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The rapid expansion of cloud computing has made maintaining Quality of Service (QoS) across dynamic 

workloads essential. Virtual machine (VM) migration is crucial for optimizing resource management; 

however, traditional migration techniques, which rely on static parameters, often lead to inefficiencies, 

such as increased energy consumption, higher migration costs, and suboptimal resource utilization. To 

address these challenges, a novel fuzzy-based hybrid optimization technique, FCSFFC, is proposed, 

integrating fuzzy logic with advanced optimization methods, Cuckoo Search and Firefly Colony 

Optimization. This technique introduces a dynamic threshold-based load prediction mechanism that adapts 

to real-time conditions, ensuring efficient VM placement and migration. The performance of this algorithm 

was rigorously evaluated using real workload data in a CloudSim simulation environment. Compared to 

state-of-the-art algorithms, the proposed approach demonstrated a 31.7% improvement in migration cost, 

achieving the lowest migration cost. Additionally, the proposed approach achieved the lowest energy 

consumption, using 2% less energy than other methods. In terms of load management and resource 

availability, the algorithm showed a significant reduction in the load parameter and the highest resource 

availability, minimizing unnecessary migrations. It also achieved the shortest computation time, completing 

tasks in 4.003 seconds compared to up to 9.2 seconds for traditional techniques. These results underscore 

the effectiveness of the proposed method in enhancing cloud service efficiency by optimizing energy 

consumption, reducing migration costs, and improving overall system performance. 

Povzetek: Razvita je nova hibridno metoda FCSFFC za učinkovito migracijo virtualnih strojev (VM) v 

oblačnih podatkovnih centrih. Tehnika združuje mehko logiko in optimizacijska algoritma Cuckoo Search 

ter Firefly Colony Optimization. Rezultati kažejo 31,7 % nižje stroške migracije ter zmanjšanje porabe 

energije za 2 %, kar kaže potencial metode za izboljšanje učinkovitosti upravljanja virov.

1 Introduction 
Cloud computing has emerged as a highly lucrative 

sector within the Information Technology industry, 

offering virtual services for data processing and storage 

to enterprises of all sizes. Businesses increasingly opt for 

cloud services over developing their own infrastructure 

due to the high costs involved. The primary advantage of 

cloud computing lies in its virtual provisioning, which 

enables resource access from any location at any time. 

This pay-per-use model has led to a surge in cloud 

adoption. However, as the benefits of mobility, 

adaptability, and compatibility drive more users to the 

cloud, the associated computing demands have risen 

significantly. To handle both expected and unexpected 

loads and meet computational requirements, cloud service 

providers have implemented hybrid clouds. These systems 

combine private cloud resources with additional public 

cloud resources, preventing the need for additional servers 

and ensuring efficient resource utilization. Despite these 

advantages, the increase in cloud usage escalates 

computational costs. Effective load management is crucial  

 

to maintaining service quality and meeting service level 

agreements (SLAs). This necessity highlights a significant 

gap in current approaches, which often rely on static 

thresholds for overload detection. Static methods fall short 

in dynamic cloud environments, where load conditions 

can fluctuate significantly. Existing methods for VM 

migration often rely on predefined thresholds and static 

policies to determine when and how to migrate resources. 

These approaches can lead to suboptimal decisions, 

increased costs, and delays in responding to dynamic 

workloads. Consequently, there is a pressing need for 

automated migration techniques that are accurate and 

adaptable to varying application contexts. This gap 

underscores the importance of developing more efficient 

migration strategies to enhance traffic management, 

reduce hardware maintenance, and lower energy 

consumption. Virtual machine (VM) migration is critical 

in commercial virtualization applications where resource 

requirements exceed available complementary resources. 

The challenge lies in managing these migrations without 

compromising service quality or breaching SLAs. In order 

to achieve better traffic management, reduced hardware 
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maintenance, energy management, and server 

consolidation, the majority of cloud services enable virtual 

machine migration. In conventional methods, the 

relocation procedure is typically governed by predefined 

rules and static thresholds, which may not effectively 

adapt to the dynamic nature of workloads. This causes bad 

decisions to be made, which raises costs and delays the 

migration process. Reducing costs and energy 

consumption is the main goal of the virtual machine 

migration; nevertheless, static thresholds and predefined 

rules can lead to suboptimal decisions and increased costs, 

highlighting the need for automated migration techniques 

that adapt to the dynamic nature of workloads. Dynamic 

VM migration is crucial for addressing these challenges, 

particularly in terms of energy and resource management. 

Effective VM migration strategies can help reduce energy 

consumption and optimize resource utilization, which are 

critical for improving overall data center efficiency. 

Current techniques often fall short in dynamically 

adapting to changing conditions, leading to inefficiencies 

and increased costs [1] [2]. Therefore, enhancing 

migration strategies to incorporate real-time data and 

adaptive thresholds is essential. There are two primary 

categories of migration: live and non-live [3]. Service 

providers generally prefer non-live migration to minimize 

user service interruptions. Several techniques have been 

proposed to assess VM utilization and relocate 

underutilized VMs to target systems. However, selecting 

the appropriate VM for migration remains essential to 

prevent performance degradation and negative impacts on 

QoS. The FCSFFC algorithm aims to address these 

challenges by developing a hybrid optimization algorithm 

that integrates the Fuzzy Cuckoo Search (FCS) algorithm 

with the Fuzzy Firefly Colony (FFC) algorithm. This 

hybrid approach aims to enhance VM migration 

efficiency, reduce energy consumption, and improve 

overall performance. Current optimization models for VM 

migration have limitations concerning QoS and SLA 

parameters. By combining these fuzzy-based algorithms, 

the proposed algorithm seeks to bridge these gaps and 

provide a more effective solution for managing VM 

migrations in cloud computing environments. 

Furthermore, the migration needs to be accurate and 

flexible to fit different application contexts. Similar to 

this, choosing the right virtual machine for the migration 

process is essential since the decision system needs to 

choose the right VM or else the target application's and the 

VM's performance would deteriorate and negatively 

impact QoS.   

 

2 Related works  
In cloud computing, virtualization is the most challenging 

research topic. This section presents an analysis and 

survey of related issues. In datacenters, virtual machines 

are mapped to the appropriate physical machines [5]. A 

one-dimensional Virtual Machine placement algorithm 

was studied by R. Panigrahy et al., [6]. To operate the data 

center effectively while taking multiple objectives into 

account, the physical machines must provide the virtual 

machines with the proper support [7]. Numerous scholars 

have examined the approaches that employ meta-heuristic 

algorithms in cloud computing settings. However, the 

initial positioning of the VMs is the main focus of these 

algorithms. In order to give users a high-quality 

experience, virtual machine placement should prioritize 

power conservation and adhere to service level 

agreements [8]. To arrange virtual machines for effective 

power management and resource utilization, a variety of 

algorithms are available that offer the best possible 

placement.  

The authors in [9] have presented a hybrid algorithm 

combining Chaotic Particle Swarm Optimization 

algorithm with adaptive mutation and energy aware 

algorithms used for better resource utilization. 

Metaheuristic evolutionary methods such as ACO-based 

approaches [19], GWO based methods [28], and VM 

migration using Ballooning [30] and Hill Climbing based 

approaches, Particle Swarm Optimization PSO) based 

approaches, Memetic approaches [10], and Genetic 

method-based approaches [34], Biogeography Based 

Optimization (BBO) approaches have been hybridized so 

far in Virtual Machine Placement. According to these 

papers, hybrid meta-heuristic approaches will be the most 

promising area of study for resolving the virtual machine 

placement problem. The use of meta-heuristic algorithms 

in cloud computing environments has been extensively 

researched. Effective server consolidation techniques are 

one way to enhance data centers. The proposed method 

lowers a data center's power consumption, which is 

currently the most difficult thing to do to keep data centers 

sustainable. A multi-objective grouping Genetic 

Algorithm [11] for reducing energy consumption and 

resource waste has been presented by C. Sonklin et al. A 

fitness function that weighs the two goals and makes a 

trade-off between the objectives has been identified. 

An algorithm has been developed by Zhang et al. [12] to 

cluster the current generation's population and choose 

people from various groups with fewer cross-over 

operations. They have demonstrated that their algorithm 

outperforms the conventional genetic algorithm by using 

the runtime to ascertain the preference of virtual machines 

over physical machines as well as to generate the first 

solutions. X. Wang et al., [13] define a mathematical 

model to lower make span, cost, and overall tardiness. A 

pre-selected dynamic resource allocation has been 

suggested. They have used a classifier to filter the 

subproblem solutions in the decision space. A chaotic 

multi-objective optimization algorithm was defined by S. 

Garepasha et al., [14] for virtual placement in data centers. 

To accomplish server load balancing and cut down on 

resource waste, they have hybridized Sine Cosine (SCA) 

and Ant Lion Optimizer (ALO). In their work, P. 

Boominathan et al. [15] used a fuzzy hybrid bio-inspired 

technique to solve the server consolidation problem 

related to virtual machine placement. To select the next 

virtual machines (VMs) for the current server, fuzzy rules 

were created. The new ideal solution has been discovered 

using the Cuckoo search method. Thus, they have created 

an algorithm for server consolidation by merging ACS and 

the Firefly Colony Algorithm. Comparing both of them to 
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other algorithms that are similar, such as FFC, ACS, 

MMAS, and FFD, has shown which one produces the best 

results. M. Gagwero e al., [16] examined how the MPC 

placement algorithm, which outperforms traditional 

heuristics in datacenters, minimizes power consumption, 

minimizes the effects of churn, and enforces security 

requirements. In their paper, Sharma et al., [17] 

discovered the Gravitational search algorithm, a 

population-based meta- heuristic algorithm for solving 

non-linear problems based on the laws of motion and 

gravity. The number of physical machines used is taken 

into account when calculating fitness. The outcomes were 

compared with the Ant Colony 

Optimization (ACO), FLC, and FFD algorithms. It works 

better than any other method, according to the results. In 

their work, M. Wang et al. [18] improve the Sine Cosine 

Algorithm (SCA) for optimization problems by adding a 

linear search path and a parameter that prevents the SCA 

from sinking into the local optimal solution. The focus of 

H. Xing et al. [19] is on reducing the amount of energy 

and network bandwidth used. They first choose the server 

with the lowest power consumption, and then they favor 

the server with the lowest network bandwidth resource 

consumption. and demonstrated that their algorithm 

(ETA-ACO) outperforms the algorithms that were 

compared. 
N. Chalabi et al., [20] suggest an improved marine 

predator algorithm based on Epsilon dominance and the 

Pareto archive for multi-objective optimization. 

