can 

transmit successfully is given in Eq. (11): 

 

𝑀[𝑁𝑠|𝑁𝑎 = 𝑛𝑎] = ∑ 𝑃(𝑤𝑖 = 1|𝑁𝑎 =
𝑁𝑝
𝑖=1

𝑛𝑎) =𝑁𝑝 ⋅ 𝐶𝑛𝑎
1 ⋅

1

𝑁𝑝
⋅ (1 −

1

𝑁𝑝
)𝑛𝑎−1=𝑛𝑎 ⋅ (1 −

1

𝑁𝑝
)𝑛𝑎−1                                             

(11) 

 

𝑁𝑠 represents the number of preamble codes 

successfully transmitted, and  𝑁𝑎 represents the number of 

services filtered by ACB. Suppose the system contains 

𝑁 MTCDs, and  𝑁𝑎 MTCDs pass the screening. The 

probability is given in Eq. (12): 

𝑃(𝑁𝑎 = 𝑛𝑎|𝑁 = 𝑛) 

= 𝐶𝑛
𝑛𝑎 ⋅ 𝑎𝑛𝑎 ⋅ (1 − 𝑎)𝑛−𝑛𝑎  

(12) 

Then the estimated value of success access is given in 

Eq. (13): 

𝑀[𝑁𝑠|𝑁 = 𝑛] = 𝑛 ⋅ 𝑎 ⋅ (1 −
𝑎

𝑁𝑝
)𝑛𝑎−1 (13) 

Deriving from a, the optimal control parameter is 

given in Eq. (14): 

𝑎′ =
𝐽

𝑛
 (14) 

From Eq (14), the access success rate is highest when 

the number of access requests matches the number of 

currently available preamble codes. The effect is optimal 

when 𝐿1 equals the number of high-priority access 

requests in the current timeslot. 

Fig. 8 shows the relationship between the number of 

access requests and access successes when the number of 

preamble codes is 35, 60, and 76, further verifying the 

correctness of the above conclusions.
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Figure 8: Relationship between access success and access requests 

3.3 Hybrid access process 

The access process is outlined in Figure 9, illustrating the 

steps involved in managing access requests for high-

priority and low-priority services using the hybrid access 

method. Here’s a detailed explanation of the process:

 

Figure 9: Access flow of the hybrid method 

1. Initial collection and setup: 

❖ The evolved Node B (eNB) collects access data 

from the previous timeslot, counts the usage of 

preamble codes, completes channel resource 

allocation, and sets parameters such as ACB 

control and backoff parameters. 

2. Random access phase: 

❖ Determine the priority of the application access 

business: 

➢ For high-priority services, the system directly 

selects a preamble code from the set 𝐾1[1，𝐿1] 

reserved for high-priority services and proceeds 

to the access link. 

➢ For low-priority services, a random number 𝑝 is 

selected from the interval [0,1]. If 𝑝 is less than 

the ACB control parameter 𝑎 of the current 

timeslot, a preamble is selected from the set 

𝐾2[𝐿1 + 1，𝑁𝑝] designated for low-priority 

services. If 𝑝 ≥ 𝑎, the access is terminated. 

3. Direct access phase: 

❖ Services with small data volumes proceed with 

direct access. 
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4. Data transmission phase: 

❖ MTCDs that have successfully obtained a 

transmission opportunity begin data 

transmission. 

This structured approach ensures that high-priority 

services are given precedence and that low-priority 

services are managed in a way that minimizes conflicts 

and optimizes resource use. The hybrid access method 

dynamically adjusts parameters based on historical data, 

improving overall system throughput and efficiency. 

4 Experiments 

4.1 Experimental preparation 

The experimental site for the study is a large metro station 

in Shanghai, equipped with a significant number of IoT 

terminals. The configuration of the parameters used in the 

experiments including the number of preambles, 

maximum transmission attempts, conflict resolution time, 

and escape time, providing a baseline for evaluating the 

hybrid access method are detailed in Table 2.

