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In traditional highway engineering, there are problems such as high cost and difficult maintenance in 

road visibility detection. Therefore, the study combines Hough circle detection algorithm with 

incremental probabilistic neural network to construct a visibility detection model for highway pavement. 

The study first uses the Hough circle detection algorithm to perform preliminary visibility detection, and 

then integrates the incremental probabilistic neural network with the preliminary detection to construct 

a detection model. These results confirm that the data processing accuracy and precision of the detection 

model in the image processing process are 97.03% and 93.37%, respectively. In terms of feature 

classification performance, its classification ability and classification time are 93.61% and 1.13 seconds, 

respectively. Moreover, its visibility and error percentage in visibility detection are 510.69 m and 10.06%, 

respectively. Regardless of the weather conditions, the environmental classification accuracy of the 

model remains above 90%, with the highest accuracy reaching 93.7% for sunny days. These results 

indicate that the highway pavement visibility detection model can improve the accuracy and stability of 

highway pavement visibility detection. The research aims to provide an effective visibility detection 

method for highway traffic safety. 

Povzetek: Razvit je bil model za zaznavanje vidljivosti cestne površine, ki združuje algoritem zaznavanja 

krogov Hough in inkrementalno probabilistično nevronsko mrežo (IPNN). Model dosega dobro 

zaznavanje v različnih vremenskih pogojih, kar izboljšuje varnost cestnega prometa.

1 Introduction 

Highway engineering includes roadbed, pavement, bridges, 

culverts, tunnels, drainage systems, safety protection 

facilities, etc. Among them, road surface visibility in 

highway engineering is an important research direction for 

traffic safety. Visibility refers to the degree to which the 

driver of a vehicle can clearly see the road ahead under 

different weather conditions while driving [1-3]. The 

visibility is closely related to the incidence of traffic 

accidents, and its main detection methods include 

instruments and images currently. Due to the high cost and 

difficulty of instrument detection equipment, research is 

being conducted on using image processing technology 

combined with deep learning algorithms to detect the 

visibility of road surfaces. To ensure the standardization of 

visibility detection, the study refers to the "Visibility 

Observation Specification" of the Meteorological 

Detection Center of China Meteorological Administration 

as the technical guidance document for visibility detection, 

thus ensuring the scientific nature of visibility detection. 

The Hough circle detection algorithm can detect geometric 

shapes such as lines and circles in images, but its 

processing effect on blurred images is poor. Incremental 

Probabilistic Neural Network (IPNN) has adaptive 

learning ability, which can automatically adjust network 

parameters and improve detection accuracy [4-6].  

 

Therefore, the study fuses Hough with IPNN to construct  

a Highway Payment Visibility Detection (HPVD) model. 

The study first uses Hough to detect road visibility, and 

then introduces IPNNs to combine their advantages for 

constructing a detection model. The research innovatively 

combines the Hough algorithm with IPNNs, fully utilizing 

the respective advantages of both. The visibility detection 

model integrating Hough algorithm and IPNN not only 

makes full use of the advantages of image processing 

technology, but also introduces the powerful ability of 

deep learning, which can significantly improve the 

accuracy and reliability of visibility detection in highway 

engineering. At the same time, the application of Hough 

algorithm and IPNN in road engineering visibility 

detection research is still in the primary stage. How to 

further optimize the network structure, improve the 

detection speed, enhance the anti-jamming ability, etc., are 

the important direction of future research. The research 

aims to use the constructed HPVD to improve the accuracy 

of visibility detection and provide new ideas and methods 

for ensuring highway traffic safety. 

The study first uses Hough to conduct preliminary 

detection of road surface visibility. Then, based on Hough 

visibility detection, it is fused with IPNN to construct 

HPVD. The third part verifies the performance of the 

constructed model for comment classification through 
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simulation experiments and practical applications. Finally, 

the experimental results are summarized, and the 

advantages and disadvantages of the research methods are 

analyzed. 

2 Related works 

In recent years, HPVD has received widespread attention. 

Traditional HPVD has many issues, such as accuracy, real-

time performance, range coverage, cost, and maintenance. 

To address these issues, researchers have begun exploring 

image processing-based HPVD. Meng and Wu proposed 

an HPVD method to enhance HPVD. This method 

performed grayscale processing on the collected images, 

then utilized adaptive steering filtering algorithm and 

quadtree image segmentation algorithm for processing, 

and finally calculated visibility based on the offset of 

distances in the images. These results confirmed that 

image processing methods optimized through visibility 

detection could address low image clarity, color distortion, 

and poor scene adaptability [7]. Ma et al. proposed a 

hybrid model for analyzing road line of sight using 

airborne LiDAR data to apply high-density LiDAR to 

visibility detection along highways. In the study, 

triangulation was used to collect and analyze data, and then 

a backpropagation network was used to train these data. 