Generally, the Marine Predator algorithm is used to solve 

single objective problems. But they have designed it to 

solve multi objective problems. Pareto dominance and 

Epsilon dominance concepts are used to arrive at the 

solution. The Whale Optimization Algorithm was 

enhanced by M.A. Basset et al., [21] by altering the 

distance control factor and quickening the convergence. 

They believe that the most appropriate algorithms for 

optimization are evolutionary ones. A multimodal 

evolutionary algorithm was presented by Z.Ding et 

al.,[22]. They have embraced numerous subpopulations, 

and each one assesses its own autonomous evolution. 

Subpopulations are clustered hierarchically to avoid 

population discarding. Z. Xiang [23] enhanced the 

algorithm's optimization capability by combining the salp 

swarm algorithm and the sine-cosine algorithm for the 

shape matching process. A stochastic optimization 

problem that places a probabilistic limit on resource 

overflow is used to formulate the entropy of resource 

requirements by virtual machines (VMs). A stochastic 

VM placement algorithm takes this uncertainty into 

account. [24]. 
In order to find the best location for the virtual machines, 

a make span model, a cost and utilization mathematical 

model, and the efficiency of the Levy flight of cuckoos 

have been developed [25]. An Ant Colony system that 

uses an optimized chaotic Grey Wolf knowledge base to 

determine where to place virtual network functions and 

distribute paths based on knowledge of software-defined 

network controllers. The suggested algorithm has been 

shown to converge with fewer iterations in a shorter 

amount of computing time [26]. An artificial bee colony 

and chicken swarm optimization algorithm have been 

suggested in this paper for an efficient virtual machine  

 

 

 

placement considering load, migration cost, and power 

consumption to prove it performs better than existing 

techniques. The Simulated Annealing Approach [28], 

which is combined with Grey Wolf Optimization, used in 

container-based virtualization, has been shown to perform 

better than other existing algorithms in terms of make span 

and load variation. This approach replaces traditional 

algorithms for virtualization. A hybridization of the Ant 

Colony Optimization and Sine Cosine algorithms has been 

performed for solving a multi-objective meta-heuristic 

problem in datacenters, considering minimization of 

resource wastage and power consumption. The 

experimental findings demonstrate that the ACOSCA 

algorithm [29] increased resource utilization by 16%, 

reduced power consumption by 24%, and improved 

execution time by 3%. A live virtual machine migration 

algorithm called live migration with efficient ballooning 

(LMEB) [30] has been proposed. Its main goal is to 

minimize the amount of data that must be moved from the 

source server to the destination server in order to lower the 

migration's overall energy consumption. The LMEB 

algorithm achieves this by optimizing the data transfer 

process, which helps reduce the associated downtime and 

operational disruptions. Additionally, its focus on 

minimizing data movement leads to lower overall energy 

costs and improved performance during the migration 

process. Using a VM migration technique, the authors of 

[31] proposed a resource management algorithm called 

"RU-VMM." The study took into account both successful 

and unsuccessful migrations when determining the 

resource utilization threshold. Three algorithms, namely 

Host Selection Migration Time (HSMT), VM 

Reallocation Migration Time (VMRMT), and VM 

Reallocation Bandwidth Usage (VMRBU) were proposed 

by the authors of [32] to minimize the overall migration 

time. A 25% decrease in overall migrations was also 

achieved. A 13% energy reduction was attained. By 

utilizing elastic scheduling, which the smart elastic 

scheduling algorithm (SESA) influences, the authors of 

[33] have created a virtual machine allocation and 

migration algorithm that is more energy-efficient. In our 

proposed algorithm, minimizing energy consumption, 

minimizing resource wastage and improving the migration 

cost are our main objectives. In Section 3, the proposed 

work, evolutionary multi-objective optimization objective 

functions, host overload detection, and the basics of the 

Cuckoo Search Algorithm (CS), the FFC algorithm, and 

the FCSFFC algorithm have been explained. This section 

provides a comprehensive overview of the methodologies 

employed, highlighting their significance in enhancing 

virtual machine migration efficiency. In Section 4, results 

were discussed. In Section 5, the conclusion of the paper 

is given. This section presents the suggested hybrid 

optimization methodology for choosing the optimal VMs 

for virtual machine migration.  
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 Table 1: Summary table optimizing resource usage and power consumption 

S. 

No 
Optimization objectives Optimization Method Study Limitations 

1 

Minimizing Resource 

Usage and power 

Consumption and 

maximizing Efficiency 

𝛽-Hill Climbing 

Algorithm 

Hybrid Approach for Virtual 

machine Allocation in Cloud 

Computing [34] 

Easily enters into a 

local optimum 

2 
Minimize Execution 

time and Migration cost 

Enhanced Firefly 

algorithm 

PSO algorithm and 

Coyote Optimization 

Algorithm 

A hybrid firefly and particle swarm 

optimization algorithm for 

computationally expensive 

numerical problems [35] 

Migration time is 

high 

3 

Spacing and overall 

non-dominated vector 

generation 

A Multi objective 

evolutionary algorithm 

Energy-efficient Virtual Machine 

Placement in distributed cloud using 

NSGA-III algorithm [36] 

Migration time is 

high 

4 

Minimize the number 

of Physical Machines 

and Power 

Consumption 

Levy based Whale 

optimization algorithm 

An improved Levy based Whale 

Optimization Algorithm for 

Bandwidth efficient virtual Machine 

Placement in Cloud Computing 

Environment [37] 

Migration time is 

high 

5 

Minimizing Resource 

Usage 

Energy Consumption 

simulated annealing-

intelligent water drop 

cycle algorithm 

Hybrid Metaheuristic Technique for 

Optimization of Virtual Machine 

Placement in Cloud [38] 

Easily enters into a 

local optimum 

6 

Minimizing 

Resource Wastage 

Power Consumption 

Resource Usage Factor 

Model using reward and 

Penalty Mechanism 

An Energy-efficient Cuckoo Search 

Algorithm for Virtual Machine 

Placement in cloud computing data 

centers [39] 

Limited to two 

dimensions 

7 

Minimizing 

Power Consumption 

and Network Latency 

and Maximization of 

Economic Revenue 

 

Bat Algorithm with 

decomposition 

Virtual Machine Placement using 

Multi-objective Bat Algorithm with 

decomposition in Distributed Cloud: 

MOBA/D for VMP [40] 

Easily enters into a 

local optimum 

8 

Minimizing 

Resource Usage 

Power Consumption 

Bio inspired FFC 

approach for server 

consolidation and VM 

Placement 

A Firefly Colony and Its Fuzzy 

Approach for Server Consolidation 

and Virtual Machine Placement in 

Cloud Datacenters [41] 

 

A few simplifying 

steps to accomplish 

the objective 

 

9 

Minimizing No. of 

Migrations and 

Improving QoS 

Multilevel intrinsically 

controller‐assisted 

modified ant colony 

optimization 

Multilevel controller‐assisted 

intrinsically modified Ant Colony 

Optimization heuristic‐based load‐

balancing model for mega cloud 

infrastructures [42] 

Migration time is 

high 

10 
Minimizing Power 

Consumption 

Fuzzy Logic-Based 

Improved Cuckoo 

Search Algorithm 

Novel Fuzzy Logic-Based Improved 

Cuckoo Search Algorithm [43] 

Migration time is 

high 

11 

Minimizing Migration, 

Service Level 

Agreement Violations, 

and energy 

consumption 

Multi-decision AHP 

(Analytic Hierarchy 

Process) method 

Towards Virtual Machine 

Scheduling research based on multi-

decision AHP method in the cloud 

computing platform [44] 

Migration time is 

high 

12 

Minimizing Power 

consumption and 

Service Level 

Agreement Violation 

(SLA-V). 

Cuckoo search 

Algorithm for VM 

Selection 

An Optimal Cuckoo Search 

Algorithm for VM Selection for 

Energy Efficient Migration in Cloud 

Computing [45] 

The migration takes 

too much time in 

live migration 

13 
Higher Computational 

Accuracy 

Gravitational 

Acceleration and 

Cuckoo Search 

Algorithm 

Virtual Machine Placement 

Optimization for Bigdata 

applications in Cloud computing 

[46] 

Ignoring the extra 

energy required for 

moving virtual 

machines 
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Cloud computing and wireless sensor networks make 

extensive use of optimization models like Artificial Bee 

Colony optimization, Ant Colony Optimization, and other 

similar models [23]. Nevertheless, the features of 

optimization models in virtual machine migration have 

only been covered in a small number of publications. This 

work suggests a hybrid method for virtual machine 

migration that combines Cuckoo Search optimization with 

Firefly Colony approach. Combining these two algorithms 

with fuzzy rules incorporated into them, enhances the 

performance and allows it to successfully escape from 

local optima, which raises overall performance during the 

migration phase. Cuckoo search uses less parameters than 

other optimization algorithms, making it easier to set up 

than others. The superior computing efficiency sets FFC 

apart from other methods. When these algorithms are 

hybridized, complicated problems can have an improved 

optimal solution. The energy consumption, Migration 

cost, Resource availability and Computation time are 

studied in our research work. 

