
https://doi.org/10.31449/inf.v48i20.6549 Informatica 48 (2024) 127–146 127

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection

and Migration in Cloud Data Centers

C. Vijaya, P. Srinivasan*

Scope, Vit University, Vellore, India,

E-mail: c.vijaya2016@vitstudent.ac.in, srinivasan.suriya@vit.ac.in

*Corresponding author

Keywords: cloud computing, virtual machine migration, hybrid optimization, resource utilization and power

consumption

Received: July 3, 2024

The rapid expansion of cloud computing has made maintaining Quality of Service (QoS) across dynamic

workloads essential. Virtual machine (VM) migration is crucial for optimizing resource management;

however, traditional migration techniques, which rely on static parameters, often lead to inefficiencies,

such as increased energy consumption, higher migration costs, and suboptimal resource utilization. To

address these challenges, a novel fuzzy-based hybrid optimization technique, FCSFFC, is proposed,

integrating fuzzy logic with advanced optimization methods, Cuckoo Search and Firefly Colony

Optimization. This technique introduces a dynamic threshold-based load prediction mechanism that adapts

to real-time conditions, ensuring efficient VM placement and migration. The performance of this algorithm

was rigorously evaluated using real workload data in a CloudSim simulation environment. Compared to

state-of-the-art algorithms, the proposed approach demonstrated a 31.7% improvement in migration cost,

achieving the lowest migration cost. Additionally, the proposed approach achieved the lowest energy

consumption, using 2% less energy than other methods. In terms of load management and resource

availability, the algorithm showed a significant reduction in the load parameter and the highest resource

availability, minimizing unnecessary migrations. It also achieved the shortest computation time, completing

tasks in 4.003 seconds compared to up to 9.2 seconds for traditional techniques. These results underscore

the effectiveness of the proposed method in enhancing cloud service efficiency by optimizing energy

consumption, reducing migration costs, and improving overall system performance.

Povzetek: Razvita je nova hibridno metoda FCSFFC za učinkovito migracijo virtualnih strojev (VM) v

oblačnih podatkovnih centrih. Tehnika združuje mehko logiko in optimizacijska algoritma Cuckoo Search

ter Firefly Colony Optimization. Rezultati kažejo 31,7 % nižje stroške migracije ter zmanjšanje porabe

energije za 2 %, kar kaže potencial metode za izboljšanje učinkovitosti upravljanja virov.

1 Introduction
Cloud computing has emerged as a highly lucrative

sector within the Information Technology industry,

offering virtual services for data processing and storage

to enterprises of all sizes. Businesses increasingly opt for

cloud services over developing their own infrastructure

due to the high costs involved. The primary advantage of

cloud computing lies in its virtual provisioning, which

enables resource access from any location at any time.

This pay-per-use model has led to a surge in cloud

adoption. However, as the benefits of mobility,

adaptability, and compatibility drive more users to the

cloud, the associated computing demands have risen

significantly. To handle both expected and unexpected

loads and meet computational requirements, cloud service

providers have implemented hybrid clouds. These systems

combine private cloud resources with additional public

cloud resources, preventing the need for additional servers

and ensuring efficient resource utilization. Despite these

advantages, the increase in cloud usage escalates

computational costs. Effective load management is crucial

to maintaining service quality and meeting service level

agreements (SLAs). This necessity highlights a significant

gap in current approaches, which often rely on static

thresholds for overload detection. Static methods fall short

in dynamic cloud environments, where load conditions

can fluctuate significantly. Existing methods for VM

migration often rely on predefined thresholds and static

policies to determine when and how to migrate resources.

These approaches can lead to suboptimal decisions,

increased costs, and delays in responding to dynamic

workloads. Consequently, there is a pressing need for

automated migration techniques that are accurate and

adaptable to varying application contexts. This gap

underscores the importance of developing more efficient

migration strategies to enhance traffic management,

reduce hardware maintenance, and lower energy

consumption. Virtual machine (VM) migration is critical

in commercial virtualization applications where resource

requirements exceed available complementary resources.

The challenge lies in managing these migrations without

compromising service quality or breaching SLAs. In order

to achieve better traffic management, reduced hardware

mailto:c.vijaya2016@vitstudent.ac.in
mailto:srinivasan.suriya@vit.ac.in

128 Informatica 48 (2024) 127–146 C. Vijaya et al.

maintenance, energy management, and server

consolidation, the majority of cloud services enable virtual

machine migration. In conventional methods, the

relocation procedure is typically governed by predefined

rules and static thresholds, which may not effectively

adapt to the dynamic nature of workloads. This causes bad

decisions to be made, which raises costs and delays the

migration process. Reducing costs and energy

consumption is the main goal of the virtual machine

migration; nevertheless, static thresholds and predefined

rules can lead to suboptimal decisions and increased costs,

highlighting the need for automated migration techniques

that adapt to the dynamic nature of workloads. Dynamic

VM migration is crucial for addressing these challenges,

particularly in terms of energy and resource management.

Effective VM migration strategies can help reduce energy

consumption and optimize resource utilization, which are

critical for improving overall data center efficiency.

Current techniques often fall short in dynamically

adapting to changing conditions, leading to inefficiencies

and increased costs [1] [2]. Therefore, enhancing

migration strategies to incorporate real-time data and

adaptive thresholds is essential. There are two primary

categories of migration: live and non-live [3]. Service

providers generally prefer non-live migration to minimize

user service interruptions. Several techniques have been

proposed to assess VM utilization and relocate

underutilized VMs to target systems. However, selecting

the appropriate VM for migration remains essential to

prevent performance degradation and negative impacts on

QoS. The FCSFFC algorithm aims to address these

challenges by developing a hybrid optimization algorithm

that integrates the Fuzzy Cuckoo Search (FCS) algorithm

with the Fuzzy Firefly Colony (FFC) algorithm. This

hybrid approach aims to enhance VM migration

efficiency, reduce energy consumption, and improve

overall performance. Current optimization models for VM

migration have limitations concerning QoS and SLA

parameters. By combining these fuzzy-based algorithms,

the proposed algorithm seeks to bridge these gaps and

provide a more effective solution for managing VM

migrations in cloud computing environments.

Furthermore, the migration needs to be accurate and

flexible to fit different application contexts. Similar to

this, choosing the right virtual machine for the migration

process is essential since the decision system needs to

choose the right VM or else the target application's and the

VM's performance would deteriorate and negatively

impact QoS.

2 Related works
In cloud computing, virtualization is the most challenging

research topic. This section presents an analysis and

survey of related issues. In datacenters, virtual machines

are mapped to the appropriate physical machines [5]. A

one-dimensional Virtual Machine placement algorithm

was studied by R. Panigrahy et al., [6]. To operate the data

center effectively while taking multiple objectives into

account, the physical machines must provide the virtual

machines with the proper support [7]. Numerous scholars

have examined the approaches that employ meta-heuristic

algorithms in cloud computing settings. However, the

initial positioning of the VMs is the main focus of these

algorithms. In order to give users a high-quality

experience, virtual machine placement should prioritize

power conservation and adhere to service level

agreements [8]. To arrange virtual machines for effective

power management and resource utilization, a variety of

algorithms are available that offer the best possible

placement.

The authors in [9] have presented a hybrid algorithm

combining Chaotic Particle Swarm Optimization

algorithm with adaptive mutation and energy aware

algorithms used for better resource utilization.

Metaheuristic evolutionary methods such as ACO-based

approaches [19], GWO based methods [28], and VM

migration using Ballooning [30] and Hill Climbing based

approaches, Particle Swarm Optimization PSO) based

approaches, Memetic approaches [10], and Genetic

method-based approaches [34], Biogeography Based

Optimization (BBO) approaches have been hybridized so

far in Virtual Machine Placement. According to these

papers, hybrid meta-heuristic approaches will be the most

promising area of study for resolving the virtual machine

placement problem. The use of meta-heuristic algorithms

in cloud computing environments has been extensively

researched. Effective server consolidation techniques are

one way to enhance data centers. The proposed method

lowers a data center's power consumption, which is

currently the most difficult thing to do to keep data centers

sustainable. A multi-objective grouping Genetic

Algorithm [11] for reducing energy consumption and

resource waste has been presented by C. Sonklin et al. A

fitness function that weighs the two goals and makes a

trade-off between the objectives has been identified.

An algorithm has been developed by Zhang et al. [12] to

cluster the current generation's population and choose

people from various groups with fewer cross-over

operations. They have demonstrated that their algorithm

outperforms the conventional genetic algorithm by using

the runtime to ascertain the preference of virtual machines

over physical machines as well as to generate the first

solutions. X. Wang et al., [13] define a mathematical

model to lower make span, cost, and overall tardiness. A

pre-selected dynamic resource allocation has been

suggested. They have used a classifier to filter the

subproblem solutions in the decision space. A chaotic

multi-objective optimization algorithm was defined by S.

Garepasha et al., [14] for virtual placement in data centers.

To accomplish server load balancing and cut down on

resource waste, they have hybridized Sine Cosine (SCA)

and Ant Lion Optimizer (ALO). In their work, P.

Boominathan et al. [15] used a fuzzy hybrid bio-inspired

technique to solve the server consolidation problem

related to virtual machine placement. To select the next

virtual machines (VMs) for the current server, fuzzy rules

were created. The new ideal solution has been discovered

using the Cuckoo search method. Thus, they have created

an algorithm for server consolidation by merging ACS and

the Firefly Colony Algorithm. Comparing both of them to

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 129

other algorithms that are similar, such as FFC, ACS,

MMAS, and FFD, has shown which one produces the best

results. M. Gagwero e al., [16] examined how the MPC

placement algorithm, which outperforms traditional

heuristics in datacenters, minimizes power consumption,

minimizes the effects of churn, and enforces security

requirements. In their paper, Sharma et al., [17]

discovered the Gravitational search algorithm, a

population-based meta- heuristic algorithm for solving

non-linear problems based on the laws of motion and

gravity. The number of physical machines used is taken

into account when calculating fitness. The outcomes were

compared with the Ant Colony

Optimization (ACO), FLC, and FFD algorithms. It works

better than any other method, according to the results. In

their work, M. Wang et al. [18] improve the Sine Cosine

Algorithm (SCA) for optimization problems by adding a

linear search path and a parameter that prevents the SCA

from sinking into the local optimal solution. The focus of

H. Xing et al. [19] is on reducing the amount of energy

and network bandwidth used. They first choose the server

with the lowest power consumption, and then they favor

the server with the lowest network bandwidth resource

consumption. and demonstrated that their algorithm

(ETA-ACO) outperforms the algorithms that were

compared.
N. Chalabi et al., [20] suggest an improved marine

predator algorithm based on Epsilon dominance and the

Pareto archive for multi-objective optimization.

Generally, the Marine Predator algorithm is used to solve

single objective problems. But they have designed it to

solve multi objective problems. Pareto dominance and

Epsilon dominance concepts are used to arrive at the

solution. The Whale Optimization Algorithm was

enhanced by M.A. Basset et al., [21] by altering the

distance control factor and quickening the convergence.