These results confirmed that the computational efficiency 

of the hybrid model in estimating line of sight had been 

improved to a satisfactory level [8]. Ashrit established a 

high-resolution visibility detection model to improve the 

predictive ability of road visibility under dense fog. The 

study first graded visibility, and then used models with 

different resolutions for prediction. These results 

confirmed that the real-time aerosol field in the model 

could further improve the prediction of visibility by high-

resolution models [9]. Ding et al. proposed a 

comprehensive optimization control method to improve 

the safety and traffic efficiency of visibility areas on 

highways. The study first involved discrete queuing of 

vehicles at upstream intersections, followed by trajectory 

optimization. These results confirmed that it could not only 

prevent trajectory overlap, but also effectively reduce road 

traffic delays [10]. 

Ma et al. proposed an accurate and effective obstacle 

framework to ensure the safety of highway traffic. The 

study first used mobile laser scanning data to scan 

highways, and then analyzed and processed the scanning 

data. These results confirmed that the framework could 

detect visual obstacles at each viewpoint on the highway 

within 0.2 seconds [11]. Ismail et al. to effectively detect 

defects in composite structures, the defect factors of 

cylinders with different layup angles were analyzed using 

finite element analysis. The study utilized sensitivity 

analysis to analyze the defect factors and the results 

showed that the results by finite element analysis 

coincided with the results of critical buckling load. The 

study helped to determine the parameters that lead to the 

defect tolerance of the structure [12]. Easa et al. proposed 

a new LiDAR 3D surveying system to apply ranging 

systems to highway design. This system could effectively 

detect obstacles by utilizing infrastructure and high-

precision maps. These results confirmed that this method 

could effectively improve the estimation of traffic 

visibility and location recognition [13]. To conduct 

effective research on the application of IPNN in artificial 

intelligence accelerators, Banerjee et al. used a bottom-up 

approach for the first time to systematically describe the 

impact of this uncertainty and imprecision (collectively 

referred to as defects) in IPNN. These results confirmed 

that the inference accuracy of IPNN also slightly decreased, 

and the inference accuracy was sensitive to defects in the 

linear layer next to the input layer of IPNN [14]. The 

summary table for related works is shown in Table 1. 

 

 
Table 1: Summary table for related works 

Researchers Method Research results Disadvantages 

Meng and Wu [7] Enhanced HPVD 

Solve the problems of low 

image definition, low 

color distortion and poor 

scene adaptability 

High computational 

complexity 

Ma et al. [8] Hybrid model  
Calculation efficiency 

reaches 91% 

There may be a risk of 

overfitting in the model 

Ashrit [9] 
High-resolution visibility 

detection model 

The accuracy of visibility 

prediction reaches 90% 

Poor model 

interpretability 

Ding et al. [10] 

Comprehensive 

optimization of the control 

method 

Effectively reduce road 

traffic delays 

Greatly affected by the 

environment 

Ma et al. [11] The obstacle frame 
Detected obstacles within 

0.2 seconds 

There are issues such as 

false positives and missed 

detections 

Ismail et al. [12] 

A sensitivity analysis was 

used to analyze the defect 

factors 

Help to determine the 

parameters that lead to the 

tolerance of the structural 

The analysis process is 

complex 
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defects 

Easa et al. [13] 
Lidar 3D measurement 

system 

Improve estimates of 

traffic visibility and 

location identification 

High equipment cost 

Banerjee et al. [14] 

The bottom-up approach 

systematically describes 

the impact of defects in 

IPNN 

The inference accuracy is 

sensitive to defects in the 

linear layer next to the 

input layer of IPNN 

The detection and repair 

process is quite complex 

In summary, the research on visibility detection in 

highway engineering based on image processing 

technology combined with deep learning is very important. 

Although this technology has achieved certain results in 

improving visibility detection accuracy, real-time 

performance, and range coverage, there are still some 

problems that need to be solved, such as low image clarity, 

color distortion, and poor scene adaptability. In addition, 

there is still a need for in-depth research on visibility 

prediction under dense fog conditions, safety of visibility 

areas on highways, and optimization of traffic efficiency. 

To better address these issues, research has achieved the 

detection of road visibility by effectively integrating 

Hough and IPNN, providing a more accurate road 

visibility assessment method for traffic safety. 

 

3 Design of a highway pavement 

visibility detection model that 

integrates hough and IPNN 
With the development of computer vision and image 

processing technology, image processing-based HPVD 

has become a hot research topic. The fusion of Hough and 

IPNN in HPVD has significant research value. 