   A dynamic CPU threshold is employed in this algorithm 

to evaluate the overload detection of the host. The IQR 

method is used for determining the CPU threshold. If there 

are more user resource requests than available resources, 

the physical machine is deemed to be overloaded in the 

resource allocation process. In that instance, conventional 

resources must be made available to lower the physical 

machine load. To meet user requirements, virtual 

machines (VMs) are migrated to physical machines during 

this stage of the process. Energy use, resource use, 

computation costs, and migration costs are all taken into 

account during the migration process. Avoiding needless 

migrations improves resource utilization characteristics 

and cloud performance, as resource usage requirement 

prediction raises overall resource utilization. Four major 

objectives considered in this research are: Minimize 

energy consumption, resource wastage, migration cost and 

computation time. 

  A table summarizing the state-of-the-art algorithms with 

its optimization objectives for Virtual Machine placement, 

optimization methods chosen, and the name of the study 

is presented in Table 1 and the overview of the proposed 

optimization is presented in Fig.  1. 

 

3 Proposed work 
In the context of optimizing cloud data centers, accurately 

modeling energy consumption, resource wastage, and 

migration costs is crucial to achieving efficient resource 

utilization and minimizing operational costs. This section 

presents the mathematical models used to evaluate these 

factors, beginning with energy consumption, which is a 

significant concern in large-scale data centers. Following 

this, we address resource wastage, a critical measure of the 

efficiency of VM placement strategies, and finally, the 

migration cost, which plays a vital role in ensuring 

minimal disruptions and enhanced performance during 

VM relocations. These models collectively provide a 

comprehensive framework for assessing and improving 

the overall efficiency and sustainability of cloud data 

center operations. 

 

a. Energy consumption modeling     

Assume that there are 'n' Virtual Machines (VMs) on 'm' 

Physical Machines (PMs). It is given that under the capacity 

constraint, the capacity of any VM is not greater than the 

capacity of any PM. 𝑇𝑝𝑟  𝑎𝑛𝑑 𝑇𝑚𝑦  denote the maximum 

capacity of a single Physical Machine and 𝑅𝑝𝑟 𝑎𝑛𝑑 𝑅𝑚𝑦 

reflects the CPU need of each virtual machine.     

𝑷𝒋 is the power consumed by the server j, 𝑷𝒃𝒖𝒔𝒚 and 𝑷𝒊𝒅𝒍𝒆   

are the power consumed in the busy state and the idle state 

of the server. 𝑼𝑱
𝒑𝒓

  is the normalized CPU usage which is 

calculated as remaining CPU capacity divided by total 

capacity. The cost of power consumption is given in Eqn. 

(1). By summing up the power consumption values over 

discrete time intervals, the total energy consumption 𝑬𝒋, is 

approximated. The cost of energy consumption is given in 

Eqn. (2). 

 

𝑬𝒋 = ∑ 𝑷𝒋(𝒌) 𝑵
𝒌=𝟏  

 

(2) 

𝑷𝒋(𝒌)  is the power consumption of server 𝒋 at time 𝒌.  

b. Resource wastage modeling    

There are many VM placement solutions which vary in 

the number of resources remaining on each server. 

Multidimensional resources should be completely 

utilized. Therefore, the cost of wasted resource is 

evaluated by the below equation: 

 

𝒘𝒋  =   
| 𝑳

𝒑𝒓
𝒋        − 𝑳𝒋

𝒎𝒚
  |    + ∆ 

| 𝑼
𝒑𝒓

𝒋       −  𝑼
𝒎𝒚

𝒋                 |
 (3) 

               

𝑤𝑗 represents the resource wastage in jth server.  𝑈
𝑝𝑟

𝑗        −

 𝑈𝑗
𝑚𝑦

 represents the CPU and memory usage utilized in a 

physical machine. It is the ratio between used resources to 

the total resources available.   𝐿𝑗
𝑝𝑟

− 𝐿𝑗
𝑚𝑦

    represents 

remaining resources in terms of CPU and memory.  ∆  is a 

small positive integer to avoid the capacity of the physical 

machine coming down to zero and it is set to 0.0001. This 

addition is because of the uncertainties in the cloud 

environment. These models use Minimization of 

Migrations for hot spot selection and Modified Best Fit 

decreasing for virtual machine placement. 

 

c. Migration cost modeling 

The next objective is calculating migration cost triggered 

by a placement of 𝑽𝑴𝒊. Given a current placement of 

𝒏 VMs, the migration cost in terms of load aims to 

optimize resource utilization and performance while 

𝑷𝒋=

{
[(𝑷𝒃𝒖𝒔𝒚 − 𝑷𝒊𝒅𝒍𝒆 )𝑿 𝑼𝑱

𝑪] + 𝑷𝒊𝒅𝒍𝒆  , 𝒊𝒇 𝑼𝑱
𝒑𝒓

> 𝟎 

𝟎 , 𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                      
 

 

(1) 
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Figure 1: Overview of proposed optimization 

          

 

minimizing operational disruptions and costs associated 

with VM movements in cloud environments at different 

states is calculated using the formula in Eqn. (4). 

 

𝐟(𝐱)=∑ 𝐂(𝐯𝐦𝐢, 𝐱𝐢) + 𝐂(𝐯𝐦𝐢, 𝐱𝐢
′)𝐢∈𝟏,𝐧 ,                       (4) 

 

Where 𝐂(𝐯𝐦𝐢, 𝐱𝐢)  is the cost of VMs in source and 

𝐂(𝐯𝐦𝐢, 𝐱𝐢
′) is the cost of VMs in destination.  

 

3.1   Overloaded host prediction 
A stochastic prediction model has been developed to 

identify overloaded hosts. Each host executes an 

algorithm periodically to assess current load conditions, 

aiding in the identification of overloaded nodes and 

ensuring SLA compliance.   Unlike many existing 

methods that rely on fixed thresholds for overload 

detection, CPU utilization per host is estimated to detect 

overloads. Static thresholds are less effective in dynamic 

cloud environments, particularly in IaaS scenarios where 

load conditions fluctuate. Hence, dynamic CPU utilization 

is utilized for overload detection. 

The dynamic thresholding scheme adjusts CPU utilization 

thresholds based on real-time variations. Larger deviations 

in CPU utilization suggest the need for lower upper 

thresholds. Increased deviations in usage patterns heighten 

the risk of nearly maximum CPU utilization, thereby 

increasing the chances of SLA breaches. To address these 

challenges, the hybrid model integrates inter-service 

relationships and variational data for dynamically 

adjusting thresholds. The hybrid model employs both Inter 

Quartile Range (IQR) and modified Local Regression 

Robust (LRR) techniques to estimate dynamic CPU 

thresholds [40]. The IQR method calculates the range 

between the first and third Quartiles of the CPU 

requirements of VM.: 

Using the IQR value, the upper CPU utilization threshold 

per node is estimated as follows: 

Ti=1 − s⋅IQR 
(6) 

𝐓𝐢  is the upper threshold to determine the CPU utilization 

per node. 

3.2   Evolutionary multi-objective              

optimization  

Evolutionary multi-objective algorithms, in general, 

employ a population-based method to identify a close to 

optimal solution. Solutions that could be improved in 

more than one objective function are known as Pareto 

optimal  

 

solutions. However, multiple objective functions ought to 

be optimized concurrently. There's little doubt that the 

performance in the remaining functions will suffer. The 

concept of dominance is used by the majority of 

algorithms in the selection process. One way to phrase a 

multi-objective minimization problem is as follows: 

 

Minimize 

 

𝑓(𝑑𝑣⃗⃗ ⃗⃗⃗) 

=[𝑓1(𝑑𝑣1 … 𝑑𝑣𝑚), … . . 𝑓𝑛(𝑑𝑣1 … 𝑑𝑣𝑚)] 

 

(7) 

 

𝑑𝑣⃗⃗ ⃗⃗⃗ = (𝑑𝑣1 … 𝑑𝑣𝑚)  ∈ 𝑋 

 𝑓 ⃗⃗⃗ ⃗  = (𝑓1 … 𝑓𝑛)  ∈ 𝑌 

 

Where ‘𝑚’ is set of decision variables and ‘𝑛’ are the 

set of objectives.  𝑑𝑣⃗⃗ ⃗⃗⃗   denotes the decision vector, 𝑓𝑣⃗⃗⃗⃗⃗  
denotes the objective vector, 𝑋 is the variable space and Y 

is the objective area. The dominating points are those in 

which the decision vector 𝑑𝑣⃗⃗ ⃗⃗⃗ has better objective than any 

other decision vector. Find every non-dominated, multi-

objective solution set within a solution set. Take the first-

choice variable first. For domination, compare the first 

variable with every other variable that is still present. 

When the first solution, 𝑑𝑣𝑖 , achieves its goals more 

successfully than the second, 𝑑𝑣𝑗 , it dominates the other. 

With the exception of the marked solution, all other 

solutions are non-dominated. Mark the dominating 

solution. Let's say we have a certain number (n) of 

physical machines that are currently running applications. 

Assume that each application is handled as a distinct 

IQR=Q3 - Q1 (5) 
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virtual machine (VM) that needs to be run. A 

multidimensional vector packing problem is mapping a 

virtual machine to a PM. The various dimensions are 

represented by different CPU and memory utilization 

rates. For illustration, consider two requests: one for a 

virtual machine (VM) with 20% CPU and 30% memory, 

and another for a VM with 35% CPU and 40% memory. 