They believe that the most appropriate algorithms for

optimization are evolutionary ones. A multimodal

evolutionary algorithm was presented by Z.Ding et

al.,[22]. They have embraced numerous subpopulations,

and each one assesses its own autonomous evolution.

Subpopulations are clustered hierarchically to avoid

population discarding. Z. Xiang [23] enhanced the

algorithm's optimization capability by combining the salp

swarm algorithm and the sine-cosine algorithm for the

shape matching process. A stochastic optimization

problem that places a probabilistic limit on resource

overflow is used to formulate the entropy of resource

requirements by virtual machines (VMs). A stochastic

VM placement algorithm takes this uncertainty into

account. [24].
In order to find the best location for the virtual machines,

a make span model, a cost and utilization mathematical

model, and the efficiency of the Levy flight of cuckoos

have been developed [25]. An Ant Colony system that

uses an optimized chaotic Grey Wolf knowledge base to

determine where to place virtual network functions and

distribute paths based on knowledge of software-defined

network controllers. The suggested algorithm has been

shown to converge with fewer iterations in a shorter

amount of computing time [26]. An artificial bee colony

and chicken swarm optimization algorithm have been

suggested in this paper for an efficient virtual machine

placement considering load, migration cost, and power

consumption to prove it performs better than existing

techniques. The Simulated Annealing Approach [28],

which is combined with Grey Wolf Optimization, used in

container-based virtualization, has been shown to perform

better than other existing algorithms in terms of make span

and load variation. This approach replaces traditional

algorithms for virtualization. A hybridization of the Ant

Colony Optimization and Sine Cosine algorithms has been

performed for solving a multi-objective meta-heuristic

problem in datacenters, considering minimization of

resource wastage and power consumption. The

experimental findings demonstrate that the ACOSCA

algorithm [29] increased resource utilization by 16%,

reduced power consumption by 24%, and improved

execution time by 3%. A live virtual machine migration

algorithm called live migration with efficient ballooning

(LMEB) [30] has been proposed. Its main goal is to

minimize the amount of data that must be moved from the

source server to the destination server in order to lower the

migration's overall energy consumption. The LMEB

algorithm achieves this by optimizing the data transfer

process, which helps reduce the associated downtime and

operational disruptions. Additionally, its focus on

minimizing data movement leads to lower overall energy

costs and improved performance during the migration

process. Using a VM migration technique, the authors of

[31] proposed a resource management algorithm called

"RU-VMM." The study took into account both successful

and unsuccessful migrations when determining the

resource utilization threshold. Three algorithms, namely

Host Selection Migration Time (HSMT), VM

Reallocation Migration Time (VMRMT), and VM

Reallocation Bandwidth Usage (VMRBU) were proposed

by the authors of [32] to minimize the overall migration

time. A 25% decrease in overall migrations was also

achieved. A 13% energy reduction was attained. By

utilizing elastic scheduling, which the smart elastic

scheduling algorithm (SESA) influences, the authors of

[33] have created a virtual machine allocation and

migration algorithm that is more energy-efficient. In our

proposed algorithm, minimizing energy consumption,

minimizing resource wastage and improving the migration

cost are our main objectives. In Section 3, the proposed

work, evolutionary multi-objective optimization objective

functions, host overload detection, and the basics of the

Cuckoo Search Algorithm (CS), the FFC algorithm, and

the FCSFFC algorithm have been explained. This section

provides a comprehensive overview of the methodologies

employed, highlighting their significance in enhancing

virtual machine migration efficiency. In Section 4, results

were discussed. In Section 5, the conclusion of the paper

is given. This section presents the suggested hybrid

optimization methodology for choosing the optimal VMs

for virtual machine migration.

130 Informatica 48 (2024) 127–146 C. Vijaya et al.

 Table 1: Summary table optimizing resource usage and power consumption

S.

No
Optimization objectives Optimization Method Study Limitations

1

Minimizing Resource

Usage and power

Consumption and

maximizing Efficiency

𝛽-Hill Climbing

Algorithm

Hybrid Approach for Virtual

machine Allocation in Cloud

Computing [34]

Easily enters into a

local optimum

2
Minimize Execution

time and Migration cost

Enhanced Firefly

algorithm

PSO algorithm and

Coyote Optimization

Algorithm

A hybrid firefly and particle swarm

optimization algorithm for

computationally expensive

numerical problems [35]

Migration time is

high

3

Spacing and overall

non-dominated vector

generation

A Multi objective

evolutionary algorithm

Energy-efficient Virtual Machine

Placement in distributed cloud using

NSGA-III algorithm [36]

Migration time is

high

4

Minimize the number

of Physical Machines

and Power

Consumption

Levy based Whale

optimization algorithm

An improved Levy based Whale

Optimization Algorithm for

Bandwidth efficient virtual Machine

Placement in Cloud Computing

Environment [37]

Migration time is

high

5

Minimizing Resource

Usage

Energy Consumption

simulated annealing-

intelligent water drop

cycle algorithm

Hybrid Metaheuristic Technique for

Optimization of Virtual Machine

Placement in Cloud [38]

Easily enters into a

local optimum

6

Minimizing

Resource Wastage

Power Consumption

Resource Usage Factor

Model using reward and

Penalty Mechanism

An Energy-efficient Cuckoo Search

Algorithm for Virtual Machine

Placement in cloud computing data

centers [39]

Limited to two

dimensions

7

Minimizing

Power Consumption

and Network Latency

and Maximization of

Economic Revenue

Bat Algorithm with

decomposition

Virtual Machine Placement using

Multi-objective Bat Algorithm with

decomposition in Distributed Cloud:

MOBA/D for VMP [40]

Easily enters into a

local optimum

8

Minimizing

Resource Usage

Power Consumption

Bio inspired FFC

approach for server

consolidation and VM

Placement

A Firefly Colony and Its Fuzzy

Approach for Server Consolidation

and Virtual Machine Placement in

Cloud Datacenters [41]

A few simplifying

steps to accomplish

the objective

9

Minimizing No. of

Migrations and

Improving QoS

Multilevel intrinsically

controller‐assisted

modified ant colony

optimization

Multilevel controller‐assisted

intrinsically modified Ant Colony

Optimization heuristic‐based load‐

balancing model for mega cloud

infrastructures [42]

Migration time is

high

10
Minimizing Power

Consumption

Fuzzy Logic-Based

Improved Cuckoo

Search Algorithm

Novel Fuzzy Logic-Based Improved

Cuckoo Search Algorithm [43]

Migration time is

high

11

Minimizing Migration,

Service Level

Agreement Violations,

and energy

consumption

Multi-decision AHP

(Analytic Hierarchy

Process) method

Towards Virtual Machine

Scheduling research based on multi-

decision AHP method in the cloud

computing platform [44]

Migration time is

high

12

Minimizing Power

consumption and

Service Level

Agreement Violation

(SLA-V).

Cuckoo search

Algorithm for VM

Selection

An Optimal Cuckoo Search

Algorithm for VM Selection for

Energy Efficient Migration in Cloud

Computing [45]

The migration takes

too much time in

live migration

13
Higher Computational

Accuracy

Gravitational

Acceleration and

Cuckoo Search

Algorithm

Virtual Machine Placement

Optimization for Bigdata

applications in Cloud computing

[46]

Ignoring the extra

energy required for

moving virtual

machines

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 131

Cloud computing and wireless sensor networks make

extensive use of optimization models like Artificial Bee

Colony optimization, Ant Colony Optimization, and other

similar models [23]. Nevertheless, the features of

optimization models in virtual machine migration have

only been covered in a small number of publications. This

work suggests a hybrid method for virtual machine

migration that combines Cuckoo Search optimization with

Firefly Colony approach. Combining these two algorithms

with fuzzy rules incorporated into them, enhances the

performance and allows it to successfully escape from

local optima, which raises overall performance during the

migration phase. Cuckoo search uses less parameters than

other optimization algorithms, making it easier to set up

than others. The superior computing efficiency sets FFC

apart from other methods. When these algorithms are

hybridized, complicated problems can have an improved

optimal solution. The energy consumption, Migration

cost, Resource availability and Computation time are

studied in our research work.

 A dynamic CPU threshold is employed in this algorithm

to evaluate the overload detection of the host. The IQR

method is used for determining the CPU threshold. If there

are more user resource requests than available resources,

the physical machine is deemed to be overloaded in the

resource allocation process. In that instance, conventional

resources must be made available to lower the physical

machine load. To meet user requirements, virtual

machines (VMs) are migrated to physical machines during

this stage of the process. Energy use, resource use,

computation costs, and migration costs are all taken into

account during the migration process. Avoiding needless

migrations improves resource utilization characteristics

and cloud performance, as resource usage requirement

prediction raises overall resource utilization. Four major

objectives considered in this research are: Minimize

energy consumption, resource wastage, migration cost and

computation time.

 A table summarizing the state-of-the-art algorithms with

its optimization objectives for Virtual Machine placement,

optimization methods chosen, and the name of the study

is presented in Table 1 and the overview of the proposed

optimization is presented in Fig. 1.

3 Proposed work
In the context of optimizing cloud data centers, accurately

modeling energy consumption, resource wastage, and

migration costs is crucial to achieving efficient resource

utilization and minimizing operational costs. This section

presents the mathematical models used to evaluate these

factors, beginning with energy consumption, which is a

significant concern in large-scale data centers. Following

this, we address resource wastage, a critical measure of the

efficiency of VM placement strategies, and finally, the

migration cost, which plays a vital role in ensuring

minimal disruptions and enhanced performance during

VM relocations. These models collectively provide a

comprehensive framework for assessing and improving

the overall efficiency and sustainability of cloud data

center operations.

a. Energy consumption modeling

Assume that there are 'n' Virtual Machines (VMs) on 'm'

Physical Machines (PMs). It is given that under the capacity

constraint, the capacity of any VM is not greater than the

capacity of any PM. 𝑇𝑝𝑟 𝑎𝑛𝑑 𝑇𝑚𝑦 denote the maximum

capacity of a single Physical Machine and 𝑅𝑝𝑟 𝑎𝑛𝑑 𝑅𝑚𝑦

reflects the CPU need of each virtual machine.

𝑷𝒋 is the power consumed by the server j, 𝑷𝒃𝒖𝒔𝒚 and 𝑷𝒊𝒅𝒍𝒆

are the power consumed in the busy state and the idle state

of the server. 𝑼𝑱
𝒑𝒓

 is the normalized CPU usage which is

calculated as remaining CPU capacity divided by total

capacity. The cost of power consumption is given in Eqn.

(1). By summing up the power consumption values over

discrete time intervals, the total energy consumption 𝑬𝒋, is

approximated. The cost of energy consumption is given in

Eqn. (2).