 

 

Table 2: Key parameters used in the simulation experiments, including preambles and conflict resolution time, 

forming the baseline for evaluating the hybrid access method 

Parameter Value 

Number of preambles 60 

Maximum transmission times of preamble code 8 

Conflict resolution time 24 ms 

Escape time 15 ms 

 
These parameters were utilized to simulate and 

analyze the performance of the hybrid access method 

under various traffic conditions, including uniform and 

beta distribution models, to verify its effectiveness in 

managing access congestion and ensuring timely data 

transmission in large-scale IoT environments. 

The uniform and beta distribution models are 

employed to verify the feasibility of the hybrid access 

method by simulating various types of business data, 

including periodic and sudden data as well as random and 

irregular data, in elevator monitoring. To ensure 

comparability, ACB access and LA-ACB with different 

parameters are also used as benchmarks in the 

experiments. These experiments aim to count and 

compare the average access delay and access success rate 

of different services [23].  

Given that the hybrid access method assigns different 

ranges of preamble codes according to the priority of 

services, while the ACB method shares all access 

resources uniformly, a direct comparison would be unfair. 

Therefore, the success rate of preamble code access is 

redefined for a fair assessment. The success rate, 𝑃𝑇 , is 

calculated as the ratio of the number of successfully 

accessed services (𝑁𝑐) to the total number of preamble 

codes used in the access process (𝑁𝑎𝑙𝑙). This redefinition 

allows for a more accurate comparison of the efficiency 

and effectiveness of the hybrid access method against 

traditional ACB methods. 

4.2 Experimental results and analysis 

4.2.1 Simulation results and analysis of 

uniform distribution model 

This section discusses the simulation results and analysis 

using a uniform distribution model to evaluate the 

performance of the hybrid access method compared to 

traditional methods such as ACB (Access Class Barring) 

and LA-ACB (Learning Automata ACB).

 

Figure 10: Comparison of access success rates for high-priority services using the hybrid access method, ACB, and 

LA-ACB under the uniform distribution model 
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Figure 11: Comparison of average access delay for high-priority services under the uniform distribution model 

The access success rate of high-priority services is 

demonstrated in Fig. 10. When the number of access 

applications is small, the LA-ACB method performs 

excellently. However, as the number of applications 

increases, LA-ACB causes resource wastage, and its 

performance gradually declines. The hybrid access 

method initially shows lower success rates and higher 

delays due to high estimation errors but improves 

significantly as the number of access applications 

increases. Precisely, the hybrid method demonstrates a 

higher success rate as access requests increase, reaching 

52.43% at 4000 applications. Fig. 11 shows the 

comparison of average access delay for high-priority 

services. With an increase in access applications, the 

average access delay for the hybrid access method remains 

relatively stable, indicating higher resource utilization and 

meeting high-priority service requirements more 

effectively than LA-ACB. In other words, the hybrid 

access method achieves a lower delay (76.72 ms at 4000 

requests) compared to ACB and LA-ACB, ensuring QoS 

for time-sensitive applications.

 

Figure 12: Comparison of access success rates for concurrent services in the uniform model, with the hybrid method 

outperforming ACB and LA-ACB by reducing collisions and improving resource use 

 

Figure 13: Comparison of average access delays for concurrent services in the uniform model, showing the hybrid 

method's lower delays (76.72 ms), ensuring timely transmission 
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The comparison of access success rates for multiple 

types of concurrent services is illustrated in Fig. 12, while 

Figure 13 shows the comparison of average access delay 

for these concurrent services. The hybrid access method 

outperforms ACB and LA-ACB, showing a higher success 

rate and lower delay, especially when the number of 

access applications reaches 4000. At this point, the hybrid 

method achieves a 52.43% success rate and an average 

delay of 76.72 ms, demonstrating undeniable advantages 

in efficiency and effectiveness.  