Then, 55% of the server's usage will be computed as CPU 

and 70% as memory. For every dimension, the resources 

will be used up to 90% of the time. In order to prevent 

server performance degradation and potential VM 

migration, we must impose a 90% utilization boundary, 

which is less than 100%. Server Consolidation does not 

utilize the entire 100 percent resources of its server in 

order to avoid the performance degradation [48]. 

 

4   Preliminaries of fuzzy cuckoo search 

(FCS) and fuzzy firefly colony 

(FFC) optimization   
In order to address local minima and convergence, we 

concentrated on using the adaptive genetic algorithm 

(AGA); however, it required a notably large computation 

time over extremely high dynamism and with multiple 

VM-host setup, indicating a higher probability of 

downtime. In the case of fog computing or IoT-based 

cloud (IoT-cloud, for short), where various devices use 

data randomly and even very dynamically, its severity 

may even be more frequent. Creating a metaheuristic 

model that incorporates a diverse and small but highly 

significant initial population is a workable solution that 

this research suggests. In this reference, the Cuckoo 

Search based meta heuristic model was taken into 

consideration with Fuzzy rules. In this model, the solution 

probability is estimated iteratively by multiple agents. 

Furthermore, the Fuzzy rules, Fuzzification, and 

Defuzzification concepts have all been optimized in the 

suggested Cuckoo Search model. These innovations make 

it possible for our suggested model to demonstrate quick 

and precise VM-host mapping, which aids in the 

achievement of SLA- sensitive VM migration scheduling.  
 

4.1 Cuckoo search algorithm 
Enabling a global controller to execute dynamic VM 

placement is a technique utilized by VM migration 

technologies [25]. The suggested work is expanded to 

include the best possible VM selection for starting the 

migration process with the Fuzzy Cuckoo Search 

algorithm. By taking into account the minimal parameters, 

the population-based technique resolves the optimization 

problem. The suggested algorithm takes into account the 

behavior of the birds, which lay one egg at a time. Nests 

are chosen at random for placement, and they are 

subsequently dumped. The following generation chose the 

best egg and determined which nest was the best. The 

probability of notifying an egg in a fixed nest is [0,1]. In 

such a case, the egg is either taken out of the host nest or 

the nest-hosting bird leaves the existing nest and onstructs 

a new one. The pertinent solution is found and added for 

the virtual machine location. The migration process is 

started by choosing the appropriate virtual machine (VM) 

while taking into account the probability factors. The host 

PM then either chooses the migrated VM or moves on to 

the next VM based on selection probability in order to 

determine the best optimal solution for VM Placement.  

The ordinal measures of the CS architecture are 

illustrated in order to comprehend the suggested Fuzzy CS 

algorithm. The nest containing the egg signifies the correct 

answer, and the cuckoo lays one egg in direct proportion 

to the one solution. One egg leads to one solution, and 

each egg in the nest represents a workable solution. Every 

nest and egg location denotes a solution [4]; the first 

solution is chosen at random, and the procedure for 

updating the position is as follows: 

 

𝑜𝑖(𝑗 + 1) =  𝑜𝑖(𝑗) + 𝛿 ⊗ 𝜚(𝜑) (8) 

 

where 𝑜𝑖(𝑗 + 1) represents the (j+1) th generation’s 

nest position. 𝑜𝑖(𝑗) represents the nest position for the  
𝑗𝑡ℎ generation. The random size vector is produced using 

the levy distribution ϱ(φ) and step size δ. Multiplication is 

performed using ⊗, and global search optimization is 

carried out. Levy Flight is a significant concept that is 

represented mathematically as: 

 

  

The subsequent steps are taken into consideration when 

creating a random walk process, and the levy walk is 

employed to generate the solutions. The solutions found 

by taking the Levy process into consideration speed up 

both the local and global searches. Randomization is the 

local solution, and it is sufficiently removed from the 

optimal and best current solution. This procedure makes 

sure that the problem of VM placement resolves the issue 

of locating the local optimal solution. Every simulation 

round, the levy flight is taken into account for an updated 

solution, and the optimal solution is found. Later, until the 

termination criteria are satisfied, the solutions that are kept 

or removed at random.  

 

𝑤𝑡 = 𝑤𝑡𝑚𝑎𝑥 − (𝑤𝑡𝑚𝑎𝑥 − 𝑤𝑡𝑚𝑖𝑛)𝑋 
𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑆𝑚𝑎𝑥

 
(10) 

where 𝑤𝑡𝑚𝑎𝑥  and 𝑤𝑡𝑚𝑖𝑛  denote the maximum and 

minimum coefficients, respectively. The optimization 

technique's maximum number of simulation rounds is 

denoted by 𝑆𝑚𝑎𝑥 , and the current simulation round is 

represented by 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . New positions are found and the 

fitness function for the updated positions is calculated 

using the aforementioned equations. A better nest is 

chosen for the population by comparing the fitness values 

of the past and present, and the new nest position is 

indicated as follows: 

 

𝐺𝑚= [𝑦1(𝑚), 𝑦2(𝑚), 𝑦3(𝑚), … , 𝑦𝑘(𝑚)]𝑇            

                                                                                 

  (11) 

𝐺𝑚 is the current nest position. 

 

 

𝜚(𝜑) ∼ 𝜐 = 𝑡−𝜓   (1<𝜑<3) (9) 
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𝐺𝑚+1=[𝑦1(𝑚 + 1),  𝑦2(𝑚 + 1),  𝑦3(𝑚 +

1), … , 𝑦𝑘(𝑚 + 1)]𝑇 

   

(12) 

 

Pa, the probability factor, is then used to determine the nest 

status. The nests need to be replaced if the hosts identify 

them as such. To formulate this, a 𝓵-dimensional vector is 

utilized as  𝑹𝒍= [𝒓𝟏, 𝒓𝟐, 𝒓𝟑, … , 𝒓𝒌].If 𝑹𝒋>𝑷𝒅 , the nest 

position is changed randomly. Next, using the probability 

factor 𝑷𝒅, the nest status is determined. 𝑮𝒎+𝟏  is the new 

nest position. Changes must be made to the nests if the 

hosts identify them as such. This is formalized as  𝚤-
dimensional vector. The best nest position is found out by 

comparing the previous and present fitness of the nest and 

better nest is chosen for new generation. 

 

𝑁𝑚+1 = [𝑦1(𝑚 + 1), 𝑦2(𝑚 + 1), 𝑦3(𝑚 +
1), … , 𝑦𝑘(𝑚 + 1)]𝑇 

 

  

(13) 

Where 𝑁𝑚+1 is the next generation solution. The 

stopping condition is checked in the last phase. The 

solution is found if the stopping condition is met by the 

current solution; if not, move on to determining the initial 

population's fitness value. 

 

 

The classic CS algorithm is a very simple algorithm in 

terms of parameters as shown in Algorithm 1. Some of the 

shortcomings of the traditional CS algorithm are that the 

cuckoos don't talk to each other about the solution; There 

is no use of global nest Levy flight guidance with a fixed 

step size. We suggest a Fuzzy Cuckoo Search based on 

fuzzy set-based population to remedy this shortcoming.  

The selection of either server or a VM for placement 

depends on a random number 𝑞0. 

The suggested migration model incorporates Firefly 

swarm optimization to improve the Cuckoo search 

optimization. This research study is distinctive in that it 

uses the FFC algorithm in the cuckoo search position. The 

ideal solution is updated with convergence using the 

positions of the fireflies after the initial search using levy 

flight. By avoiding local optima solutions through the use 

of random elimination in cuckoo search optimization, the 

hybrid strategy improves overall searching performance in 

discovering the best solutions. Figure 1, shows the process 

flow of the hybrid optimization model for choosing virtual 

machines during the migration process. 

 

 

4.2   Firefly colony algorithm 
Inspired by firefly behaviour, Yang created the firefly 

algorithm (FA), a swarm intelligence-based metaheuristic 

technique. Simple insects that live in groups are fireflies. 

The flashing of fireflies serves as a signalling mechanism 

to draw in other files. These patterns of flashing and firefly 

behaviour form the foundation of the firefly algorithm. 

The following are the features of the typical firefly 

algorithm [47]: 

(1) Due to their unisex nature, fireflies are drawn to 

other fireflies regardless of their gender.  

(2) Brighter fireflies draw the attention of the less 

brilliant ones. When the distance rises, a firefly's attraction 

and brightness diminish, and if there are no brighter 

fireflies in their path, they will begin to move aimlessly.  

(3) A firefly's brightness is determined by the 

objective function. 

 

The firefly colony optimization is a swarm 

intelligence-based metaheuristic approach which is based 

on ACO technique. Firefly Colony optimization is 

inspired by the flashing behaviour of fireflies. The 

solution is constructed using firefly state transition rule 

[39]. 

𝑖 =

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑢𝜖Ω𝑘(𝑗) {𝛽𝑢𝑗 ∗ 𝑒−𝛾𝑅𝑊𝑢𝑗

𝑚

} , 𝑞 ≤ 𝑞0,

𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑒            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
  

(14) 

 

The heuristic information 
  1

𝛾𝑅𝑊𝑢𝑗
𝑚  is termed as 𝜂𝑖𝑗. 