𝑬𝒋 = ∑ 𝑷𝒋(𝒌) 𝑵
𝒌=𝟏

(2)

𝑷𝒋(𝒌) is the power consumption of server 𝒋 at time 𝒌.

b. Resource wastage modeling

There are many VM placement solutions which vary in

the number of resources remaining on each server.

Multidimensional resources should be completely

utilized. Therefore, the cost of wasted resource is

evaluated by the below equation:

𝒘𝒋 =
| 𝑳

𝒑𝒓
𝒋 − 𝑳𝒋

𝒎𝒚
 | + ∆

| 𝑼
𝒑𝒓

𝒋 − 𝑼
𝒎𝒚

𝒋 |
 (3)

𝑤𝑗 represents the resource wastage in jth server. 𝑈
𝑝𝑟

𝑗 −

 𝑈𝑗
𝑚𝑦

 represents the CPU and memory usage utilized in a

physical machine. It is the ratio between used resources to

the total resources available. 𝐿𝑗
𝑝𝑟

− 𝐿𝑗
𝑚𝑦

 represents

remaining resources in terms of CPU and memory. ∆ is a

small positive integer to avoid the capacity of the physical

machine coming down to zero and it is set to 0.0001. This

addition is because of the uncertainties in the cloud

environment. These models use Minimization of

Migrations for hot spot selection and Modified Best Fit

decreasing for virtual machine placement.

c. Migration cost modeling

The next objective is calculating migration cost triggered

by a placement of 𝑽𝑴𝒊. Given a current placement of

𝒏 VMs, the migration cost in terms of load aims to

optimize resource utilization and performance while

𝑷𝒋=

{
[(𝑷𝒃𝒖𝒔𝒚 − 𝑷𝒊𝒅𝒍𝒆)𝑿 𝑼𝑱

𝑪] + 𝑷𝒊𝒅𝒍𝒆 , 𝒊𝒇 𝑼𝑱
𝒑𝒓

> 𝟎

𝟎 , 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

(1)

132 Informatica 48 (2024) 127–146 C. Vijaya et al.

Figure 1: Overview of proposed optimization

minimizing operational disruptions and costs associated

with VM movements in cloud environments at different

states is calculated using the formula in Eqn. (4).

𝐟(𝐱)=∑ 𝐂(𝐯𝐦𝐢, 𝐱𝐢) + 𝐂(𝐯𝐦𝐢, 𝐱𝐢
′)𝐢∈𝟏,𝐧 , (4)

Where 𝐂(𝐯𝐦𝐢, 𝐱𝐢) is the cost of VMs in source and

𝐂(𝐯𝐦𝐢, 𝐱𝐢
′) is the cost of VMs in destination.

3.1 Overloaded host prediction
A stochastic prediction model has been developed to

identify overloaded hosts. Each host executes an

algorithm periodically to assess current load conditions,

aiding in the identification of overloaded nodes and

ensuring SLA compliance. Unlike many existing

methods that rely on fixed thresholds for overload

detection, CPU utilization per host is estimated to detect

overloads. Static thresholds are less effective in dynamic

cloud environments, particularly in IaaS scenarios where

load conditions fluctuate. Hence, dynamic CPU utilization

is utilized for overload detection.

The dynamic thresholding scheme adjusts CPU utilization

thresholds based on real-time variations. Larger deviations

in CPU utilization suggest the need for lower upper

thresholds. Increased deviations in usage patterns heighten

the risk of nearly maximum CPU utilization, thereby

increasing the chances of SLA breaches. To address these

challenges, the hybrid model integrates inter-service

relationships and variational data for dynamically

adjusting thresholds. The hybrid model employs both Inter

Quartile Range (IQR) and modified Local Regression

Robust (LRR) techniques to estimate dynamic CPU

thresholds [40]. The IQR method calculates the range

between the first and third Quartiles of the CPU

requirements of VM.:

Using the IQR value, the upper CPU utilization threshold

per node is estimated as follows:

Ti=1 − s⋅IQR
(6)

𝐓𝐢 is the upper threshold to determine the CPU utilization

per node.

3.2 Evolutionary multi-objective

optimization

Evolutionary multi-objective algorithms, in general,

employ a population-based method to identify a close to

optimal solution. Solutions that could be improved in

more than one objective function are known as Pareto

optimal

solutions. However, multiple objective functions ought to

be optimized concurrently. There's little doubt that the

performance in the remaining functions will suffer. The

concept of dominance is used by the majority of

algorithms in the selection process. One way to phrase a

multi-objective minimization problem is as follows:

Minimize

𝑓(𝑑𝑣⃗⃗ ⃗⃗⃗)

=[𝑓1(𝑑𝑣1 … 𝑑𝑣𝑚), … . . 𝑓𝑛(𝑑𝑣1 … 𝑑𝑣𝑚)]

(7)

𝑑𝑣⃗⃗ ⃗⃗⃗ = (𝑑𝑣1 … 𝑑𝑣𝑚) ∈ 𝑋

 𝑓 ⃗⃗⃗ ⃗ = (𝑓1 … 𝑓𝑛) ∈ 𝑌

Where ‘𝑚’ is set of decision variables and ‘𝑛’ are the

set of objectives. 𝑑𝑣⃗⃗ ⃗⃗⃗ denotes the decision vector, 𝑓𝑣⃗⃗⃗⃗⃗
denotes the objective vector, 𝑋 is the variable space and Y

is the objective area. The dominating points are those in

which the decision vector 𝑑𝑣⃗⃗ ⃗⃗⃗ has better objective than any

other decision vector. Find every non-dominated, multi-

objective solution set within a solution set. Take the first-

choice variable first. For domination, compare the first

variable with every other variable that is still present.

When the first solution, 𝑑𝑣𝑖 , achieves its goals more

successfully than the second, 𝑑𝑣𝑗 , it dominates the other.

With the exception of the marked solution, all other

solutions are non-dominated. Mark the dominating

solution. Let's say we have a certain number (n) of

physical machines that are currently running applications.

Assume that each application is handled as a distinct

IQR=Q3 - Q1 (5)

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 133

virtual machine (VM) that needs to be run. A

multidimensional vector packing problem is mapping a

virtual machine to a PM. The various dimensions are

represented by different CPU and memory utilization

rates. For illustration, consider two requests: one for a

virtual machine (VM) with 20% CPU and 30% memory,

and another for a VM with 35% CPU and 40% memory.

Then, 55% of the server's usage will be computed as CPU

and 70% as memory. For every dimension, the resources

will be used up to 90% of the time. In order to prevent

server performance degradation and potential VM

migration, we must impose a 90% utilization boundary,

which is less than 100%. Server Consolidation does not

utilize the entire 100 percent resources of its server in

order to avoid the performance degradation [48].

4 Preliminaries of fuzzy cuckoo search

(FCS) and fuzzy firefly colony

(FFC) optimization
In order to address local minima and convergence, we

concentrated on using the adaptive genetic algorithm

(AGA); however, it required a notably large computation

time over extremely high dynamism and with multiple

VM-host setup, indicating a higher probability of

downtime. In the case of fog computing or IoT-based

cloud (IoT-cloud, for short), where various devices use

data randomly and even very dynamically, its severity

may even be more frequent. Creating a metaheuristic

model that incorporates a diverse and small but highly

significant initial population is a workable solution that

this research suggests. In this reference, the Cuckoo

Search based meta heuristic model was taken into

consideration with Fuzzy rules. In this model, the solution

probability is estimated iteratively by multiple agents.

Furthermore, the Fuzzy rules, Fuzzification, and

Defuzzification concepts have all been optimized in the

suggested Cuckoo Search model. These innovations make

it possible for our suggested model to demonstrate quick

and precise VM-host mapping, which aids in the

achievement of SLA- sensitive VM migration scheduling.

4.1 Cuckoo search algorithm
Enabling a global controller to execute dynamic VM

placement is a technique utilized by VM migration

technologies [25]. The suggested work is expanded to

include the best possible VM selection for starting the

migration process with the Fuzzy Cuckoo Search

algorithm. By taking into account the minimal parameters,

the population-based technique resolves the optimization

problem. The suggested algorithm takes into account the

behavior of the birds, which lay one egg at a time. Nests

are chosen at random for placement, and they are

subsequently dumped. The following generation chose the

best egg and determined which nest was the best. The

probability of notifying an egg in a fixed nest is [0,1]. In

such a case, the egg is either taken out of the host nest or

the nest-hosting bird leaves the existing nest and onstructs

a new one. The pertinent solution is found and added for

the virtual machine location. The migration process is

started by choosing the appropriate virtual machine (VM)

while taking into account the probability factors. The host

PM then either chooses the migrated VM or moves on to

the next VM based on selection probability in order to

determine the best optimal solution for VM Placement.

The ordinal measures of the CS architecture are

illustrated in order to comprehend the suggested Fuzzy CS

algorithm. The nest containing the egg signifies the correct

answer, and the cuckoo lays one egg in direct proportion

to the one solution. One egg leads to one solution, and

each egg in the nest represents a workable solution. Every

nest and egg location denotes a solution [4]; the first

solution is chosen at random, and the procedure for

updating the position is as follows:

𝑜𝑖(𝑗 + 1) = 𝑜𝑖(𝑗) + 𝛿 ⊗ 𝜚(𝜑) (8)

where 𝑜𝑖(𝑗 + 1) represents the (j+1) th generation’s

nest position. 𝑜𝑖(𝑗) represents the nest position for the
𝑗𝑡ℎ generation. The random size vector is produced using

the levy distribution ϱ(φ) and step size δ. Multiplication is

performed using ⊗, and global search optimization is

carried out. Levy Flight is a significant concept that is

represented mathematically as:

The subsequent steps are taken into consideration when

creating a random walk process, and the levy walk is

employed to generate the solutions. The solutions found

by taking the Levy process into consideration speed up

both the local and global searches. Randomization is the

local solution, and it is sufficiently removed from the

optimal and best current solution. This procedure makes

sure that the problem of VM placement resolves the issue

of locating the local optimal solution. Every simulation

round, the levy flight is taken into account for an updated

solution, and the optimal solution is found. Later, until the

termination criteria are satisfied, the solutions that are kept

or removed at random.

𝑤𝑡 = 𝑤𝑡𝑚𝑎𝑥 − (𝑤𝑡𝑚𝑎𝑥 − 𝑤𝑡𝑚𝑖𝑛)𝑋
𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑆𝑚𝑎𝑥

(10)

where 𝑤𝑡𝑚𝑎𝑥 and 𝑤𝑡𝑚𝑖𝑛 denote the maximum and

minimum coefficients, respectively. The optimization

technique's maximum number of simulation rounds is

denoted by 𝑆𝑚𝑎𝑥 , and the current simulation round is

represented by 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . New positions are found and the

fitness function for the updated positions is calculated

using the aforementioned equations. A better nest is

chosen for the population by comparing the fitness values

of the past and present, and the new nest position is

indicated as follows:

𝐺𝑚= [𝑦1(𝑚), 𝑦2(𝑚), 𝑦3(𝑚), … , 𝑦𝑘(𝑚)]𝑇

 (11)

𝐺𝑚 is the current nest position.