These results indicate that the hybrid access method, 

especially under a uniform distribution model, 

significantly improves the system's access success rate and 

average access delay, thereby meeting the QoS (Quality of 

Service) needs for high-priority services in large-scale IoT 

terminal access scenarios. 

4.2.2 Simulation results and analysis of beta 

distributed access model 

When the beta distribution model is adopted, the 

performance of the hybrid access method is evaluated in 

terms of the access success rate and average access delay 

for high-priority services.

 

Figure 14: Comparison of access success rates for high-priority services in the beta distribution model, with the hybrid 

method excelling (42.07% at 4000 applications) through dynamic adjustments and efficient resource use 

 

Figure 15: Average access delays for high-priority services in the beta distribution model, with the hybrid method 

achieving a lower delay (82.02 ms at 4000 applications) than ACB and LA-ACB 

Fig. 14 illustrates the access success rate of high-

priority services under the beta distribution model. The 

results indicate that the hybrid access method achieves a 

higher access success rate compared to the ACB and LA-

ACB methods. This improvement is due to the dynamic 

adjustment of access application amounts and access 

parameters in the next timeslot, which optimizes the 

allocation of resources for high-priority services. 

Fig. 15 presents the comparison of average access 

delay for high-priority services using the beta distribution 

model. The hybrid access method demonstrates a lower 

average access delay compared to ACB and LA-ACB 

methods. This reduction in delay is attributed to the 

method's ability to better predict and manage access 

requests, thereby minimizing the waiting time and 

improving overall efficiency. 

These results highlight the advantages of the hybrid 

access method in managing high-priority service requests, 

ensuring higher access success rates, and reducing average 

access delays under the beta distribution model. This 

demonstrates the method's effectiveness in handling 

dynamic and bursty traffic patterns in large-scale IoT 

environments. 

The total number of system preamble codes is 60. 

When high-priority services are concurrent with low-

priority services, the access success rate is shown in Fig. 

16, and the average access delay is shown in Fig. 17.
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Figure 16: Access success rate for concurrent services in the beta distribution model, with the hybrid method 

achieving 42.07% at 4000 applications, surpassing ACB and LA-ACB 

 

Figure 17: Average access delay for concurrent services in the beta distribution model, with the hybrid method 

achieving 82.02 ms, outperforming ACB and LA-ACB 

Figure 16 shows access success rate for concurrent 

services under the beta distribution model. The hybrid 

access method outperforms ACB and LA-ACB methods, 

achieving a success rate of 42.07% at 4000 applications, 

demonstrating robust handling of burst traffic. Figure 17 

illustrates average access delay for concurrent services 

under the beta distribution model. The hybrid access 

method reduces delay to 82.02 ms at 4000 applications, 

ensuring better performance for high-priority and time-

sensitive services. In fact, it is these very measures of 

performance that represent important favorable points for 

the proposed hybrid model over conventional algorithms 

like ACB and LA-ACB. 

The experimental results also reveal that the access 

success rate and average access delay are significantly 

improved by the proposed hybrid access method. In 

addition, it well satisfies the requirements brought by the 

Quality of Service of high-priority traffic for periodic and 

bursty large-scale terminal access requests. It enables the 

method to predict the volume of the access application 

effectively in the next timeslot in a dynamic way by taking 

advantage of the historical state of the preamble code, 

without assuming anything about the quantity of access 

applications. 

The predictability allows for the tailoring of the 

hybrid access method to the various characterizations of 

different services, hence optimality in the choice of access 

methodologies. This leads to a substantial increase in 

system throughput that ensures reliable and efficient 

communications over large-scale IoT topologies. 

In summary, the hybrid access method enhances the 

performance of the system and also responds to robustness 

and scalability challenges; hence, it is the best against all 

the complexities in communications in IoT at a metro 

railway station. Dynamic adaptability and predictive 

accuracy make this tool indispensable to maintain the 

optimum service level and meet the stringently demanding 

QoS of critical infrastructure. 