 

𝛾 is the absorption coefficient of the light and it is 

initialized to 1. In equation 16, if q is less than𝑞0, then a 

VM u with higher attractiveness is chosen from the set of 

eligible virtual machines. If q is greater than 𝑞0, then the 

cumulative sum of attractiveness of all eligible VMs are 

obtained and then the VM having the higher attractiveness 

than a generated random number is chosen to be the next 

VM for placement. The cumulative sum of the 

attractiveness is obtained by: 

Attractiveness vector = 𝑐𝑢𝑚𝑠𝑢𝑚(𝛽𝑖𝑗
𝑘 ), 𝑖 ∈ Ω𝑘(𝑗) 

 

𝛽𝑖𝑗
𝑘 (𝑡) =  {

𝛽𝑖𝑗 ∗  𝜂𝑖𝑗 , 𝑖𝜖Ω𝑘(𝑗),

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
  

 

(15) 

 

𝛽𝑖𝑗  =  {
∑ 𝛽𝑢𝑖𝑢∈Ω𝑘(𝑗)

1  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, if  Ω𝑘(𝑗) −

 {𝑖} ≠ 0 

 

   

(16) 

 

The local update attractiveness is  

 

1. Calculate the Fitness Function for the 

initial position 

2. Identify the Optimal nest position 𝑦𝐺𝑏
0  

3. Update nest position based on the weight 

coefficient w 

4. Calculate the fitness function for the new 

position 

5. Compare the present and past fitness values 

and select new position 𝑁𝑚−1 

6. If the termination condition is satisfied, 

then the optimal output position of the nest 

is achieved. 

7. Terminate the process otherwise repeat 5. 

 

Algorithm  1: Traditional Cuckoo Search 

Optimization algorithm 
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𝛽𝑖𝑗(𝑡) = 𝛽𝑖𝑗(𝑡) =  𝛼 (𝑟𝑎𝑛𝑑 −

 
1

2
) 𝛽𝑖𝑗(𝑡 − 1) +  𝛽0  

         

               

(18) 

 

𝑤ℎ𝑒𝑟𝑒  𝛼 is the attractiveness decay parameter, the 

initial value for  𝛽0 is calculated using 𝛽0 =  
1

𝑛𝑅𝑊(𝑆0)
, The 

global update of attractiveness is: 

𝛽𝑖𝑗(𝑡) =  𝛼 (𝑟𝑎𝑛𝑑 −  
1

2
) 𝛽𝑖𝑗(𝑡 − 1)

+ Δ𝛽𝑖𝑗
𝑏𝑒𝑠𝑡   , 

 

      

(19) 

The next 𝑉𝑀𝑖 to be placed in the currently chosen server 

should be decided as described in [31]. This section 

explains about the conditions generated to determine 

which 𝑉𝑀𝑖   should be selected for the Chosen Physical 

Machine. 

The process of converting a crisp input value into a 

fuzzy set is called "fuzzification." The terms "linguistic 

variable" and "membership function" are crucial in fuzzy 

logic.  

A linguistic variable is a language structure that is further 

subdivided into several subfields. It is a part of the set and 

the range of true and false values. The linguistic variable 

stores the VM Placement's input and output. Rather than 

using numbers to represent the value, it uses words.  

Four sets of the linguistic variable of load—Very Low, 

Low, High, and Very High—are present based on the 

position of the virtual machine.  

The Fuzzy rules to be followed to place a VM on a PM are 

given below. This hybrid technique uses the minimal and 

max-min operations in implication and composition 

should be assigned to an individual server j. 

 

1. If βij is medium and  𝜂𝑖𝑗 is low then the efficacy 

𝑒𝑖𝑗  of choosing 𝑉𝑀𝑖 is very very low. 

2. If βij  is medium and  𝜂𝑖𝑗  is low then the efficacy 

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖  is very low. 

3. If βij  is high and 𝜂𝑖𝑗 is low then the efficacy 𝑒𝑖𝑗  

of choosing 𝑉𝑀𝑖  is low. 

4. If βij  is low and 𝜂𝑖𝑗 is medium then the efficacy 

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is low. 

5. If βij is medium and 𝜂𝑖𝑗   is medium then the 

efficacy 𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is medium. 

6. Ifβij  is high and  𝜂𝑖𝑗 is medium then the efficacy 

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is high. 

7. If βij  is low and 𝜂𝑖𝑗  is high then the efficacy 𝑒𝑖𝑗 

of choosing 𝑉𝑀𝑖 is high. 

8. If βij  is medium and 𝜂𝑖𝑗 is high then the efficacy 

𝑒𝑖𝑗 of choosing 𝑉𝑀𝑖 is very high. 

9. If βij  is high and 𝜂𝑖𝑗 is high then the efficacy 

𝑒𝑖𝑗   of choosing 𝑉𝑀𝑖 is very high. 

In a fuzzy inference system, the hybrid technique of using 

the minimal and max-min operations in implication and 

composition, respectively, allow for a more flexible and 

efficient way of reasoning with uncertain or imprecise 

information. The minimal operator is used in the 

implication step to determine the degree to which each 

rule is satisfied based on the membership value of the 

input variables. This allows for a more nuanced 

consideration of the rules and their applicability to the 

current situation. The max-min operator is then used in the 

composition step to combine the output membership 

values of the rules and determine the overall output value 

of the system. This method takes into account the 

contributions of all pertinent rules and ensures that no 

single rule has an undue influence on the output value. By 

combining these two operations in a hybrid technique, the 

fuzzy inference system can achieve a more accurate and 

robust performance in dealing with fuzzy input data and 

making decisions based on uncertain or incomplete 

information. 

The maximum defuzzification method, similar to fuzzy 

strategy, is used on fuzzy probability to select the next 

virtual machine (𝑖) for the current server (𝑢) among 𝑢 

eligible virtual machines. The antecedent part of the fuzzy 

rule comprises heuristic information and attractiveness, 

while the subsequent part discusses the effectiveness of 

selecting the next virtual machine. For fuzzy implication, 

this method uses the minimum operation, and for 

composition, it uses the max-min operator. As the 

maximum efficacy for every virtual machine 𝑖, we finally 

arrive at 𝑒𝑘𝑖𝑗.  In this instance, we present two approaches, 

the fuzzy strategy and the fuzzy probable strategy in Eqn. 

(16) to carry out the exploitation and exploration process 

of choosing which virtual machine 𝑉𝑀𝑖 to install on the  

I={
Fuzzy strategy,           q ≤ q0  ,       

       
   Fuzzy probable strategy,    q > q0 

 (20) 

Each strategy produces a discrete number that indicates 

which virtual machine should be installed on the current 

 

Δ𝛽𝑖𝑗(𝑡) = 

  {

𝑓𝑓𝑠𝑐(𝑠𝐺𝑏), 𝑖𝑓 𝑉𝑀 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
                                      

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                     

  

 

(17) 

Table 2: Fuzzy rules for FCSFFC algorithm 

 
Antecedent Part Consequent Part 

𝛽𝑖𝑗  

(Attractiveness) 

𝜂𝑖𝑗  

(Heuristics) 

𝑒𝑖𝑗 

(𝐸𝑓𝑓𝑖𝑐𝑎𝑐𝑦) 

𝐿𝑜𝑤 𝐿𝑜𝑤 𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 

𝑀𝑒𝑑𝑖𝑢𝑚  𝐿𝑜𝑤 𝑉𝑒𝑟𝑦 𝐿𝑜𝑤 

𝐻𝑖𝑔ℎ 𝐿𝑜𝑤 𝐿𝑜𝑤 

𝐿𝑜𝑤 𝑀𝑒𝑑𝑖𝑢𝑚 𝐿𝑜𝑤 

𝑀𝑒𝑑𝑖𝑢𝑚 𝑀𝑒𝑑𝑖𝑢𝑚 𝑀𝑒𝑑𝑖𝑢𝑚 

𝐻𝑖𝑔ℎ 𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ 

𝐿𝑜𝑤 𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 

𝑀𝑒𝑑𝑖𝑢𝑚 𝐻𝑖𝑔ℎ 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 

𝐻𝑖𝑔ℎ 𝐻𝑖𝑔ℎ 𝑉𝑒𝑟𝑦 𝑉𝑒𝑟𝑦 𝐻𝑖𝑔ℎ 

 



136 Informatica 48 (2024) 127–146  C. Vijaya et al. 

server 𝑗 next. The fuzzy rules for deciding which Virtual 

Machine to be placed next in the Physical Machine is 

given in Table 2. Equation (14) is applied to decide which 

𝑉𝑀𝑖 is chosen for a server 𝑗.  As we have seen, fuzzy 

strategy is chosen for exploitation and fuzzy probable 

strategy is chosen for exploration process. 

 

4.3 Proposed hybrid optimization algorithm 

(FCSFFC) 

The proposed hybrid optimization algorithm, Fuzzy 

Cuckoo Search with Fuzzy Firefly Colony (FCSFFC), 

integrates the exploration capabilities of the Cuckoo 

Search (CS) algorithm with the exploitation strengths of 

the Firefly Colony (FFC) algorithm, aiming to enhance 

virtual machine (VM) placement in cloud data centers. 

This section delves into the specific mechanisms and 

procedural steps of the hybrid algorithm, focusing on how 

the Cuckoo Search initiates the exploration phase, and 

how the Firefly algorithm refines the solutions during the 

exploitation phase. 

Cuckoo search exploration 

The Cuckoo Search algorithm models the movement of 

virtual machines using two primary perturbation 

functions: one for VM selection and another for server 

selection. The decision of whether to prioritize servers or 

VMs is based on a randomly generated number between 0 

and 1. If the number is less than 0.5, the VM selection 

function is invoked; otherwise, the server selection 

function is chosen [4]. These functions are crucial as they 

determine the migration of VMs by evaluating resource 

utilization across servers. The movement of VMs within 

the cloud infrastructure is guided by sorting and 

optimizing the VMs based on resource requirements. The 

output of this selection process is a crisp number, which 

identifies the next VM to be placed on a server. The 

optimization process is iterative, ensuring that VMs are 

placed in a manner that balances resource utilization, 

reduces power consumption, and minimizes migration 

costs. The Cuckoo Search algorithm begins by initializing 

parameters such as the population size and the number of 

iterations. Using objective functions like power 

consumption, resource wastage, and migration cost, the 

algorithm evaluates the fitness of each solution. The 

optimal positions of individuals in the population are 

computed in each iteration, and solutions are updated 

based on the Levy flight mechanism—a random walk that 

aids in escaping local minima. If the fitness of a new 

solution is better than the old one, the old solution is 

discarded. This process continues until the exploration 

phase is complete. VM selection identifies VMs for 

migration based on resource needs and load balancing, 

while server selection finds optimal target servers with 

sufficient resources to minimize wastage and enhance 

efficiency. Together, they ensure effective VM placement, 

reducing power consumption and migration costs. 
 