𝜚(𝜑) ∼ 𝜐 = 𝑡−𝜓 (1<𝜑<3) (9)

134 Informatica 48 (2024) 127–146 C. Vijaya et al.

𝐺𝑚+1=[𝑦1(𝑚 + 1), 𝑦2(𝑚 + 1), 𝑦3(𝑚 +

1), … , 𝑦𝑘(𝑚 + 1)]𝑇

(12)

Pa, the probability factor, is then used to determine the nest

status. The nests need to be replaced if the hosts identify

them as such. To formulate this, a 𝓵-dimensional vector is

utilized as 𝑹𝒍= [𝒓𝟏, 𝒓𝟐, 𝒓𝟑, … , 𝒓𝒌].If 𝑹𝒋>𝑷𝒅 , the nest

position is changed randomly. Next, using the probability

factor 𝑷𝒅, the nest status is determined. 𝑮𝒎+𝟏 is the new

nest position. Changes must be made to the nests if the

hosts identify them as such. This is formalized as 𝚤-
dimensional vector. The best nest position is found out by

comparing the previous and present fitness of the nest and

better nest is chosen for new generation.

𝑁𝑚+1 = [𝑦1(𝑚 + 1), 𝑦2(𝑚 + 1), 𝑦3(𝑚 +
1), … , 𝑦𝑘(𝑚 + 1)]𝑇

(13)

Where 𝑁𝑚+1 is the next generation solution. The

stopping condition is checked in the last phase. The

solution is found if the stopping condition is met by the

current solution; if not, move on to determining the initial

population's fitness value.

The classic CS algorithm is a very simple algorithm in

terms of parameters as shown in Algorithm 1. Some of the

shortcomings of the traditional CS algorithm are that the

cuckoos don't talk to each other about the solution; There

is no use of global nest Levy flight guidance with a fixed

step size. We suggest a Fuzzy Cuckoo Search based on

fuzzy set-based population to remedy this shortcoming.

The selection of either server or a VM for placement

depends on a random number 𝑞0.

The suggested migration model incorporates Firefly

swarm optimization to improve the Cuckoo search

optimization. This research study is distinctive in that it

uses the FFC algorithm in the cuckoo search position. The

ideal solution is updated with convergence using the

positions of the fireflies after the initial search using levy

flight. By avoiding local optima solutions through the use

of random elimination in cuckoo search optimization, the

hybrid strategy improves overall searching performance in

discovering the best solutions. Figure 1, shows the process

flow of the hybrid optimization model for choosing virtual

machines during the migration process.

4.2 Firefly colony algorithm
Inspired by firefly behaviour, Yang created the firefly

algorithm (FA), a swarm intelligence-based metaheuristic

technique. Simple insects that live in groups are fireflies.

The flashing of fireflies serves as a signalling mechanism

to draw in other files. These patterns of flashing and firefly

behaviour form the foundation of the firefly algorithm.

The following are the features of the typical firefly

algorithm [47]:

(1) Due to their unisex nature, fireflies are drawn to

other fireflies regardless of their gender.

(2) Brighter fireflies draw the attention of the less

brilliant ones. When the distance rises, a firefly's attraction

and brightness diminish, and if there are no brighter

fireflies in their path, they will begin to move aimlessly.

(3) A firefly's brightness is determined by the

objective function.

The firefly colony optimization is a swarm

intelligence-based metaheuristic approach which is based

on ACO technique. Firefly Colony optimization is

inspired by the flashing behaviour of fireflies. The

solution is constructed using firefly state transition rule

[39].

𝑖 =

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝜖Ω𝑘(𝑗) {𝛽𝑢𝑗 ∗ 𝑒−𝛾𝑅𝑊𝑢𝑗

𝑚

} , 𝑞 ≤ 𝑞0,

𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(14)

The heuristic information
 1

𝛾𝑅𝑊𝑢𝑗
𝑚 is termed as 𝜂𝑖𝑗.

𝛾 is the absorption coefficient of the light and it is

initialized to 1. In equation 16, if q is less than𝑞0, then a

VM u with higher attractiveness is chosen from the set of

eligible virtual machines. If q is greater than 𝑞0, then the

cumulative sum of attractiveness of all eligible VMs are

obtained and then the VM having the higher attractiveness

than a generated random number is chosen to be the next

VM for placement. The cumulative sum of the

attractiveness is obtained by:

Attractiveness vector = 𝑐𝑢𝑚𝑠𝑢𝑚(𝛽𝑖𝑗
𝑘), 𝑖 ∈ Ω𝑘(𝑗)

𝛽𝑖𝑗
𝑘 (𝑡) = {

𝛽𝑖𝑗 ∗ 𝜂𝑖𝑗 , 𝑖𝜖Ω𝑘(𝑗),

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15)

𝛽𝑖𝑗 = {
∑ 𝛽𝑢𝑖𝑢∈Ω𝑘(𝑗)

1 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, if Ω𝑘(𝑗) −

 {𝑖} ≠ 0

(16)

The local update attractiveness is

1. Calculate the Fitness Function for the

initial position

2. Identify the Optimal nest position 𝑦𝐺𝑏
0

3. Update nest position based on the weight

coefficient w

4. Calculate the fitness function for the new

position

5. Compare the present and past fitness values

and select new position 𝑁𝑚−1

6. If the termination condition is satisfied,

then the optimal output position of the nest

is achieved.

7. Terminate the process otherwise repeat 5.

Algorithm 1: Traditional Cuckoo Search

Optimization algorithm

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 135

𝛽𝑖𝑗(𝑡) = 𝛽𝑖𝑗(𝑡) = 𝛼 (𝑟𝑎𝑛𝑑 −

1

2
) 𝛽𝑖𝑗(𝑡 − 1) + 𝛽0

(18)

𝑤ℎ𝑒𝑟𝑒 𝛼 is the attractiveness decay parameter, the

initial value for 𝛽0 is calculated using 𝛽0 =
1

𝑛𝑅𝑊(𝑆0)
, The

global update of attractiveness is:

𝛽𝑖𝑗(𝑡) = 𝛼 (𝑟𝑎𝑛𝑑 −
1

2
) 𝛽𝑖𝑗(𝑡 − 1)

+ Δ𝛽𝑖𝑗
𝑏𝑒𝑠𝑡 ,

(19)

The next 𝑉𝑀𝑖 to be placed in the currently chosen server

should be decided as described in [31]. This section

explains about the conditions generated to determine

which 𝑉𝑀𝑖 should be selected for the Chosen Physical

Machine.

The process of converting a crisp input value into a

fuzzy set is called "fuzzification." The terms "linguistic

variable" and "membership function" are crucial in fuzzy

logic.

A linguistic variable is a language structure that is further

subdivided into several subfields. It is a part of the set and

the range of true and false values. The linguistic variable

stores the VM Placement's input and output. Rather than

using numbers to represent the value, it uses words.

Four sets of the linguistic variable of load—Very Low,

Low, High, and Very High—are present based on the

position of the virtual machine.

The Fuzzy rules to be followed to place a VM on a PM are

given below. This hybrid technique uses the minimal and

max-min operations in implication and composition

should be assigned to an individual server j.

1. If βij is medium and 𝜂𝑖𝑗 is low then the efficacy

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is very very low.

2. If βij is medium and 𝜂𝑖𝑗 is low then the efficacy

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is very low.

3. If βij is high and 𝜂𝑖𝑗 is low then the efficacy 𝑒𝑖𝑗

of choosing 𝑉𝑀𝑖 is low.

4. If βij is low and 𝜂𝑖𝑗 is medium then the efficacy

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is low.

5. If βij is medium and 𝜂𝑖𝑗 is medium then the

efficacy 𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is medium.

6. Ifβij is high and 𝜂𝑖𝑗 is medium then the efficacy

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is high.

7. If βij is low and 𝜂𝑖𝑗 is high then the efficacy 𝑒𝑖𝑗

of choosing 𝑉𝑀𝑖 is high.

8. If βij is medium and 𝜂𝑖𝑗 is high then the efficacy

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is very high.

9. If βij is high and 𝜂𝑖𝑗 is high then the efficacy

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is very high.

In a fuzzy inference system, the hybrid technique of using

the minimal and max-min operations in implication and

composition, respectively, allow for a more flexible and

efficient way of reasoning with uncertain or imprecise

information. The minimal operator is used in the

implication step to determine the degree to which each

rule is satisfied based on the membership value of the

input variables. This allows for a more nuanced

consideration of the rules and their applicability to the

current situation. The max-min operator is then used in the

composition step to combine the output membership

values of the rules and determine the overall output value

of the system. This method takes into account the

contributions of all pertinent rules and ensures that no

single rule has an undue influence on the output value. By

combining these two operations in a hybrid technique, the

fuzzy inference system can achieve a more accurate and

robust performance in dealing with fuzzy input data and

making decisions based on uncertain or incomplete

information.

The maximum defuzzification method, similar to fuzzy

strategy, is used on fuzzy probability to select the next

virtual machine (𝑖) for the current server (𝑢) among 𝑢

eligible virtual machines. The antecedent part of the fuzzy

rule comprises heuristic information and attractiveness,

while the subsequent part discusses the effectiveness of

selecting the next virtual machine. For fuzzy implication,

this method uses the minimum operation, and for

composition, it uses the max-min operator. As the

maximum efficacy for every virtual machine 𝑖, we finally

arrive at 𝑒𝑘𝑖𝑗. In this instance, we present two approaches,

the fuzzy strategy and the fuzzy probable strategy in Eqn.

(16) to carry out the exploitation and exploration process

of choosing which virtual machine 𝑉𝑀𝑖 to install on the

I={
Fuzzy strategy, q ≤ q0 ,

 Fuzzy probable strategy, q > q0

 (20)

Each strategy produces a discrete number that indicates

which virtual machine should be installed on the current

Δ𝛽𝑖𝑗(𝑡) =

 {

𝑓𝑓𝑠𝑐(𝑠𝐺𝑏), 𝑖𝑓 𝑉𝑀 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(17)

Table 2: Fuzzy rules for FCSFFC algorithm

Antecedent Part Consequent Part

𝛽𝑖𝑗

(Attractiveness)

𝜂𝑖𝑗

(Heuristics)

𝑒𝑖𝑗

(𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦)

𝐿𝑜𝑤 𝐿𝑜𝑤 𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤

𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤

𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐿𝑜𝑤

𝐿𝑜𝑤 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤

𝑀𝑒𝑑𝑖𝑢𝑚 𝑀𝑒𝑑𝑖𝑢𝑚 𝑀𝑒𝑑𝑖𝑢𝑚

𝐻𝑖𝑔ℎ 𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ

𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ

𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ

𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ

136 Informatica 48 (2024) 127–146 C. Vijaya et al.

server 𝑗 next. The fuzzy rules for deciding which Virtual

Machine to be placed next in the Physical Machine is

given in Table 2. Equation (14) is applied to decide which

𝑉𝑀𝑖 is chosen for a server 𝑗. As we have seen, fuzzy

strategy is chosen for exploitation and fuzzy probable

strategy is chosen for exploration process.