 

3.1 Road visibility detection based on hough 
To effectively detect visibility in road surfaces, effective 

image processing is required after collecting video images. 

Image processing can eliminate noise interference, 

improve the acquisition of target feature area feature 

values, and improve the accuracy of road visibility 

detection. The research first performs grayscale processing 

on the image to reduce the computational complexity of 

image processing. The images in the video are all 

composed of static images, so it is necessary to process a 

certain frame of the video image. In this study, three colors 

of red, green, and blue are used to construct image pixel 

channel components [15-16]. A gray image is a single-

channel mean obtained by weighting three channel 

components. This processing not only greatly reduces the 

computational complexity of the image, but also ensures 

that there is only a color difference from the original image. 

The weighted mean of the processed image pixels is 

represented by Eq. (1). 

 

( , ) 0.3 ( , ) 0.59 ( , ) 0.11 ( , )f i j R i j G i j B i j= + + (1) 

 

In Eq. (1), ( , )R i j  represents the weighted mean of 

red flux. 0.59 ( , )G i j  represents the weighted mean of 

green flux. 0.11 ( , )B i j  represents the weighted mean of 

blue flux. After completing the grayscale processing of the 

image, it is necessary to filter the image. The main function 

of filtering is to better suppress image noise while ensuring 

the detailed features of the image. The study analyzes a 

large number of image processing literature and uses 

median filtering method to filter images. It belongs to 

nonlinear filtering technology, which can effectively 

suppress nonlinear noise during the process of filtering 

images. It can also replace the pixels in the image with the 

median of all pixels in the filtering window. At this point, 

the corresponding two-dimensional median filter can be 

represented by Eq. (2). 

 

( , ) ( ( , ))g i j med f i k j l= − −  (2) 

 

In Eq. (2), ( , )g i j  represents the filtered output 

image. ( , )f i j  is the input value before filtering. k  and 

l  belong to the templates in two-dimensional filtering, 

both of which are odd numbers. Median filtering requires 

effective processing of the original pixel length and 

filtering template to complete sorting and obtain the 

filtered results when processing images. After completing 

the filtering operation on the image, it is necessary to 

effectively extract the feature values of the feature regions 

in the image. In the study, Hough circle detection 

algorithm is used to locate image features and improve 

image processing capabilities. By studying the processing 

of Hough circle detection algorithm in images, traditional 

Hough circle detection algorithms are easily affected by 

environmental factors during the processing. It requires a 

large amount of computation, which leads to a decrease in 

accuracy during processing. Therefore, gradient region 

growth is introduced in the Hough circle detection 

algorithm. Gradient growth can aggregate pixels with 

consistent gradients, thereby reducing the impact of noise 

on image circular segments and improving the accuracy 

and reliability of detecting target circular regions [17-18]. 

Fig. 1 shows the Hough circle image detection flowchart 

for gradient region growth. The Hough circle detection 
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algorithm is a commonly used image processing method 

for detecting circular objects in images. This algorithm is 

based on the gradient information of the image. By 

calculating the gradient direction of pixels in the image, it 

locates the regions of different arcs and finds circular 

objects. In the gradient region growth stage, the algorithm 

first finds pixels with the same gradient direction, which 

are located at the edges of the image features. To determine 

these regions, the algorithm needs to utilize the linear 

regions in the image. Specifically, the algorithm defines 

the gradient variance between two adjacent pixels on a 

straight line in a linear region. By calculating the gradient 

direction difference, it can find the most suitable pixel set 

and fit different types of arc segments. At this stage, the 

algorithm will determine which pixels should be included 

in the circle based on the magnitude and direction of the 

gradient variance. Generally speaking, pixels with smaller 

gradient variances are more likely to be located at the 

edges of a circle, while pixels with larger gradient 

variances are more likely to be located at the center of the 

circle. Therefore, the algorithm will first select pixels with 

small gradient variance as candidate points for the circle, 

and then fit the equation of the circle based on the positions 

and gradient directions of these points. The gradient 

direction difference can be represented by Eq. (3). 

 

1 1 1 2 2 2( , ) ( , )
2

d x y d x y
n




= − ＜  (3) 

 

In Eq. (3),   represents the gradient direction 

difference. 1 1 1( , )d x y  represents the

Input image
Circular arc 

area 

positioning

Calculate the 

center and radius 

of the 

corresponding arc

Calculate the center 

and radius of the 

circle to determine 

the square area

Project arc 

points

Calculate the 

projection distance 

and calculate the 

cumulative value

Evaluate 

cumulative 

value

Output 

center and 

radius

Figure 1: Flow chart of Hough circle image detection for gradient region growth 

 

coordinate point of the first pixel. 2 2 2( , )d x y  represents 

the coordinate point of the second pixel. n  represents 

directional accuracy. After obtaining the fitted arc segment 

through gradient direction difference, the observation 

image can be calculated. At this point, the image can be 

represented by Eq. (4). 