Figure 2:  Flowchart for FCSFFC 

optimization VM placement 
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1. VM selection function: In a solution, a random 

selection of VMs is made from the current 

population, and they are removed out of the servers. 

Next, the involved servers are arranged according to 

the total resource usage in decreasing order. 

Subsequently, 132 the chosen virtual machines are 

likewise arranged in descending order of total 

resource requirements. Each virtual machine is now 

placed on the first server that has capacity for them. 

It is placed on a server chosen at random if none of 

the involved servers can host it. If one of the virtual 

machines is chosen from the perfectly placed server, 

it is deleted and another is chosen.  

2.  Server selection function: Once a set of b servers is 

chosen at random, all of its virtual machines are 

deleted, leaving the set of servers’ empty. Put the 

virtual machines in decreasing order of overall 

resource requirements. Subsequently, each virtual 

machine is now placed on the first server that has 

capacity for the VMs. It is placed on a server chosen 

at random if none of the involved servers can host it. 

Procedure for virtual machine placement using firefly 

algorithm for exploitation 

 The algorithm begins by initializing parameters such as 

the number of fireflies, attractiveness coefficient, and light 

absorption coefficient, along with generating initial 

random solutions. In the iterative process, fireflies move 

towards brighter (more attractive) fireflies, with their 

positions updated based on a function that considers 

brightness and distance. Optional local search can refine 

solutions further. The algorithm recalculates and updates 

the brightness of fireflies, ranks them accordingly, and 

continues until a stopping criterion is met, such as 

reaching the maximum number of iterations. This 

approach leverages the simplicity and flexibility of FA, 

offering global search capabilities and scalability across 

various problem sizes. Its adaptability allows integration 

with other optimization methods and it has been 

successfully applied in fields such as engineering design, 

scheduling, machine learning, and resource management, 

demonstrating its effectiveness in achieving optimal 

solutions and enhancing performance. The hybrid 

FCSFFC algorithm is designed to address multi-objective 

optimization problems in VM placement. By combining 

the exploration capabilities of Cuckoo Search with the 

exploitation strengths of Firefly optimization, the 

algorithm effectively balances the trade-offs between 

different objectives, such as minimizing power 

consumption and reducing migration costs. The fuzzy 

fitness function evaluates the quality of solutions based on 

their performance across multiple objectives. This 

approach ensures that the selected solutions are not only 

optimal in terms of individual objectives but also robust 

and adaptable to changing conditions in the cloud 

environment.  

In FCSFFC algorithm, fuzzy logic enhances decision-

making for VM placement and migration by processing 

imprecise and uncertain data. It begins with fuzzification, 

which translates exact numerical metrics related to VM 

and server conditions into fuzzy sets using qualitative 

terms like "Low," "Medium," and "High." This approach 

allows the algorithm to handle real-world uncertainties 

more effectively. Linguistic variables are employed to 

represent the load and attractiveness of VMs and servers, 

making complex data easier to interpret. For example, 

load conditions are categorized into "Very Low," "Low," 

"High," and "Very High" based on resource usage and 

server capacity. This categorization simplifies the 

processing of these metrics. Fuzzy rules are then applied 

to evaluate the suitability of placing a VM on a particular 

1. Initialize optimization parameters, 

population, weight coefficient 

2. Generate random VM requests 

3. Begin 

4. For i= 1 to n 

5. Determine the population's initial fitness 

6. Calculate the global optimal individual 

position 

7. Loop1: Construct cuckoo parameters 

8. Calculate the position of individual levy 

flight search applying (9) 

9. Evaluate (𝒇𝒊𝒕𝒏𝒆𝒘   𝒂𝒏𝒅 𝒇𝒊𝒕𝒐𝒍𝒅  ) 

10. If (𝒇𝒊𝒕𝒏𝒆𝒘  >  𝒇𝒊𝒕𝒐𝒍𝒅   ) 

       New generation= current position 

Else  

   New generation = old position  

         If  𝒒𝟎 < 0.5, select a server else select  

                VM for placement. 

11. Initialize FFC parameters 

12. Update the heuristic parameters of the 

individuals using (14). 

13. For each Firefly k=1 to N 

14. Repeat 

15. For each 𝑷𝑴𝒋=1 to m do 

16. Issue new server 

17. Determine the eligible virtual machines 

using Fitness function 

18. Find iterative best Global optimal and 

individual solutions using (18) and (19) 

19. Update the fitness function of new and old 

nest. 

20. Obtain optimal individual and optimal nest 

21. Calculate the entire population 

22. While termination criteria reached,  

           terminate the current process 

23. Else 

Goto l0 

24. End 

 

Algorithm  2: Hybrid FCSFFC algorithm for 

VM placement 
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server. These rules take into account factors such as the 

VM’s attractiveness and the server’s heuristics. For 

instance, if a VM’s attractiveness is medium and its 

heuristic is low, the rule might suggest a low efficacy for 

that VM’s placement. These rules are designed to manage 

uncertainty by providing flexible and adaptive criteria for 

decision-making. The fuzzy inference system processes 

these rules and combines their outcomes using operators. 

The minimal operator is used to assess how well each rule 

is satisfied based on input values, while the max-min 

operator aggregates the results to make a decision. This 

system helps in making nuanced and well-informed 

decisions by considering all relevant factors and their 

interactions. Finally, defuzzification converts the fuzzy 

results back into precise actions, determining which VM 

should be placed on which server. This step ensures that 

the decisions are actionable and practical, contributing to 

better resource management, reduced migration costs, and 

overall improved system performance. 

Procedure for virtual machine placement  

The overall procedure for VM placement using FCSFFC 

is illustrated in Algorithm 2. The process begins with the 

initialization of PMs, VMs, and iterations, followed by the 

setup of Cuckoo Search parameters. Lines 1-4 initializes 

the number of PMs, VMs and number of iterations. Line 4 

sets up the cuckoo search algorithm parameters. Using the 

objective functions specified for each nest solution, the 

algorithm evaluates the quality of the solutions based on 

their fitness values, guiding the search process to optimize 

the overall performance. Then the population’s fitness, is 

determined which includes the objective functions of 

power consumption, resource wastage and energy 

consumption. solution is considered to be of a new 

generation. If not, the previous solution is kept in place for 

the following generation. The next statement computes the 

globally optimal individual positions for each iteration. 

Equation (7) is applied to the Levy flight walk in an 

attempt to find the solution. If the new solution’s fitness is 

found to be lower than the old one, the old solution is 

discarded, and the new solution is accepted. For every 

iteration, the exploration phase has concluded, and now 

that the exploration phase is complete, the Firefly 

algorithm is executed to determine whether the solutions 

produced by the Cuckoo Search algorithm can be further 

refined for optimal performance. This procedure is 

referred to as exploitation. Repeat the above procedure 

until the stopping condition is satisfied. Equation (20) is 

applied to decide which 𝑽𝑴𝒊 is chosen for a server j. The 

algorithm then iteratively evaluates the fitness of each 

solution, updates the positions of individuals, and refines 

the solutions using the Firefly algorithm. The stopping 

condition, such as the maximum number of iterations or a 

convergence threshold, determines when the algorithm 

terminates. The final solution represents the optimal VM 

placement configuration, balancing the competing 

objectives of power efficiency, resource utilization, and 

migration cost. 

 

4.1   Experimental set up 
 

The simulation environment is configured with an Intel i3 

processor and 8 GB of RAM, running on the Windows 10 

operating system. Five datacenters were simulated with 10 

physical machines and 50 virtual machines. The total 

number of tasks is varied from 25 to 75, and 150 Virtual 

Machines were used. Each VM was allocated 2GB of 

memory, and each host had 4GB. Host  

MIPS was set to 10,000, and VM MIPS to 1,500. VM 

Bandwidth was 100 Mbit/s, while Host Bandwidth was 1 

Gbit/s. The load factor, which is based on VM resource 

utilization to complete user tasks, was calculated.  

In FCSFFC algorithm, fuzzy logic enhances decision-

making for VM placement and migration by processing 

imprecise and uncertain data. It begins with fuzzification, 

which translates exact numerical metrics related to VM 

and server conditions into fuzzy sets using qualitative 

terms like "Low," "Medium," and "High." This approach 

allows the algorithm to handle real-world uncertainties 

more effectively. Linguistic variables are employed to 

represent the load and attractiveness of VMs and servers, 

making complex data easier to interpret. For example, 

load conditions are categorized into "Very Low," "Low," 

"High," and "Very High" based on resource usage and 

server capacity. This categorization simplifies the 

processing of these metrics. Fuzzy rules are then applied 

to evaluate the suitability of placing a VM on a particular 

server. These rules take into account factors such as the 

VM’s attractiveness and the server’s heuristics. For 

instance, if a VM’s attractiveness is medium and its 

heuristic is low, the rule might suggest a low efficacy for 

that VM’s placement. These rules are designed to manage 

uncertainty by providing flexible and adaptive criteria for 

decision-making. The fuzzy inference system processes 

these rules and combines their outcomes using operators. 

The minimal operator is used to assess how well each rule 

is satisfied based on input values, while the max-min 

operator aggregates the results to make a decision. This 

system helps in making nuanced and well-informed 

decisions by considering all relevant factors and their 

interactions. 