4.3 Proposed hybrid optimization algorithm

(FCSFFC)

The proposed hybrid optimization algorithm, Fuzzy

Cuckoo Search with Fuzzy Firefly Colony (FCSFFC),

integrates the exploration capabilities of the Cuckoo

Search (CS) algorithm with the exploitation strengths of

the Firefly Colony (FFC) algorithm, aiming to enhance

virtual machine (VM) placement in cloud data centers.

This section delves into the specific mechanisms and

procedural steps of the hybrid algorithm, focusing on how

the Cuckoo Search initiates the exploration phase, and

how the Firefly algorithm refines the solutions during the

exploitation phase.

Cuckoo search exploration

The Cuckoo Search algorithm models the movement of

virtual machines using two primary perturbation

functions: one for VM selection and another for server

selection. The decision of whether to prioritize servers or

VMs is based on a randomly generated number between 0

and 1. If the number is less than 0.5, the VM selection

function is invoked; otherwise, the server selection

function is chosen [4]. These functions are crucial as they

determine the migration of VMs by evaluating resource

utilization across servers. The movement of VMs within

the cloud infrastructure is guided by sorting and

optimizing the VMs based on resource requirements. The

output of this selection process is a crisp number, which

identifies the next VM to be placed on a server. The

optimization process is iterative, ensuring that VMs are

placed in a manner that balances resource utilization,

reduces power consumption, and minimizes migration

costs. The Cuckoo Search algorithm begins by initializing

parameters such as the population size and the number of

iterations. Using objective functions like power

consumption, resource wastage, and migration cost, the

algorithm evaluates the fitness of each solution. The

optimal positions of individuals in the population are

computed in each iteration, and solutions are updated

based on the Levy flight mechanism—a random walk that

aids in escaping local minima. If the fitness of a new

solution is better than the old one, the old solution is

discarded. This process continues until the exploration

phase is complete. VM selection identifies VMs for

migration based on resource needs and load balancing,

while server selection finds optimal target servers with

sufficient resources to minimize wastage and enhance

efficiency. Together, they ensure effective VM placement,

reducing power consumption and migration costs.

Figure 2: Flowchart for FCSFFC

optimization VM placement

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 137

1. VM selection function: In a solution, a random

selection of VMs is made from the current

population, and they are removed out of the servers.

Next, the involved servers are arranged according to

the total resource usage in decreasing order.

Subsequently, 132 the chosen virtual machines are

likewise arranged in descending order of total

resource requirements. Each virtual machine is now

placed on the first server that has capacity for them.

It is placed on a server chosen at random if none of

the involved servers can host it. If one of the virtual

machines is chosen from the perfectly placed server,

it is deleted and another is chosen.

2. Server selection function: Once a set of b servers is

chosen at random, all of its virtual machines are

deleted, leaving the set of servers’ empty. Put the

virtual machines in decreasing order of overall

resource requirements. Subsequently, each virtual

machine is now placed on the first server that has

capacity for the VMs. It is placed on a server chosen

at random if none of the involved servers can host it.

Procedure for virtual machine placement using firefly

algorithm for exploitation

 The algorithm begins by initializing parameters such as

the number of fireflies, attractiveness coefficient, and light

absorption coefficient, along with generating initial

random solutions. In the iterative process, fireflies move

towards brighter (more attractive) fireflies, with their

positions updated based on a function that considers

brightness and distance. Optional local search can refine

solutions further. The algorithm recalculates and updates

the brightness of fireflies, ranks them accordingly, and

continues until a stopping criterion is met, such as

reaching the maximum number of iterations. This

approach leverages the simplicity and flexibility of FA,

offering global search capabilities and scalability across

various problem sizes. Its adaptability allows integration

with other optimization methods and it has been

successfully applied in fields such as engineering design,

scheduling, machine learning, and resource management,

demonstrating its effectiveness in achieving optimal

solutions and enhancing performance. The hybrid

FCSFFC algorithm is designed to address multi-objective

optimization problems in VM placement. By combining

the exploration capabilities of Cuckoo Search with the

exploitation strengths of Firefly optimization, the

algorithm effectively balances the trade-offs between

different objectives, such as minimizing power

consumption and reducing migration costs. The fuzzy

fitness function evaluates the quality of solutions based on

their performance across multiple objectives. This

approach ensures that the selected solutions are not only

optimal in terms of individual objectives but also robust

and adaptable to changing conditions in the cloud

environment.

In FCSFFC algorithm, fuzzy logic enhances decision-

making for VM placement and migration by processing

imprecise and uncertain data. It begins with fuzzification,

which translates exact numerical metrics related to VM

and server conditions into fuzzy sets using qualitative

terms like "Low," "Medium," and "High." This approach

allows the algorithm to handle real-world uncertainties

more effectively. Linguistic variables are employed to

represent the load and attractiveness of VMs and servers,

making complex data easier to interpret. For example,

load conditions are categorized into "Very Low," "Low,"

"High," and "Very High" based on resource usage and

server capacity. This categorization simplifies the

processing of these metrics. Fuzzy rules are then applied

to evaluate the suitability of placing a VM on a particular

1. Initialize optimization parameters,

population, weight coefficient

2. Generate random VM requests

3. Begin

4. For i= 1 to n

5. Determine the population's initial fitness

6. Calculate the global optimal individual

position

7. Loop1: Construct cuckoo parameters

8. Calculate the position of individual levy

flight search applying (9)

9. Evaluate (𝒇𝒊𝒕𝒏𝒆𝒘 𝒂𝒏𝒅 𝒇𝒊𝒕𝒐𝒍𝒅)

10. If (𝒇𝒊𝒕𝒏𝒆𝒘 > 𝒇𝒊𝒕𝒐𝒍𝒅)

 New generation= current position

Else

 New generation = old position

 If 𝒒𝟎 < 0.5, select a server else select

 VM for placement.

11. Initialize FFC parameters

12. Update the heuristic parameters of the

individuals using (14).

13. For each Firefly k=1 to N

14. Repeat

15. For each 𝑷𝑴𝒋=1 to m do

16. Issue new server

17. Determine the eligible virtual machines

using Fitness function

18. Find iterative best Global optimal and

individual solutions using (18) and (19)

19. Update the fitness function of new and old

nest.

20. Obtain optimal individual and optimal nest

21. Calculate the entire population

22. While termination criteria reached,

 terminate the current process

23. Else

Goto l0

24. End

Algorithm 2: Hybrid FCSFFC algorithm for

VM placement

138 Informatica 48 (2024) 127–146 C. Vijaya et al.

server. These rules take into account factors such as the

VM’s attractiveness and the server’s heuristics. For

instance, if a VM’s attractiveness is medium and its

heuristic is low, the rule might suggest a low efficacy for

that VM’s placement. These rules are designed to manage

uncertainty by providing flexible and adaptive criteria for

decision-making. The fuzzy inference system processes

these rules and combines their outcomes using operators.

The minimal operator is used to assess how well each rule

is satisfied based on input values, while the max-min

operator aggregates the results to make a decision. This

system helps in making nuanced and well-informed

decisions by considering all relevant factors and their

interactions. Finally, defuzzification converts the fuzzy

results back into precise actions, determining which VM

should be placed on which server. This step ensures that

the decisions are actionable and practical, contributing to

better resource management, reduced migration costs, and

overall improved system performance.

Procedure for virtual machine placement

The overall procedure for VM placement using FCSFFC

is illustrated in Algorithm 2. The process begins with the

initialization of PMs, VMs, and iterations, followed by the

setup of Cuckoo Search parameters. Lines 1-4 initializes

the number of PMs, VMs and number of iterations. Line 4

sets up the cuckoo search algorithm parameters. Using the

objective functions specified for each nest solution, the

algorithm evaluates the quality of the solutions based on

their fitness values, guiding the search process to optimize

the overall performance. Then the population’s fitness, is

determined which includes the objective functions of

power consumption, resource wastage and energy

consumption. solution is considered to be of a new

generation. If not, the previous solution is kept in place for

the following generation. The next statement computes the

globally optimal individual positions for each iteration.

Equation (7) is applied to the Levy flight walk in an

attempt to find the solution. If the new solution’s fitness is

found to be lower than the old one, the old solution is

discarded, and the new solution is accepted. For every

iteration, the exploration phase has concluded, and now

that the exploration phase is complete, the Firefly

algorithm is executed to determine whether the solutions

produced by the Cuckoo Search algorithm can be further

refined for optimal performance. This procedure is

referred to as exploitation. Repeat the above procedure

until the stopping condition is satisfied. Equation (20) is

applied to decide which 𝑽𝑴𝒊 is chosen for a server j. The

algorithm then iteratively evaluates the fitness of each

solution, updates the positions of individuals, and refines

the solutions using the Firefly algorithm. The stopping

condition, such as the maximum number of iterations or a

convergence threshold, determines when the algorithm

terminates. The final solution represents the optimal VM

placement configuration, balancing the competing

objectives of power efficiency, resource utilization, and

migration cost.

4.1 Experimental set up

The simulation environment is configured with an Intel i3

processor and 8 GB of RAM, running on the Windows 10

operating system. Five datacenters were simulated with 10

physical machines and 50 virtual machines. The total

number of tasks is varied from 25 to 75, and 150 Virtual

Machines were used. Each VM was allocated 2GB of

memory, and each host had 4GB. Host

MIPS was set to 10,000, and VM MIPS to 1,500. VM

Bandwidth was 100 Mbit/s, while Host Bandwidth was 1

Gbit/s. The load factor, which is based on VM resource

utilization to complete user tasks, was calculated.

In FCSFFC algorithm, fuzzy logic enhances decision-

making for VM placement and migration by processing

imprecise and uncertain data. It begins with fuzzification,

which translates exact numerical metrics related to VM

and server conditions into fuzzy sets using qualitative

terms like "Low," "Medium," and "High." This approach

allows the algorithm to handle real-world uncertainties

more effectively. Linguistic variables are employed to

represent the load and attractiveness of VMs and servers,

making complex data easier to interpret. For example,

load conditions are categorized into "Very Low," "Low,"

"High," and "Very High" based on resource usage and

server capacity. This categorization simplifies the

processing of these metrics. Fuzzy rules are then applied

to evaluate the suitability of placing a VM on a particular

server. These rules take into account factors such as the

VM’s attractiveness and the server’s heuristics. For

instance, if a VM’s attractiveness is medium and its

heuristic is low, the rule might suggest a low efficacy for

that VM’s placement. These rules are designed to manage

uncertainty by providing flexible and adaptive criteria for

decision-making. The fuzzy inference system processes

these rules and combines their outcomes using operators.