 

J I  = +   (4) 

 

In Eq. (4), I  represents the image value without 

noise.   represents the quantization error value 

between two adjacent pixels. Fig. 2 is a schematic diagram 

of the relationship between directional angle and noise 

quantization during image processing to determine the 

pixel error caused by noise. After obtaining the 

relationship between the two, the study also needs to 

calculate the values of the arc and the center and radius of 

the processed circle in the image processing process. By 

finding any three coordinate points on an arc, the center 

and radius of the circle can be calculated, which can be 

represented by Eq. (5). 

 

2 2 2

1 1

2 2 2

2 2

2 2 2

3 3

( ) ( )

( ) ( )

( ) ( )

x a y b r

x a y b r

x a y b r

 − + − =


− + − =


− + − =

 (5) 

 

In Eq. (5), a  and b  represent the center value of 

the circle. After calculating the center value and radius, the 

projection distance in the image can be calculated and 

statistically analyzed. By calculating the projection 

distance, the position and size of the object in the image 

can be evaluated. The projection distance here is 

represented by Euclidean distance using Eq. (6). 

 

2 2( , ) ( ) ( )i j i jD i j x x y y= − + −  (6) 

 

In Eq. (6), ( , )i ix y  represents any coordinate point 

in the arc. ( , )j jx y  represents any coordinate point in the 
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positive direction region. 

 

 

3.2 Construction of visibility detection model 

using hough combined with IPNN 
After using gradient region growth Hough for grayscale 

and image processing, it is possible to evaluate the position 

and size of objects in the image. After completing the 

evaluation, it is also necessary to classify visibility based 

on the information of the object to complete the detection 

of visibility in the road surface. Therefore, it is necessary 

to establish a classification of visibility based on the 

feature information in road surface images and road 

visibility. IPNN is applied in the road visibility detection. 

IPNN is based on probability theory, which combines the 

advantages of probability theory and neural networks, and 

continuously optimizes the network parameters through 

incremental learning to achieve accurate processing of 

complex data. In IPNN, each neuron has probabilistic 

outputs, and these probabilistic outputs reflect the neuron's 

confidence in the input data. In highway engineering 

visibility detection, IPNN can effectively deal with various 

uncertainties and noise disturbances to improve the 

accuracy and robustness of detection. By introducing 

probabilistic output, IPNN can automatically adjust the 

connection weights between neurons to adapt to different 

input data. This incremental learning property enables the 

IPNN to continuously learn from new data and improve its 

performance, thus realizing accurate visibility detection. 

After setting the expected value, when the training error is 

greater than the expected value, the network can improve 

the training intensity by increasing the number of hidden 

layer neurons until the required error requirements are 

obtained, thereby completing the detection of road 

visibility [19-20]. Fig. 3 shows the structure of IPNN.

△I

△J
△ω

△θ

 

Figure 2: Schematic diagram of the relationship between directional angle and noise quantization in image processing 
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Figure 3: Schematic diagram of the structure of IPNN 
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In Fig. 3, when using IPNN for training, it is 

necessary to construct a radial base layer and an output 

layer. The radial base layer can initialize threshold and 

weight values. When the training results do not meet the 

expected values, it can act as a hidden layer to learn and 

extract useful features from the input data to update the 

threshold. By updating the threshold, the training error can 

be optimized to meet the expected value. Next is the 

construction of the output layer, which can be represented 

by Eq. (7). 

 

1max( )T wa=   (7) 

In Eq. (7), T  represents the target vector. w  

represents the image output weight. 1a  is the output of 

the radial base layer. After completing the construction of 

the radial base layer and output layer, the neural network 

in IPNN can be optimized to calculate the error between 

the actual and output values, which can be calculated using 

Eq. (8). 

3 2

1

( )
k

j j

j

err a t
=

= −   (8) 

In Eq. (8), 
3

ja  represents the actual output value. jt  

indicates the target output value. The accuracy of training 

results can be improved through the increase of neurons, 

but the structure of neural network has also become 

complex. The complex structure will increase the time-

consuming in the training process, and also affect the 

accuracy of the data. The smoothing factor is included in 

the radial base constructed in the study. The smoothing 

factor plays a role in controlling the complexity of the 

model, affecting the learning performance and 

determining the size of the basis function in IPNN. By 

adjusting the smoothing factor reasonably, the learning 

performance and generalization ability of IPNN can be 

optimized. This shows that the size of smoothness factor 

will directly affect the complexity of IPNN in visibility 

detection of road image [21]. Therefore, it is necessary to 

select an appropriate smoothing factor to reduce the 

complexity of neural network in the process of operation. 