Finally, defuzzification converts the fuzzy results back 

into precise actions, determining which VM should be 

placed on which server. This step ensures that the 

decisions are actionable and practical, contributing to 

better resource management, reduced migration costs, and 

overall improved system performance. 

4.2   Computational study 

The load analysis of the algorithms is illustrated in Fig. 3. 

The study began with 25 tasks and progressively included 

50 and 75 tasks, carefully evaluating the load parameter 

for each scenario.  The results demonstrate that our 

FCSFFC algorithm consistently maintains a lower load 

compared to other methods when selecting and migrating 

VMs based on resource requirements. In terms of load, the 

Fuzzy Cuckoo Search Fuzzy Firefly Colony Optimization 

Algorithm (FCSFFC) consumes the least resources, with 
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a load value of 0.0025. This indicates that FCSFFC is the 

most efficient algorithm in terms of resource utilization 

for VM placement and migration among the algorithms 

compared. 

 
Figure 3: Load analysis 

 

The lower load means it requires minimal computational 

resources, leading to better overall performance and 

reduced strain on the cloud infrastructure. This is largely 

due to the algorithm's efficient VM-server matching 

process, which minimizes the frequency migrations. 

 

 
Figure 4: Migration analysis 

 

As a result, the overall system stability is enhanced, 

reducing the operational overhead associated with VM 

migrations. Figure 4 presents the migration analysis, 

highlighting the superior performance of the FCSFFC 

algorithm in comparison to alternative algorithms. The 

reduced migration frequency improves resource 

utilization and also minimizes disruption to ongoing 

processes by performing only necessary migrations and 

avoiding unnecessary migration requests. 

 

 
Figure 5: Migration cost analysis 

 

Figure 4 depicts the analysis of migration costs for the 

proposed model compared to other models.  The analysis 

considers both the total number of VMs and those 

specifically migrated to handle requested tasks. By 

selecting optimal VMs, the proposed method significantly 

reduces unnecessary migrations, demonstrating superior 

performance compared to alternative models. The number 

of virtual machines (VMs) moved for the requested tasks 

as well as the actual VMs needed for the task were noted. 

When compared to other algorithms, it is found that the 

FCSFFC algorithm achieves the least amount of 

migration. When comparing the migration cost of state-of-

the-art techniques, optimal VM selection minimizes the 

number of migrations and makes the migration more 

effective by performing only necessary migrations and 

avoiding unnecessary migration requests. Figure 5 depicts 

the analysis of migration costs for the proposed model 

compared to other models.  The analysis considers both 

the total number of VMs and those specifically migrated 

to handle requested tasks. By selecting optimal VMs, the 

proposed method significantly reduces unnecessary 

migrations, demonstrating superior performance 

compared to alternative models. Also, Figure 5, utilizes 

the ratio of completed migrations to the total number of 

migrations within the cloud environment to determine the 

migration cost impacting the performance of the hybrid 

optimization FCSFFC algorithm. Based on the migration 

approaches, the suggested model's migration cost is, in 

comparison, 70% less than HBCOA, 60% less. The results 

underscore its effectiveness in enhancing overall system 

performance and cost efficiency compared to existing 

models.to calculate the Migration Cost. 

 



140 Informatica 48 (2024) 127–146  C. Vijaya et al. 

 
Figure 6: Energy consumption analysis 

 

For 75 tasks, the migration cost is 0.048; for HWOA, it is 

0.067; for WOA, it is 0.083; for FOA, it is 0.10; and for 

HBCOA, it is 0.115. These numbers demonstrate how well 

the suggested than FOA, 50% less than WOA, and 20% 

less than HWOA. Figure 6 compares the energy 

consumption of the current methods with the proposed 

hybrid optimization approach. For 25 tasks, the proposed 

hybrid optimization achieves the lowest energy 

consumption at 0.465 W, followed by 0.47 W for 50 tasks, 

and 0.475 W for 75 tasks. In comparison, the HWOA 

method consumes 0.488 W. The average energy 

consumption for the proposed technique remains at 0.47 

W, whereas other methods, including WOA, FOA, and 

HBOA, show an average energy consumption of 0.49 W, 

with minimal variation. Incorporating the Interquartile 

Range (IQR) into the Fuzzy Cuckoo Search Fuzzy Firefly 

Colony Optimization algorithm significantly improves its 

capability to handle dynamic loads in cloud data centers. 

By analyzing historical workload data, including CPU 

utilization, memory usage, and network bandwidth, IQR 

helps identify the distribution and variability of these 

metrics. This understanding allows for better trend 

detection and anomaly identification. Integrating IQR into 

the Fuzzy Cuckoo Search Fuzzy Firefly Colony 

Optimization framework enhances the fuzzy logic. 

Notably, the proposed model demonstrates a 2.2% 

reduction in energy consumption compared to HBCOA, 

FOA, and WOA, and a 1.8% reduction when compared to 

the HWOA algorithm. The Firefly algorithm, known for its 

superior local search capabilities, complements CSO by 

refining these solutions to find even more energy-efficient 

configurations.  Firefly algorithm’s attractiveness-based 

movement helps in focusing on the most promising areas 

of the search space, which leads to incremental 

improvements in energy consumption across different task 

loads. The synergy between CSO's exploration and the 

Firefly algorithm's exploitation ensures that the proposed  

 
Figure 7: Resource availability analysis 

 

model consistently outperforms other methods in both 

energy consumption and overall system performance. As a 

result, it effectively balances efficiency and resource 

utilization across varying workloads. 

 

 
Figure 8: Computation time analysis 

 

The impacts of the proposed optimization based VM 

migration and that of the existing VM migration 

algorithms are analyzed in terms of resource availability 

in Fig.  7. The proposed method’s time for 75 tasks is 5 

seconds; for HWOA, it takes 7.4 seconds. The table 

provided compares several algorithms in terms of load, 

energy consumption, migration cost, and execution time. 

When it comes to resource availability, the FCSFFC 
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algorithm demonstrates superior efficiency.  This is 

reflected in its lower load value (0.0025), indicating that it 

consumes fewer resources compared to the other 

algorithms. The reduced load means that the FCSFFC 

algorithm is more effective at matching VMs with servers 

that have sufficient resources, which in turn reduces the 

strain on the physical machines. This efficient resource 

allocation minimizes the need for frequent migrations, 

leading to a lower migration cost (0.0467) and faster 

execution time (4.003 seconds).  In contrast, the HBCOA 

and FOA algorithms show higher load values of 0.010367 

and 0.00732, respectively, suggesting that they require 

more resources to achieve the same tasks. This higher 

resource demand can lead to increased migration costs and 

longer execution times. As a result, while these algorithms 

may still perform adequately, their resource management 

is less optimal compared to FCSFFC, leading to less 

efficient overall performance in cloud environments. The 

table highlights the importance of selecting algorithms 

that not only minimize energy consumption and migration 

costs but also efficiently manage and allocate available 

resources, ensuring better performance and scalability in 

practical applications. 

  Figure 8 shows the total computation time for both the 

suggested and current approaches. The proposed method's 

maximum computation time for 75 tasks is 5 seconds; for 

HWOA, it takes 7.4 seconds, For WOA, it takes 8.2 

seconds, and HBCOA, it is computed for 9.2 

seconds. Figure 7 illustrates a notable advantage of the 

proposed method in terms of computation time. The 

proposed algorithm achieves a maximum computation 

time of 5 seconds for 75 tasks, which is significantly faster 

than the Hybrid Whale Optimization Algorithm (HWOA), 

which requires 7.4 seconds, and the Whale Optimization 

Algorithm (WOA), which takes 8.2 seconds. The Hybrid 

Bee Colony Optimization Algorithm (HBCOA) has the 

longest computation time at 9.2 seconds. This reduced 

computation time of the proposed method not only 

improves operational efficiency but also enhances its 

suitability for real-time applications where rapid decision-

making is crucial. The efficiency gains in computation 

time can lead to faster responses and better scalability, 

making the proposed algorithm a competitive choice for 

dynamic cloud environments with high task loads.  

Table 3 provides an overview of the Energy Consumption, 

migration costs, Resource Availability, and Migration 

Cost for both the proposed and existing models' 

performance analyses. The average values are displayed 

according to the previously presented findings from 

various tasks. The outcomes unequivocally show that, the 

suggested hybrid optimization outperforms the current 

techniques in every element. It is clear from the results that 

the FCSFFC optimization algorithm achieves the lowest 

possible. The task's resource request, the VM selection, 

and the migration from one resource pool to the current 

resource pool all affect the computation time. The time 

required to move a set of tasks from one virtual machine 

to another is commonly referred to as computation time. It 

is found that the computation times for all methods are 

lowest for 25 tasks, computation time. Though the 

computation time is noted with the fewest elements, it may 

differ in a real-time setup. The average values are shown 

in accordance with the results from different tasks that 

were previously presented. The results clearly 

demonstrate that the proposed hybrid optimization works 

better than the existing methods in all aspects, owing to a 

unique analysis of migration requests the quality of 

service.  FCSFFC achieves the lowest load parameter, 

indicating more efficient VM placement and a reduced 

need for frequent migrations. It also shows a substantial 

reduction in migration costs, which enhances overall 

system efficiency. The algorithm's energy consumption is 

the lowest among the compared methods, contributing to 

reduced operational costs and greater sustainability. 

Additionally, FCSFFC results in the highest resource 

availability, indicating effective resource utilization and 

minimized unnecessary migrations. Its computation time 

is the shortest, reflecting its efficiency in processing and 

decision-making. The FCSFFC algorithm integrates fuzzy 

logic with hybrid metaheuristic techniques, offering a 

novel approach that adapts to varying load conditions 

more effectively than traditional methods. Unlike static 

Table 3: Overview of the energy consumption, migration cost, resource availability, and comp. time 

SNo Algorithm Load 
Energy 

Consumption 

Migration 

Cost 

Resource 

Availability 

Computation 

Time in Sec. 