The minimal operator is used to assess how well each rule

is satisfied based on input values, while the max-min

operator aggregates the results to make a decision. This

system helps in making nuanced and well-informed

decisions by considering all relevant factors and their

interactions.

Finally, defuzzification converts the fuzzy results back

into precise actions, determining which VM should be

placed on which server. This step ensures that the

decisions are actionable and practical, contributing to

better resource management, reduced migration costs, and

overall improved system performance.

4.2 Computational study

The load analysis of the algorithms is illustrated in Fig. 3.

The study began with 25 tasks and progressively included

50 and 75 tasks, carefully evaluating the load parameter

for each scenario. The results demonstrate that our

FCSFFC algorithm consistently maintains a lower load

compared to other methods when selecting and migrating

VMs based on resource requirements. In terms of load, the

Fuzzy Cuckoo Search Fuzzy Firefly Colony Optimization

Algorithm (FCSFFC) consumes the least resources, with

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 139

a load value of 0.0025. This indicates that FCSFFC is the

most efficient algorithm in terms of resource utilization

for VM placement and migration among the algorithms

compared.

Figure 3: Load analysis

The lower load means it requires minimal computational

resources, leading to better overall performance and

reduced strain on the cloud infrastructure. This is largely

due to the algorithm's efficient VM-server matching

process, which minimizes the frequency migrations.

Figure 4: Migration analysis

As a result, the overall system stability is enhanced,

reducing the operational overhead associated with VM

migrations. Figure 4 presents the migration analysis,

highlighting the superior performance of the FCSFFC

algorithm in comparison to alternative algorithms. The

reduced migration frequency improves resource

utilization and also minimizes disruption to ongoing

processes by performing only necessary migrations and

avoiding unnecessary migration requests.

Figure 5: Migration cost analysis

Figure 4 depicts the analysis of migration costs for the

proposed model compared to other models. The analysis

considers both the total number of VMs and those

specifically migrated to handle requested tasks. By

selecting optimal VMs, the proposed method significantly

reduces unnecessary migrations, demonstrating superior

performance compared to alternative models. The number

of virtual machines (VMs) moved for the requested tasks

as well as the actual VMs needed for the task were noted.

When compared to other algorithms, it is found that the

FCSFFC algorithm achieves the least amount of

migration. When comparing the migration cost of state-of-

the-art techniques, optimal VM selection minimizes the

number of migrations and makes the migration more

effective by performing only necessary migrations and

avoiding unnecessary migration requests. Figure 5 depicts

the analysis of migration costs for the proposed model

compared to other models. The analysis considers both

the total number of VMs and those specifically migrated

to handle requested tasks. By selecting optimal VMs, the

proposed method significantly reduces unnecessary

migrations, demonstrating superior performance

compared to alternative models. Also, Figure 5, utilizes

the ratio of completed migrations to the total number of

migrations within the cloud environment to determine the

migration cost impacting the performance of the hybrid

optimization FCSFFC algorithm. Based on the migration

approaches, the suggested model's migration cost is, in

comparison, 70% less than HBCOA, 60% less. The results

underscore its effectiveness in enhancing overall system

performance and cost efficiency compared to existing

models.to calculate the Migration Cost.

140 Informatica 48 (2024) 127–146 C. Vijaya et al.

Figure 6: Energy consumption analysis

For 75 tasks, the migration cost is 0.048; for HWOA, it is

0.067; for WOA, it is 0.083; for FOA, it is 0.10; and for

HBCOA, it is 0.115. These numbers demonstrate how well

the suggested than FOA, 50% less than WOA, and 20%

less than HWOA. Figure 6 compares the energy

consumption of the current methods with the proposed

hybrid optimization approach. For 25 tasks, the proposed

hybrid optimization achieves the lowest energy

consumption at 0.465 W, followed by 0.47 W for 50 tasks,

and 0.475 W for 75 tasks. In comparison, the HWOA

method consumes 0.488 W. The average energy

consumption for the proposed technique remains at 0.47

W, whereas other methods, including WOA, FOA, and

HBOA, show an average energy consumption of 0.49 W,

with minimal variation. Incorporating the Interquartile

Range (IQR) into the Fuzzy Cuckoo Search Fuzzy Firefly

Colony Optimization algorithm significantly improves its

capability to handle dynamic loads in cloud data centers.

By analyzing historical workload data, including CPU

utilization, memory usage, and network bandwidth, IQR

helps identify the distribution and variability of these

metrics. This understanding allows for better trend

detection and anomaly identification. Integrating IQR into

the Fuzzy Cuckoo Search Fuzzy Firefly Colony

Optimization framework enhances the fuzzy logic.

Notably, the proposed model demonstrates a 2.2%

reduction in energy consumption compared to HBCOA,

FOA, and WOA, and a 1.8% reduction when compared to

the HWOA algorithm. The Firefly algorithm, known for its

superior local search capabilities, complements CSO by

refining these solutions to find even more energy-efficient

configurations. Firefly algorithm’s attractiveness-based

movement helps in focusing on the most promising areas

of the search space, which leads to incremental

improvements in energy consumption across different task

loads. The synergy between CSO's exploration and the

Firefly algorithm's exploitation ensures that the proposed

Figure 7: Resource availability analysis

model consistently outperforms other methods in both

energy consumption and overall system performance. As a

result, it effectively balances efficiency and resource

utilization across varying workloads.

Figure 8: Computation time analysis

The impacts of the proposed optimization based VM

migration and that of the existing VM migration

algorithms are analyzed in terms of resource availability

in Fig. 7. The proposed method’s time for 75 tasks is 5

seconds; for HWOA, it takes 7.4 seconds. The table

provided compares several algorithms in terms of load,

energy consumption, migration cost, and execution time.

When it comes to resource availability, the FCSFFC

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 141

algorithm demonstrates superior efficiency. This is

reflected in its lower load value (0.0025), indicating that it

consumes fewer resources compared to the other

algorithms. The reduced load means that the FCSFFC

algorithm is more effective at matching VMs with servers

that have sufficient resources, which in turn reduces the

strain on the physical machines. This efficient resource

allocation minimizes the need for frequent migrations,

leading to a lower migration cost (0.0467) and faster

execution time (4.003 seconds). In contrast, the HBCOA

and FOA algorithms show higher load values of 0.010367

and 0.00732, respectively, suggesting that they require

more resources to achieve the same tasks. This higher

resource demand can lead to increased migration costs and

longer execution times. As a result, while these algorithms

may still perform adequately, their resource management

is less optimal compared to FCSFFC, leading to less

efficient overall performance in cloud environments. The

table highlights the importance of selecting algorithms

that not only minimize energy consumption and migration

costs but also efficiently manage and allocate available

resources, ensuring better performance and scalability in

practical applications.

 Figure 8 shows the total computation time for both the

suggested and current approaches. The proposed method's

maximum computation time for 75 tasks is 5 seconds; for

HWOA, it takes 7.4 seconds, For WOA, it takes 8.2

seconds, and HBCOA, it is computed for 9.2

seconds. Figure 7 illustrates a notable advantage of the

proposed method in terms of computation time. The

proposed algorithm achieves a maximum computation

time of 5 seconds for 75 tasks, which is significantly faster

than the Hybrid Whale Optimization Algorithm (HWOA),

which requires 7.4 seconds, and the Whale Optimization

Algorithm (WOA), which takes 8.2 seconds. The Hybrid

Bee Colony Optimization Algorithm (HBCOA) has the

longest computation time at 9.2 seconds. This reduced

computation time of the proposed method not only

improves operational efficiency but also enhances its

suitability for real-time applications where rapid decision-

making is crucial. The efficiency gains in computation

time can lead to faster responses and better scalability,

making the proposed algorithm a competitive choice for

dynamic cloud environments with high task loads.

Table 3 provides an overview of the Energy Consumption,

migration costs, Resource Availability, and Migration

Cost for both the proposed and existing models'

performance analyses. The average values are displayed

according to the previously presented findings from

various tasks. The outcomes unequivocally show that, the

suggested hybrid optimization outperforms the current

techniques in every element. It is clear from the results that

the FCSFFC optimization algorithm achieves the lowest

possible. The task's resource request, the VM selection,

and the migration from one resource pool to the current

resource pool all affect the computation time. The time

required to move a set of tasks from one virtual machine

to another is commonly referred to as computation time. It

is found that the computation times for all methods are

lowest for 25 tasks, computation time. Though the

computation time is noted with the fewest elements, it may

differ in a real-time setup. The average values are shown

in accordance with the results from different tasks that

were previously presented. The results clearly

demonstrate that the proposed hybrid optimization works

better than the existing methods in all aspects, owing to a

unique analysis of migration requests the quality of

service. FCSFFC achieves the lowest load parameter,

indicating more efficient VM placement and a reduced

need for frequent migrations. It also shows a substantial

reduction in migration costs, which enhances overall

system efficiency. The algorithm's energy consumption is

the lowest among the compared methods, contributing to

reduced operational costs and greater sustainability.

Additionally, FCSFFC results in the highest resource

availability, indicating effective resource utilization and

minimized unnecessary migrations. Its computation time

is the shortest, reflecting its efficiency in processing and

decision-making. The FCSFFC algorithm integrates fuzzy

logic with hybrid metaheuristic techniques, offering a

novel approach that adapts to varying load conditions

more effectively than traditional methods. Unlike static

Table 3: Overview of the energy consumption, migration cost, resource availability, and comp. time

SNo Algorithm Load
Energy

Consumption

Migration

Cost

Resource

Availability

Computation

Time in Sec.

1

Hybrid bee Colony

optimization Algorithm

(HBCOA)

0.010367 0.4850 0.1370 0.8522 8.252

2
Firefly Optimization

Algorithm (FOA)
0.00732 0.4839 0.1155 0.8822 7.128

3
Whale Optimization

Algorithm (WOA)
0.005473 0.4829 0.0942 0.9022 6.232

4

Hybrid Whale

Optimization Algorithm

(HWOA)

0.002793 0.4678 0.0688 0.9186 5.332

5

Fuzzy Cuckoo Search

Fuzzy Firefly Colony

Optimization Algorithm

(FCSFFC)

0.0025 0.4593 0.0655 0.9814 4.003

142 Informatica 48 (2024) 127–146 C. Vijaya et al.

threshold-based approaches, FCSFFC uses dynamic fuzzy

rules and hybrid optimization to improve decision-making

processes. This innovation includes a stochastic prediction

model for overload detection, which estimates CPU

utilization dynamically. This model overcomes the

limitations of static thresholds, enhancing the accuracy of

overload detection and SLA compliance. The dynamic

thresholding scheme adjusts CPU utilization thresholds

based on real-time variations, improving the handling of

fluctuating load conditions. The use of Inter Quartile

Range and modified Local Regression Robust techniques

for adjusting thresholds further refines this approach,

offering a robust mechanism for managing CPU

utilization and preventing SLA breaches.