5 Discussion 
The proposed hybrid access scheme constitutes one of the 

key improvements in congestion management schemes 

over large-scale IoT networks, especially in highly 

populated areas such as in metro stations. In the process, 

SA-ACB merging is targeted at the solution of 

fundamental issues like low access success rates and high 

delays in a network. Higher performance indices are 

promised to be exhibited compared with the existing 

methodologies LA-ACB and traditional ACB. For 

instance, under the uniform distribution model, the 

maximum access success rate reaches 52.43% at 4000 

requests, which is far beyond the limitation of LA-ACB 

owing to the inefficiency of resource utilization when 
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requests are too many. Besides, this approach ensures an 

average latency of no more than 76.72 ms for high-priority 

services that strictly meet the QoS requirement. Under 

correspondence, within the beta distribution model, 

robustness exposed to bursty traffic by the hybrid 

approach achieved 42.07% in success rate and 82.02 

milliseconds average delay. 

Those advantages come forth due to novelty in 

resource allocation and predictive adjustments that this 

hybrid method will implement. The method dynamically 

adapts the ACB control parameters in view of historical 

data and real-time estimation to optimize channel 

utilization with minimum collision. It efficiently spreads 

the network load in a dual-access approach wherein small 

data services are managed by SA and large delay-sensitive 

services are overseen by ACB. This flexibility is a key 

ingredient for achieving high scalability and reliability, 

especially under scenarios that exhibit diversified traffic 

patterns where high-priority applications must coexist 

with low-priority ones. 

The practical implications of these findings are huge. 

Hybrid should guarantee environments like metro stations 

with very low latency and high access success ratios, 

dependably surveilling the very important equipment of 

elevators and escalators, while improving operational 

safety and efficiency. Besides, this solution also provides 

a scalable and economically feasible way to handle 

congestion in IoT networks, thus making it suitable for 

smart city, industrial automation, and, generally speaking, 

high-traffic IoT systems. Future works may further 

optimize the proposed approach for energy efficiency and 

extend its applicability to realistic traffic for further 

generalization. These results have established the hybrid 

access method as a robust and practical solution to handle 

congestion in large-scale IoT networks. 

6 Conclusion 
The paper proposed an IoT-based congestion management 

strategy for mass data access from the elevator terminals 

at the metro station. This method categorized the business 

data by volume and latency requirements and adopted SA 

for delay-tolerant services and ACB for real-time services. 

Besides, in the proposed methodology, dynamically 

adjusting ACB control parameters was adopted to 

optimize the access efficiency for terminals. The 

effectiveness of the approach is corroborated by the 

simulation results: from a uniform distribution model, 

based on 4000 access requests, the hybrid method can 

achieve an access success rate of 52.43% and an average 

access delay of 76.72 ms. From the Beta distribution 

model, 42.07% with an average access delay of 82.02 ms 

can be achieved. It is presented that the Hybrid Access 

Method increases the access success rate greatly and 

decreases the delay hence fulfilling the QoS requirements 

for high-priority services in a large-scale IoT 

environment. Future investigations ought to encompass 

practical implementation and examine more extensive 

traffic models, sophisticated prediction methodologies, 

and scalability to further substantiate and augment the 

applicability and dependability of the method. 

Nevertheless, the suggested congestion control approach, 

primarily corroborated through simulations, may not 

entirely reflect the intricacies of real-world scenarios and 

the diverse traffic patterns encountered. Therefore, even 

the refined uniform and Beta distribution models need 

further refinement and validation in order to ensure their 

accuracy against different scenarios. The scalability of the 

method, especially above 4000 access requests, was not 

deeply analyzed, as was the application of the method to 

other IoT applications. It has to be implemented on-site, 

considering variations in traffic models, advance 

prediction methods using machine learning techniques, 

and scalability analysis for performance evaluation. 

Extension of the method to other IoT applications, 

investigation of energy efficiency, and incorporating 

robust security will ensure its sustainability, hence reliable 

in different IoT environments. 
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