To obtain a more balanced smoothing factor, Particle 

Swarm Optimization (PSO) is used to optimize the 

smoothing factor of IPNN. When optimizing the 

smoothing factor, it is necessary to initialize the 

parameters of PSO. Fig. 4 is the flow chart of PSO 

optimizing IPNN. In Fig. 4, on the basis of setting 

parameters, it is also necessary to select the fitness 

function to find the optimal position of particles through 

iteration. At this time, the fitness function can be expressed 

by Eq. (9). 

 

3

i i

i

i

a T
F

T

−
=   (9) 

In Eq. (9), 
3

ia  is the number of the i -th particle 

before optimization. iT  represents the difference 

between the actual outputs. By calculating the fitness 

function, the optimal position of the particle swarm can be 

calculated. After obtaining the optimal position of the 

particle swarm, it is also necessary to pay attention to the 

update speed and position information of the particles at 

any time. The update speed here can be calculated by Eq. 

(10). 

 

1

, , , ,

, ,

( )

( )

t t t t

i d i d i i d i d

t t

g d i d

V w v Q pbest x c

rand gbest x

+ =  +  − + 

 −
 (10) 

In Eq. (10), 
1

,

t

i dV +
 represents the updated speed. w  

is the weight value of inertia. ,

t

i dv  is the speed that is not 

updated. iQ  means speed control factor. ,

t

i dpbest  

indicates the optimal position of the current particle search. 

,

t

i dx  is the position before the update. c  is the learning 

factor. ,

t

g dgbest  indicates the optimal position searched 

by the current particle swarm. The updated location 

information can be expressed by Eq. (11). 

 

1 1

, , ,

t t t

i d i d i i dx x Q V+ +=  +   (11) 

In Eq. (11), 
1

,

t

i dx +
 represents the updated position. 

After obtaining the updated velocity and position 

information, the diversity scale of particle swarm can be 

defined. The determination of diversity scale can update 

the optimal value of individual particles to obtain the 

optimal value of particle swarm. At this time, the position 

update can be expressed by Eq. (12). 

 

,

,

,

0.01 (1, )g d

i d

g d

P rand D rand
x

P otherwise

r+ 
= 


＜
(12) 

In Eq. (12), ,g dP  means the local optimal position. 

(1, )rand D  is a random number between [0, 1]. r  

represents the pulse frequency value emitted in the process 

of particle optimization. By judging the position and the 

number of new iterations, if all the optimal positions have 

been found, the optimal solution will be output, and the 

value of the optimal solution can be used as the smoothing 

factor of IPNN. The pseudocode for IPNN training is 

shown in Figure 5.
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Figure 4: Flowchart of particle swarm optimization for IPNN 

  

IPNN_Training():

    initialize_radial_basis_layer_threshold_and_weight()

    while (training_result_not_expected):

        update_threshold_as_hidden_layer()

        optimize_training_error()

    construct_output_layer()

    initialize_particle_swarm_optimization_parameters()

    select_fitness_function()

    while (not_converged):

        best_position = calculate_fitness_function()

        updated_speed = calculate_speed_update()

        updated_position = calculate_position_update()

        define_diversity_scale()

        if (found_optimal_position):

            output_optimal_solution_as_smoothing_factor()

    return classification_result

 

Figure 5: Flow chart of highway pavement visibility detection using Hough algorithm combined with IPNN 

 

In summary, through image processing and feature 

extraction, the collected image information to be 

measured is input into the model for training, and the 

classification results of highway pavement visibility are 

obtained. Fig. 6 shows the flow chart of HPVD based 

on Hough and IPNN. 
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Figure 6: Flow chart of highway pavement visibility detection using Hough algorithm combined with IPNN 
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4 Performance analysis of visibility 

detection model for highway 

pavement 
To verify the performance of HPVD, according to the 

relevant national standards, combined with the actual 

situation of calculation, pavement visibility was divided 

into six cases. The study collected 150 groups of 

experimental samples through authorization, covering 6 

kinds of road visibility. The collected experimental 

samples were used to construct the data set, and the data 

set was used to verify the performance of the model. 

 

4.1 Performance analysis of visibility 

detection model 

The hardware configuration used in the experiment was a 

laptop equipped with a Core i5-8250U processor and a 

memory configuration of 16 GB. The operating system 

selected was Windows 10, and the development 

environment adopted Anaconda 4 distribution, which had 

rich built-in Python libraries and tools. 

To verify the performance of HPVD, the study first 

verified the grayscale processing effect of the model. 