In comparison to existing studies, the proposed

algorithm demonstrates significant improvements in key

performance metrics, such as energy consumption,

resource wastage, and migration cost, by refining fuzzy

rules and membership functions based on the observed

variability, which leads to more accurate load predictions.

Moreover, applying IQR-based adjustments to the Cuckoo

Search and Firefly Algorithm components ensures that

optimization strategies are dynamically adapted to current

conditions, improving resource allocation and minimizing

migration costs. This dynamic approach to load prediction

aids in balancing resources more effectively across

physical machines, thus optimizing overall system

performance. Continuous monitoring and comparative

analysis further validate the effectiveness of IQR

integration, demonstrating its contribution to enhanced

load prediction accuracy and overall system efficiency.

In the Chaotic Particle Swarm Optimization (CPSO)

algorithm with adaptive mutation [9] focuses on better

utilization but also significantly reduces power. The

hybrid meta-heuristic methods, such as the one combining

Sine Cosine and Ant Lion Optimizer (SCA-ALO) for

server load balancing [14], primarily address server load

balancing and resource waste reduction. However, these

methods often struggle with the trade-offs between

multiple objectives. In contrast, our algorithm effectively

balances these trade-offs, leading to a notable reduction in

energy consumption and resource wastage Moreover,

while algorithms like the Marine Predator Algorithm [20]

and the enhanced Whale Optimization Algorithm (WOA)

[21] have been adapted for multi-objective optimization,

they do not specifically address the challenges of virtual

machine migration in cloud data centers. Our approach, by

integrating the strengths of Cuckoo Search and Firefly

Colony Optimization, offers a more tailored solution for

VM migration, resulting in better overall performance.

The effectiveness of the approach is further

emphasized when compared to the ACOSCA algorithm

[29], which achieved a 24% reduction in power

consumption. The suggested algorithm’s average energy

consumption was 2.2% lower, and the migration cost was

notably 37% lower than that of the other compared

algorithms. The proposed algorithm’s significant

reduction in migration costs demonstrates its effectiveness

and potential advantages in real-world scenarios. Our

method not only achieves comparable or better power

savings but also reduces the migration cost, making it a

more efficient solution for real-time cloud data center

operations. Additionally, the proposed algorithm

significantly improves resource utilization by reducing

unnecessary migrations, leading to lower operational

overhead. This combined effect of enhanced energy

efficiency and minimized migration cost underscores its

suitability for optimizing large-scale cloud infrastructures.

The novelty of the solution lies in its hybrid

optimization approach, which combines the strengths of

Cuckoo Search and Firefly Colony Optimization with

fuzzy logic, creating a robust and adaptive VM placement

strategy. Unlike previous works that primarily focus on

single or limited objectives, our algorithm addresses

critical factors, including energy efficiency, resource

utilization, and migration cost, in a balanced manner.

This makes the solution particularly significant for

practical applications in cloud data centers, where the

demand for energy-efficient and cost-effective operations

is ever-growing. By reducing energy consumption and

improving resource management, our approach

contributes to the sustainability and scalability of cloud

infrastructures, offering a practical and impactful solution

for modern data centers. The combination of CSO's global

search capabilities and FA's local optimization strengths

create a powerful synergy. CSO prevents premature

convergence by exploring a wide range of possibilities,

while FA ensures that the solution is refined and

optimized, resulting in a balanced and effective VM

placement strategy. To further enhance the hybrid

approach, fuzzy logic is integrated to manage the

uncertainties and complexities inherent in cloud

environments. Fuzzy rules are designed to evaluate and

adjust the algorithm's parameters dynamically based on

real-time conditions such as workload intensity, resource

availability, and energy consumption. Fuzzy logic allows

for more nuanced decision-making, enabling the

algorithm to adapt its behaviour based on the specific

needs of the cloud data center at any given moment.

In practical terms, it has been demonstrated that the

migration cost associated with the Fuzzy Cuckoo Search

Fuzzy Firefly Colony algorithm is 31.7% lower than that

of other compared algorithms. This improvement

underscores the effectiveness of FCSFFC in optimizing

resource allocation and reducing the overhead typically

encountered during virtual machine migrations in cloud

computing environments. Its dynamic thresholding and

prediction capabilities address the challenges of modern

cloud environments, making it a valuable tool for

optimizing cloud data center operations.

 The scalability of the Fuzzy Cuckoo Search

Fuzzy Firefly Colony Optimization Algorithm was

assessed by varying the number of virtual machines and

tasks in the simulation environment. The algorithm's

performance metrics, including energy consumption and

computation time, were evaluated as the data scale

increased. Additionally, the algorithm's adaptability to

varying workload intensities ensures that resources are

allocated efficiently, minimizing downtime and

improving user satisfaction. By incorporating fuzzy logic

with metaheuristic optimization, the FCSFFC algorithm

offers a robust solution for managing complex cloud

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 143

infrastructures effectively. The combination of CSO's

broad exploration and Firefly colony approach focused

exploitation leads to better VM placements that minimize

energy consumption across the data center. By optimizing

both the initial placement and the migration paths, the

hybrid approach reduces the amount of data transferred

and the associated costs during VM migration. The

synergy between CSO and FA ensures that resources are

utilized more efficiently, reducing wastage and enabling

higher workload handling. The fuzzy logic component

ensures that the algorithm adapts to changing conditions

in the data center, maintaining optimal performance even

as workloads and resource availability fluctuate. This

adaptability is crucial for sustaining consistent efficiency

and reliability in dynamic cloud environments, where

demand can be unpredictable.

5 Scalability and computational

complexity

The FCSFFC algorithm demonstrated strong scalability,

effectively managing up to 1,000 VMs and 5,000 tasks

without significant performance degradation. This

indicates that the algorithm is well-suited for large-scale

cloud environments where the number of VMs and tasks

can be substantial. The performance metrics remained

efficient as the workload increased, highlighting the

algorithm’s capacity to handle large and complex cloud

computing scenarios. The computational complexity of

the FCSFFC algorithm is influenced by its hybrid

optimization approach, which integrates fuzzy logic with

cuckoo search and firefly algorithms. The complexity can

be expressed as O(N⋅M⋅K) where N represents the number

of VMs, M denotes the number of tasks, and K stands for

the number of iterations in the optimization process. The

algorithm exhibits linear scalability with respect to the

number of VMs and tasks, which ensures efficient

performance even as the size of the problem grows.

6 Conclusion
A hybrid optimization approach for cloud computing

virtual machine migration has been created. The combined

technique of Fuzzy Cuckoo search and Fuzzy Firefly

optimization algorithms is used to accomplish VM

migration. To minimize needless migrations, the VMSs

are moved to the host based on the best outcome produced

by the suggested method. Improved performance in terms

of energy consumption, resource availability, migration

costs, and computing time is validated by simulation study

of the suggested model. The suggested hybrid

optimization algorithm's performance is compared with

that of existing migration techniques, such as HBCOA,

FOA, WOA, hybrid Whale and HWOA. The proposed

algorithm utilizes less resources on average than the state-

of-art techniques, and also lesser power consumption.

Compared to state-of-the-art methods, the proposed

algorithm uses less resources and consumes less power as

discussed in Section 4. The proposed algorithm

outperforms in computation time and also in reducing the

migration cost. Future research on this topic may focus on

introducing Flight random walk and Preferences random

walk optimization [45] to speed up the search and enhance

migration performance. Additionally, exploring the

integration of lightweight heuristics, such as Quantum

Particle Swarm Optimization, could further reduce

computational overhead while maintaining solution

quality. Another potential avenue for research is to

dynamically adjust the algorithm's parameters based on

varying cloud workloads and infrastructure conditions.

Future research could explore the integration of advanced

machine learning techniques with optimization strategies

to enhance decision-making processes in resource

allocation and energy management

References

[1] Duong-Ba, T., et al. (2018). A Dynamic Virtual

Machine Placement and Migration Scheme for

Data Centers. IEEE Transactions on Services

Computing, vol. 14(2), pp. 329–341.

[2] Khan, M. A. (2021). An Efficient Energy-Aware

Approach for Dynamic VM Consolidation on

Cloud Platforms. Cluster Computing, vol. 24(4),

pp. 3293–3310.

[3] Khan, M. S. A., and Santhosh, R. (2022). Hybrid

optimization algorithm for VM migration in cloud

computing. Computers and Electrical

Engineering, Elsevier, pp. 102:108152.

https://doi.org/10.1016/j.compeleceng.2022.1081

52

[4] Sait, S. M., Bala, A., and El Maleh, A. H. (2016).

Cuckoo Search Based Resource Optimization of

Datacenters. Applied Intelligence, Springer, vol.

44, no. 3, pp. 489-506.

[5] Chamas, N., Pires, F. L., and Baran, B. (2017).

Two-Phase Virtual Machine Placement

Algorithms for Cloud Computing: An

Experimental Evaluation under Uncertainty.

Proceedings of the IEEE Conference (CLEI),

IEEE, Cordoba, Argentina.

[6] Panigrahy, R., Talwar, K., Uyeda, L., and Wieder,

U. Heuristics for Vector Bin Packing,

https://www.microsoft.com/en-us/research/wp-

content/uploads/2011/01/VBPackingESA11. pdf.

[7] Shirvani, H., and Mirsaeid, H. (2021). Bi-objective

Webservice Composition problem in Multi-cloud

Environment: A Bi-objective Time Varying

Particle Swarm Optimization Algorithm. Journal

of Experimental and Theoretical Artificial

Intelligence, 33(2), pp. 179-202, Mar. 2021.

[8] Rukmini, S., and Shridevi, S. (2023). An Optimal

Solution to Reduce Virtual Machine Migration

SLA Using Host Power. Measurement: Sensors,

vol.25, pp.1-5.

https://doi.org/10.1016/j.measen.2022.100628

[9] Al-Mahruqi, A. A., Morison, G., Stewart, B. G.,

and Athinarayanan, V. (2021). Hybrid Heuristic

https://doi.org/10.1016/j.compeleceng.2022.108152
https://doi.org/10.1016/j.compeleceng.2022.108152
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.%20%20pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/VBPackingESA11.%20%20pdf
https://doi.org/10.1016/j.measen.2022.100628

144 Informatica 48 (2024) 127–146 C. Vijaya et al.

Algorithm for Better Energy Optimization and

Resource Utilization in Cloud Computing.

Wireless Personal Communications, 118, pp:43-

73.

[10] Rashida, S. Y., Saba, M., Ebadzadeh, M. M., and

Rahmani, A. M. (2020). A Memetic Grouping

Genetic Algorithm for Cost Efficient VM

Placement in Multi Cloud Environment, Journal of

Cluster Computing, 23(2), 797-836, Jun. 2020.

[11] [3] Sonklin, C., and Sonlin, K. (2023). A Multi-

Objective Grouping Genetic Algorithm for Server

Consolidation in Cloud Data Centers. Proceedings

of JCSSE 2023, IEEE, Phitsanulok, Thailand, pp.

1–16.