1 

Hybrid bee Colony 

optimization Algorithm 

(HBCOA) 

0.010367 0.4850 0.1370 0.8522 8.252 

2 
Firefly Optimization 

Algorithm (FOA) 
0.00732 0.4839 0.1155 0.8822 7.128 

3 
Whale Optimization 

Algorithm (WOA) 
0.005473 0.4829 0.0942 0.9022 6.232 

4 

Hybrid Whale 

Optimization Algorithm 

(HWOA) 

0.002793 0.4678 0.0688 0.9186 5.332 

5 

Fuzzy Cuckoo Search 

Fuzzy Firefly Colony 

Optimization Algorithm 

(FCSFFC) 

0.0025 0.4593 0.0655 0.9814 4.003 
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threshold-based approaches, FCSFFC uses dynamic fuzzy 

rules and hybrid optimization to improve decision-making 

processes. This innovation includes a stochastic prediction 

model for overload detection, which estimates CPU 

utilization dynamically. This model overcomes the 

limitations of static thresholds, enhancing the accuracy of 

overload detection and SLA compliance. The dynamic 

thresholding scheme adjusts CPU utilization thresholds 

based on real-time variations, improving the handling of 

fluctuating load conditions. The use of Inter Quartile 

Range and modified Local Regression Robust techniques 

for adjusting thresholds further refines this approach, 

offering a robust mechanism for managing CPU 

utilization and preventing SLA breaches.  

In comparison to existing studies, the proposed 

algorithm demonstrates significant improvements in key 

performance metrics, such as energy consumption, 

resource wastage, and migration cost, by refining fuzzy 

rules and membership functions based on the observed 

variability, which leads to more accurate load predictions. 

Moreover, applying IQR-based adjustments to the Cuckoo 

Search and Firefly Algorithm components ensures that 

optimization strategies are dynamically adapted to current 

conditions, improving resource allocation and minimizing 

migration costs. This dynamic approach to load prediction 

aids in balancing resources more effectively across 

physical machines, thus optimizing overall system 

performance. Continuous monitoring and comparative 

analysis further validate the effectiveness of IQR 

integration, demonstrating its contribution to enhanced 

load prediction accuracy and overall system efficiency. 

In the Chaotic Particle Swarm Optimization (CPSO) 

algorithm with adaptive mutation [9] focuses on better 

utilization but also significantly reduces power. The 

hybrid meta-heuristic methods, such as the one combining 

Sine Cosine and Ant Lion Optimizer (SCA-ALO) for 

server load balancing [14], primarily address server load 

balancing and resource waste reduction. However, these 

methods often struggle with the trade-offs between 

multiple objectives. In contrast, our algorithm effectively 

balances these trade-offs, leading to a notable reduction in 

energy consumption and resource wastage Moreover, 

while algorithms like the Marine Predator Algorithm [20] 

and the enhanced Whale Optimization Algorithm (WOA) 

[21] have been adapted for multi-objective optimization, 

they do not specifically address the challenges of virtual 

machine migration in cloud data centers. Our approach, by 

integrating the strengths of Cuckoo Search and Firefly 

Colony Optimization, offers a more tailored solution for 

VM migration, resulting in better overall performance.  

The effectiveness of the approach is further 

emphasized when compared to the ACOSCA algorithm 

[29], which achieved a 24% reduction in power 

consumption. The suggested algorithm’s average energy 

consumption was 2.2% lower, and the migration cost was 

notably 37% lower than that of the other compared 

algorithms. The proposed algorithm’s significant 

reduction in migration costs demonstrates its effectiveness 

and potential advantages in real-world scenarios. Our 

method not only achieves comparable or better power 

savings but also reduces the migration cost, making it a 

more efficient solution for real-time cloud data center 

operations. Additionally, the proposed algorithm 

significantly improves resource utilization by reducing 

unnecessary migrations, leading to lower operational 

overhead. This combined effect of enhanced energy 

efficiency and minimized migration cost underscores its 

suitability for optimizing large-scale cloud infrastructures. 

The novelty of the solution lies in its hybrid 

optimization approach, which combines the strengths of 

Cuckoo Search and Firefly Colony Optimization with 

fuzzy logic, creating a robust and adaptive VM placement 

strategy. Unlike previous works that primarily focus on 

single or limited objectives, our algorithm addresses 

critical factors, including energy efficiency, resource 

utilization, and migration cost, in a balanced manner. 

This makes the solution particularly significant for 

practical applications in cloud data centers, where the 

demand for energy-efficient and cost-effective operations 

is ever-growing. By reducing energy consumption and 

improving resource management, our approach 

contributes to the sustainability and scalability of cloud 

infrastructures, offering a practical and impactful solution 

for modern data centers. The combination of CSO's global 

search capabilities and FA's local optimization strengths 

create a powerful synergy. CSO prevents premature 

convergence by exploring a wide range of possibilities, 

while FA ensures that the solution is refined and 

optimized, resulting in a balanced and effective VM 

placement strategy. To further enhance the hybrid 

approach, fuzzy logic is integrated to manage the 

uncertainties and complexities inherent in cloud 

environments. Fuzzy rules are designed to evaluate and 

adjust the algorithm's parameters dynamically based on 

real-time conditions such as workload intensity, resource 

availability, and energy consumption. Fuzzy logic allows 

for more nuanced decision-making, enabling the 

algorithm to adapt its behaviour based on the specific 

needs of the cloud data center at any given moment. 

In practical terms, it has been demonstrated that the 

migration cost associated with the Fuzzy Cuckoo Search 

Fuzzy Firefly Colony algorithm is 31.7% lower than that 

of other compared algorithms. This improvement 

underscores the effectiveness of FCSFFC in optimizing 

resource allocation and reducing the overhead typically 

encountered during virtual machine migrations in cloud 

computing environments. Its dynamic thresholding and 

prediction capabilities address the challenges of modern 

cloud environments, making it a valuable tool for 

optimizing cloud data center operations. 

  The scalability of the Fuzzy Cuckoo Search 

Fuzzy Firefly Colony Optimization Algorithm was 

assessed by varying the number of virtual machines and 

tasks in the simulation environment. The algorithm's 

performance metrics, including energy consumption and 

computation time, were evaluated as the data scale 

increased. Additionally, the algorithm's adaptability to 

varying workload intensities ensures that resources are 

allocated efficiently, minimizing downtime and 

improving user satisfaction. By incorporating fuzzy logic 

with metaheuristic optimization, the FCSFFC algorithm 

offers a robust solution for managing complex cloud 
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infrastructures effectively. The combination of CSO's 

broad exploration and Firefly colony approach focused 

exploitation leads to better VM placements that minimize 

energy consumption across the data center. By optimizing 

both the initial placement and the migration paths, the 

hybrid approach reduces the amount of data transferred 

and the associated costs during VM migration. The 

synergy between CSO and FA ensures that resources are 

utilized more efficiently, reducing wastage and enabling 

higher workload handling. The fuzzy logic component 

ensures that the algorithm adapts to changing conditions 

in the data center, maintaining optimal performance even 

as workloads and resource availability fluctuate. This 

adaptability is crucial for sustaining consistent efficiency 

and reliability in dynamic cloud environments, where 

demand can be unpredictable. 

5   Scalability and computational 

complexity 
  

The FCSFFC algorithm demonstrated strong scalability, 

effectively managing up to 1,000 VMs and 5,000 tasks 

without significant performance degradation. This 

indicates that the algorithm is well-suited for large-scale 

cloud environments where the number of VMs and tasks 

can be substantial. The performance metrics remained 

efficient as the workload increased, highlighting the 

algorithm’s capacity to handle large and complex cloud 

computing scenarios. The computational complexity of 

the FCSFFC algorithm is influenced by its hybrid 

optimization approach, which integrates fuzzy logic with 

cuckoo search and firefly algorithms. The complexity can 

be expressed as O(N⋅M⋅K) where N represents the number 

of VMs, M denotes the number of tasks, and K stands for 

the number of iterations in the optimization process. The 

algorithm exhibits linear scalability with respect to the 

number of VMs and tasks, which ensures efficient 

performance even as the size of the problem grows. 

6 Conclusion 
A hybrid optimization approach for cloud computing 

virtual machine migration has been created. The combined 

technique of Fuzzy Cuckoo search and Fuzzy Firefly 

optimization algorithms is used to accomplish VM 

migration. To minimize needless migrations, the VMSs 

are moved to the host based on the best outcome produced 

by the suggested method. Improved performance in terms 

of energy consumption, resource availability, migration 

costs, and computing time is validated by simulation study 

of the suggested model. The suggested hybrid 

optimization algorithm's performance is compared with 

that of existing migration techniques, such as HBCOA, 

FOA, WOA, hybrid Whale and HWOA. The proposed 

algorithm utilizes less resources on average than the state-

of-art techniques, and also lesser power consumption. 

Compared to state-of-the-art methods, the proposed 

algorithm uses less resources and consumes less power as 

discussed in Section 4. The proposed algorithm 

outperforms in computation time and also in reducing the 

migration cost. Future research on this topic may focus on 

introducing Flight random walk and Preferences random 

walk optimization [45] to speed up the search and enhance 

migration performance. Additionally, exploring the 

integration of lightweight heuristics, such as Quantum 

Particle Swarm Optimization, could further reduce 

computational overhead while maintaining solution 

quality. Another potential avenue for research is to 

dynamically adjust the algorithm's parameters based on 

varying cloud workloads and infrastructure conditions.  

Future research could explore the integration of advanced 

machine learning techniques with optimization strategies 

to enhance decision-making processes in resource 

allocation and energy management 
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