Images collected at 10, 20, 50, 100, 500, and 1000 meters 

were used as conditions for grayscale processing, and the 

performance of the model was reflected based on the 

grayscale processing results of images at different 

distances. Fig. 7 shows the average grayscale and 

distortion of color blocks under typical visibility. 
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Figure 7: Mean grayscale and distortion of color blocks under typical visibility 

 

According to Fig. 7(a), as the average grayscale of the 

color block changed, there were some fluctuations in the 

average grayscale of the color block as the distance 

increased. The large grayscale variation of the color blocks 

indicated low visibility, which was significantly related to 

weather and air quality. According to Fig. 7(b), as the 

original grayscale and visibility distance of the color block 

increased, the distortion of the color block showed a trend 

of first decreasing and then increasing. This indicated a 

monotonically decreasing relationship between the degree 

of distortion of color block images and the distance of 

visibility. Besides, the color block distortion in the study 

had a certain degree of symmetry, which also indicated 

that the prediction model constructed in the study had good 

image grayscale processing ability. To verify the 

performance of the model in image processing, a 

comparison was conducted between the dark primary color 

prior algorithm, dual brightness difference method, and 

detection model. The comparison indicators were the 

accuracy and precision of image processing. Fig. 8 shows 

the comparison results of image processing accuracy and 

precision among three methods. According to Fig. 8(a), the 

image processing accuracy of all three methods was at a 

high level. The data processing accuracy of the detection 

model in the image processing process was 97.03%. The 

data processing accuracy of the prior algorithm for dark 

primary color and the double brightness difference method 

were 92.11% and 89.54%, respectively. In Fig. 8(b), the 

difference in precision among the three methods during 

image processing increased. The precision of the detection 

model in the image processing process was 93.37%. The 

processing precision of the prior algorithm for dark 

primary color and the double brightness difference method 

were 88.92% and 82.69%, respectively. This indicates that 

the visibility detection model constructed in the study has 

better robustness in image processing. To verify the feature 

classification and detection efficiency of the detection 

model in visibility images, the feature classification 

performance and time consumption were used as 

indicators. Fig. 9 shows the comparison of feature 

classification performance and classification time of three 

methods.
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Figure 8: Comparison of accuracy and precision of image processing using three methods

 

 

 

100 200 300 400 500 600 700 800

Iterations

0

10

20

30

40

50

60

70

F
ea

tu
re

 c
la

ss
if

ic
at

io
n

 e
ff

ec
t/

%

80

90

100

Double brightness difference method

(a) The feature classification performance of three methods

100 200 300 400 500 600 700 800

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
la

ss
if

ic
at

io
n

 t
im

e/
s 4.0

4.5

5.0

(b) The classification time of three methods

0

A prior algorithm for dark primary colors

Detection model

Double brightness difference method

A prior algorithm for dark primary colors

Detection model

 

Figure 9: Comparison of feature classification performance and time of three methods 

 

According to Fig. 9(a), the dual brightness difference 

method had the worst classification performance in feature 

classification of visibility images, while the detection 

model had the best performance. The feature classification 
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performance of this detection model reached 93.61%. The 

image feature classification performance of the dark 

primary color prior algorithm and the dual brightness 

difference method were 86.73% and 81.29%, respectively. 

According to Fig. 9(b), the feature classification time of 

the detection model was 1.13 s. The classification time of 

the dark primary color prior algorithm and the dual 

brightness difference method were 1.96 s and 2.49 s, 

respectively. This indicates that the detection model can 

have better recognition performance in a shorter time. To 

further verify the effectiveness of the detection model in 

detecting visibility on highway pavements, the visibility 

detection results and detection error percentage of the three 

methods were used as indicators. Fig. 10 shows the 

comparison results of visibility detection and error 

percentage using three methods. 
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Figure 10: Comparison results of visibility detection and error percentage using three methods 

 

According to Fig. 10(a), there were significant 

differences in visibility detection among these three 

methods under the same weather conditions. The visibility 

of the detection model reached 510.69 m. The visibility 

detection values of the dark primary color prior algorithm 

and the dual brightness difference method were 426.59 m 

and 372.89 m, respectively. According to Fig. 10(b), there 

was also a significant difference in the percentage of error 

among these three methods. The visibility error percentage 

of the detection model was 10.06%. The visibility error 

percentages of the dark primary color prior algorithm and 

the dual brightness difference method were 17.93% and 

23.91%, respectively. This indicates that the constructed 

HPVD has high adaptability in the visibility detection of 

highway pavement. 