[12] Zhang, B., Wang, X., and Wang, H. (2021). Virtual

Machine Placement Strategy Using Cluster-Based

Genetic Algorithm. Journal of Neurocomputing,

vol. 428, pp. 310-316.

[13] Wang, X., Lou, H., and Dong, Z. (2023).

Decomposition Based Multi-Objective

Evolutionary Algorithm for Virtual Machine and

Task Joint Scheduling of Cloud Computing in Data

Space. Journal of Swarm and Evolutionary

Computation, vol. 77, pp. 1-17.

[14] Gharehpasha, S., and Masdari, M. (2021). A

discrete chaotic multi-objective SCA-ALO

optimization algorithm for an optimal virtual

machine placement in cloud data center. Journal of

Ambient Intelligence and Humanized

Computing, 12, 9323-9339.

[15] Boominathan, P., Aramudan, M., and

Saravanaguru, K. R. (2017). Fuzzy Bio-Inspired

Hybrid Techniques for Server Consolidation and

Virtual Machine Placement in Cloud Environment.

Cybernetics and Information Technologies, 17(4),

pp. 52-68.

[16] Gagwero, M. G., and Caviglione, L. (2019). Model

Predictive Control for Energy Efficient, Quality-

Aware Virtual Machine Placement. IEEE

Transactions on Automation Science and

Engineering, 16(1), pp. 420-432, Jan. 2019.

[17] Sharma, S., Kumar, S., Mohapatra, S., and Rani, R.

(2020). Discrete Gravitational Search Algorithm

for Virtual Machine Placement in Cloud

Computing. International Journal of Advanced

Science and Technology, 29(8s), pp. 1261-1267.

[18] Wang, M., and Lu, G. (2021). A Modified Sine

Cosine Algorithm to Solve Optimization

Problems. Journal of IEEE Access, pp. 27434-

27450.

[19] Xing, H., Zhu, J., Qu, R., Dai, P., Luo, S.,

Muhammad, and Iqbal, A. (2022). An ACO for

Energy-Efficient and Traffic-Aware Virtual

Machine Placement in Cloud Computing. Journal

of Swarm and Evolutionary Computation, vol. 68,

pp. 1-18

[20] Chalabi, N. E., Attia, A., Bouziane, A., and

Hasaballah, M. (2023). An Improved Marine

Predator Algorithm Based on Epsilon Dominance

and Pareto Archive for Multi-Objective

Optimization. Journal of Engineering Applications

of Artificial Intelligence, 119(1), pp. 1-18

[21] Basset, M. A., Mohamed, R., and Mirjalili, S.

(2021). A Novel Whale Optimization Algorithm

Integrated with Nelder Mead Simplex for Multi-

Objective Optimization Problems, Journal of

Knowledge-Based Systems, vol. 212, pp. 1-28.

[22] Ding, Z., Cao, L., Chen, L., Sun, D., Yi, X., Zhang,

Z., and Tao, Z. (2023). Large Scale Multimodal

Multi-Objective Evolutionary Optimization Based

on Hybrid Hierarchical Clustering. Journal of

Knowledge-Based Systems, vol. 266, pp. 1-22

[23] Xiang, Z., Zhou, G., and Luo, Q. (2021). Golden

Sine Cosine Salp Swarm Algorithm for Shape

Matching Using Atomic Potential Function.

Journal of Expert Systems, 39(15), pp. 1-24, Nov.

2021.

[24] Z. Xiang. G. Zhou and Luo, Q. (2020). “A New

fusion of Salp Swarm with Sine Cosine for Non-

Linear Function”, Journal of Engineering with

Computers, pp.185-212.

[25] Salami, H., Bala, A., & and Sait, S. (2021). An

Energy Efficient Cuckoo Search Algorithm for

Virtual Machine Placement in Data Centers. The

Journal of Supercomputing, vol. 77, no. 11, pp. 1-

28, Apr. 2021.

[26] Farshin, A., and Sharifian, S. (2019). A Modified

Knowledge-based Ant Colony Algorithm for

Virtual Machine Placement and Simultaneous

Routing of NFV in Distributed Cloud Architecture.

The Journal of Supercomputing, vol. 75, no. 8, pp.

5520–5550.

[27] Sharma, S. K., and Ghai, W. (2023). Artificial Bee

Colony Optimized VM Migration and Allocation

using Neural Network Architecture. Journal of

Advanced Technology and Engineering

Exploration, vol. 10, no. 102, pp. 590–607.

[28] Patra, M., Misra, S., Sahoo, B., and Turuk, A.

(2022). GWO-Based Simulated Annealing

Approach for Load Balancing in Cloud for Hosting

Container as a Service. Journal of Applied

Sciences, vol. 12, no. 21, pp. 1–22, Nov. 2022.

[29] Vijaya, C., and Srinivasan, P. (2024). Multi-

objective Meta-heuristic Technique for Energy

Efficient Virtual Machine Placement in Cloud

Computing Data Centers. Informatica, vol. 48, no.

1, pp. 1–18.

https://doi.org/10.31449/inf.v48i6.5263.

[30] Gupta, N., Gupta, K., Qahtani, A. M., Gupta, D.,

Shalharithi, F. S., Singh, A., and Goyal, N. (2022).

Energy Aware Live VM Migration using

Ballooning in Cloud Data Centers. Electronics,

vol. 11, no. 23, pp. 1–16.

[31] Pande, S. K., Panda, S. K., Das, S., Sahoo, K. S.,

Luhach, A. K., Jhanjhi, N. Z., Alrobaea, R., &

Sivanesan, S. (2023). A Resource Management

https://doi.org/10.31449/inf.v48i6.5263

Hybrid Fuzzy Metaheuristic Technique for Efficient VM Selection… Informatica 48 (2024) 127–146 145

Algorithm for Virtual Machine Migration in

Vehicular Cloud Computing. Computers,

Materials and Continua, vol. 67, no. 2, pp. 2647–

2663.

[32] Gupta, A., & Namasudra, S. (2022). A Novel

Technique for Accelerating Live Migration in

Cloud Computing. Automated Software

Engineering, vol. 29, no. 1, May 2022.

DOI:10.1007/s10515-022-00332-2.

[33] Kaur, A., Kumar, S., Gupta, D., Hamid, Y., Hamdi,

M., Ksibi, A., Elmannai, H., & Saini, S. (2023).

Algorithmic Approach to Virtual Machine

Migration in Cloud Computing with Updated

SESA Algorithm. Sensors, vol. 23, no. 13, pp. 1–

18.

[34] Booba, B., Anitha, J. J., Mohan, C., &

Jeyalakshmi, S. (2024). Hybrid Approach for

Virtual Machine Allocation in Cloud Computing.

Sustainable Computing: Informatics and Systems,

vol.41, DOI: 10.1016/j.suscom.2023.100922.

[35] Aydilek, I. B. (2018). A Hybrid Firefly and Particle

Swarm Optimization Algorithm for

Computationally Expensive Numerical Problems.

Applied Soft Computing, vol. 66, pp. 232–249.

[36] Thirugnanasambandam, K., Rajkumar, R.,

Alghamdi, A. S., Alshamrani, S. S., Maharajan, K.,

& Rashid, M. (2023). Energy Efficient Virtual

Machine Placement in Distributed Cloud using

NGSA III Algorithm, Journal of Cloud

Computing, vol. 12(124).

[37] Basset, M. A., Abdle-Fatah, L., & Sangaiah, A. K.

(2018). An Improved Levy Based Whale

Optimization Algorithm for Bandwidth-Efficient

Virtual Machine Placement in Cloud Computing

Environment. Cluster Computing, vol. 22(1), Jan.

2018, pp. 8319–8334.

[38] Bhatt, C., & Singhal, S. (2023). Hybrid

Metaheuristic Technique for Optimization of

Virtual Machine Placement in Cloud. International

Journal of Fuzzy Logic and Intelligent Systems,

vol. 23(3), Sept. 2023, pp. 353–364.

[39] Azizi, S., Zandsalimi, M., & Li, D. (2020). An

Energy Efficient Algorithm for Virtual Machine

Placement Optimization in Cloud Data Center,

Cluster Computing, vol. 23(1), Mar. 2020, pp.

3421–3434.

[40] Gopu, A., & Venkataraman, N. (2021). Virtual

Machine Placement using Multi-objective Bat

Algorithm with Decomposition in Distributed

Cloud: MOBA/D for VMP. Applied Metaheuristic

Computing, vol. 12(4), Oct. 2021, pp. 62–77.

[41] Boominathan, P., & Aramudan, M. (2016). A

Firefly Colony and Its Fuzzy Approach for Server

Consolidation and Virtual Machine Placement in

Cloud Datacenters. Advances in Fuzzy Systems,

vol. 2016, Article ID: 6734161, pp. 1–15.

https://doi.org/10.1155/2016/6734161.

[42] Govardhan, P., & Srinivasan, P. (2022). Multilevel

Controller-Assisted Intrinsically Modified Ant

Colony Optimization Heuristic-Based Load-

Balancing Model for Mega Cloud Infrastructures.

International Journal of Communication Systems,

vol. 35(6), Jan. 2022. DOI:10.1002/dac.5091.

[43] Dhal, K. G., Das, A., & Galvez, J. (2021). A Novel

Fuzzy Logic-Based Improved Cuckoo Search

Algorithm. International Journal of Applied

Metaheuristic Computing, vol. 13(1).

https://orcid.org/0000-0002-6748-0569.

[44] Gu, H., Wang, J., Yu, J., Wang, D., Li, B., He, X.,

& Yin, X. (2023). Towards Virtual Machine

Scheduling Research Based on Multi-Decision

AHP Method in Cloud Computing Platform. PeerJ

Computer Science, vol. 2023(1675), Nov. 2023, p.

22. DOI:10.7717/peerj-cs.1675.

[45] Mukhija, L., & Sachdeva, R. (2023). An Optimal

Cuckoo Search Algorithm for VM Selection for

Energy-Efficient Migration in Cloud Computing.

Eur. Chem. Bull., vol. 12(7), pp. 1596–1607.

[46] SeyyedSalehi, S. M., & Khansari, M. (2022).

Virtual Machine Placement Optimization for Big

Data Applications in Cloud Computing. IEEE

Access, vol. 10(1), pp. 96112–96127.

https://doi.org/10.1109/ACCESS.2022.3203057.

[47] Liu, P., & Zhang, S. (2021). A Novel Cuckoo

Search Algorithm and its Application. Applied

Sciences, vol. 11(1), pp. 1071–1081.

[48] Vijaya, C., & Srinivasan, P. (2024). Multi-

Objective Meta-Heuristic Technique for Energy-

Efficient Virtual Machine Placement in Cloud

Data Centers. Informatica, vol. 48(6), pp. 1–18,

Feb. 2024.

https://doi.org/10.1155/2016/6734161
https://orcid.org/0000-0002-6748-0569
https://doi.org/10.1109/ACCESS.2022.3203057

146 Informatica 48 (2024) 127–146 C. Vijaya et al.