 

4.2 Application performance analysis of 

visibility detection model 
To validate the application performance of HPVD, this 

study collected 150 sets of data as input. The data came 

from actual road monitoring equipment and 

meteorological station records. When using this data, 70% 

of it was used as the training set to train the detection 

model and enable it to learn the features and patterns in the 

data. The remaining 30% was be used as a test set to 

evaluate the performance of the detection model on new 

data and test its generalization ability. The study took the 

time consumption and visibility detection error of different 

visibility video sizes as indicators. Fig. 11 shows the time 

consumption, visibility recognition results, and error 

analysis of visibility recognition. 
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Figure 11: Time consumption, visible recognition results, and error analysis for visibility recognition 
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According to Fig. 11(a), as the number of video 

plugins increased, the average time consumption for 

different video frame sizes showed a significant increase. 

The larger the video frame, the more time it took. The 

average time consumption for video 160×120 was 3.2 s, 

4.6 s for video 320×240, 7.2 s for video 640×480, and 13.9 

s for video 960×720. This indicates that, while ensuring 

accurate visibility judgment, the video used for visibility 

analysis can be selected based on the size of the video 

frame. According to Fig. 11(b), as visibility increased, the 

detection error of visibility showed a decreasing trend. 

Although there was a certain difference between the 

visibility detection value and the visibility reference value, 

the general trend was the same. The detection error was 

13.69% when the visibility was between 10 and 50 m, 

11.27% between 50 and 100 m, 10.59% between 100 and 

200 m, 10.12% between 200 and 500 m, and 10.03% 

between 500 and 1000 m. This indicates that the visibility 

detection model has high accuracy and effectiveness. To 

verify the detection performance of the detection model 

during the day and evening, the instrument detection 

results were compared with the detection model in the 

study. Fig. 12 shows the visibility detection results of two 

methods during the day and evening. According to Fig. 

12(a), the difference between these two methods was not 

significant in the visibility detection of road surfaces 

during the day. The minimum and maximum visibility 

distribution detected by the instrument was [186.93 m, 

1198.76 m], while the detection model was [183.57 m, 

1183.26 m]. According to Fig. 12(b), in the detection of 

visibility on the evening road surface, the detection model 

was directly affected by light due to the collected videos 

for analysis, resulting in a significant decrease in the 

detection effect of visibility. At this point, the distribution 

of the minimum and maximum visibility values of the 

detection model was [139.58 m, 519.22 m]. Although the 

visibility detection model was affected to some extent in 

the evening, the visibility detection results it obtained still 

had reference value. To further validate the performance 

of the detection model, a 24-hour comparison was 

conducted between the predicted values of the detection 

model and the true values of visibility. Fig. 13 shows the 

comparison between the predicted values of the detection 

model and the actual values.
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Figure 12: The visibility detection results of two methods during the day and evening 
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Figure 13: Comparison results between predicted and true values of the detection model 

 

According to Fig. 13, the average visibility of the true 

values throughout the entire detection was 1098.35 m. 

There was a certain difference between the predicted 

values of the detection model and the true values of 

visibility, with an average visibility value of 1029.76 m. 

The comparison between the actual and predicted visibility 

values showed that the constructed highway pavement 

detection model had a certain degree of reliability and 

could be applied to the corresponding HPVD. To verify the 

effectiveness of the application of the visibility model, the 

study used the false alarm rate of the visibility detection 

model as a sensitivity detection index for exploring the 

sensitivity of the visibility detection model. The results of 

the false alarm comparison between the model and the 

traditional visibility detection method and the true value of 

visibility are shown in Fig. 14. 
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Figure 14: False alarm comparison results of the model with traditional visibility detection methods and true values of 

visibility 

 

In Figure 14, in visibility sensitivity detection, the 

detection sensitivity false alarm rate of the traditional 

method was 10.53%. The visibility detection sensitivity 

false alarm rate of visibility detection model was 7.29% 

and the true false alarm rate of visibility was 6.08%. There 

was a difference of 4.45% and 1.21% between the 

sensitivity false alarm rate of the traditional method and 

the visibility detection model compared to the true value. 
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This indicates that the visibility detection model has a high 

detection sensitivity with a small difference from the true 

value. To further validate the performance of the visibility 

detection model, the study was conducted to measure the 

actual visibility, as shown in Fig. 15, which shows the 

results of the visibility image comparison before and after 

the visibility model processing. The comparative analysis 

of Fig. 15 shows that the visibility raw images were 

introduced into the visibility detection model and 

combined with the features of highway surveillance 

images. The study utilized the Hough algorithm for noise 

reduction and graying of the original image. Meanwhile, 

IPNN was utilized to increase the processing capacity of 

the neural network to ensure that the image visibility 

features are not lost during the refinement. Comparison of 

Fig. 15 (a) and (c) revealed that the gap between the 

refinement results and the real value was significantly 

reduced, which indicated that the visibility detection 

model had a stable and reliable performance in both 

visibility detection effect and real-time performance. 

To verify the scalability and robustness of the 

proposed model, the experiment analyzed the accuracy, 

recall, F1 score, and AUC of the model under the 

Nighttime visibility dataset. The Nighttime visibility 

dataset includes visibility data under different weather 

conditions, road types, and vehicle speeds, with over 

10000 observations. The scalability and robustness 

evaluation results of the model are shown in Table 2. In 

Table 2, the proposed model performed exceptionally well 

in various environments and conditions. Firstly, regardless 

of whether the weather conditions were sunny, cloudy, 

rainy, or snowy, the environmental classification accuracy 

of this model remained above 90%, with the highest 

classification accuracy of 93.7% for sunny days. This 

indicates that the model has good environmental 

adaptability and can accurately classify environments 

under various weather conditions. Whether it is dry, wet, 

waterlogged, or snowy roads, the classification accuracy 

of the model remained above 90%, with dry roads having 

the highest classification accuracy, reaching 94.3%. This 

indicates that the model has good robustness and can 

accurately classify environments under various road 

surface conditions. In the case of low-speed, medium-

speed, and high-speed vehicles, the classification accuracy 

of the model was above 90%, with low-speed vehicles 

having the highest classification accuracy, reaching 95.3%. 

This indicates that the model has good speed adaptability 

and can accurately classify environments at various 

vehicle speeds. In summary, the proposed model has good 

scalability and robustness, and can accurately classify 

environments in various environments and conditions, 

which is of great significance for traffic safety applications.

(a) Original images (b) Initial processing of images (c) Model refinement of 

processed images

 

Figure 15: Comparison results of visibility images before and after visibility model processing 

  

Table 2: Model scalability and robustness assess the knot 

Environment Classification Accuracy Recall F1 score AUC 

Meteorological 

condition 

Sunny 93.7% 91.3% 92.1% 0.91 

Cloudy 92.7% 90.3% 91.7% 0.89 

Rain 92.9% 91.3% 91.6% 0.90 

Snowy 92.1% 90.1% 90.3% 0.88 

Road surface 

type 

Dry 94.3% 91.7% 93.1% 0.92 

Damp 94.1% 90.3% 92.7% 0.90 

Accumulated 

water 
91.5% 90.9% 91.2% 0.90 

Accumulated 

snow 
90.1% 89.9% 90.0% 0.87 

Vehicle speed 

Low 95.3% 94.1% 94.8% 0.93 

Medium 94.3% 92.7% 93.9% 0.92 

High 93.7% 95.3% 94.6% 0.90 
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This study developed an HPVD for detecting 

visibility on highway surfaces. The results indicated that 

the model outperformed other methods in terms of 

accuracy and precision in visibility detection, and had a 

lower false alarm rate and good real-time performance. 

The constructed HPVD model had high reliability and 

practicality in road visibility detection. Compared with the 

research methods in related works, the visibility detection 

model proposed in the study had better performance in 

accuracy, precision, and real-time performance. This is 

because this study employed deep learning techniques to 

learn more complex and advanced feature representations, 

thereby improving the performance of the model. 

Compared to the hybrid model proposed by Ma et al., the 

visibility detection model proposed in this study used road 

monitoring video data, which had better stability and real-

time performance. The proposed model can learn more 

complex and advanced feature representations in a unified 

model, thereby improving the performance of the model. 

However, the visibility detection performance of the 

method proposed in this study may be reduced when 

dealing with complex scenes and extreme weather 

conditions. This provides room for improvement and 

optimization for future research. 

5 Conclusion 

HPVD is an important topic in the traffic safety, which is 

crucial for improving driving safety. The study constructed 

an HPVD by integrating Hough and IPNN, combining 

their advantages. These results confirmed that the average 

time taken for a video frame of 960×720 was 13.9 s, and 

the detection error between 500 and 1000 meters was 

10.03%. The distribution of the minimum and maximum 

visibility values on the road surface during the day and 

evening was [183.57 m, 1183.26 m], while in the evening 

it was [139.58 m, 519.22 m]. Compared with traditional 

methods, the constructed HPVD can more accurately 

detect the visibility of road surfaces by comparing it with 

instrument detection values and true visibility values. The 

experiment verified the effectiveness and feasibility of this 

method, providing new ideas and methods for further 

research on HPVD. The research on visibility detection 

technology for highway engineering by Hough algorithm 

combined with IPNN involves several key fields and has a 

wide range of application prospects. In the highway 

engineering industry, it can provide real-time accurate 

visibility data for highway safety, accident prevention and 

traffic flow management. It not only promotes the 

development of related industries, but also brings a new 

development direction for visibility detection in highway 

engineering. 
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