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With the continuous growth of data volume, anomaly detection has become an important link in the 

data processing process. In view of the maximum entropy fuzzy clustering algorithm, an anomaly 

detection method combining soft computing is proposed. During the process, the K-means algorithm 

was used to construct the algorithm foundation, followed by the establishment of an objective function 

for maximum entropy calculation and the introduction of the Hilbert Schmidt independence criterion 

for variable extraction. Then it conducts data migration and calculates the exception score. The 

experimental results showed that the proposed method could be reduced to 113 in the Iris data set 

when the convergence curve was tested. When the calculation time was tested, the calculation time of 

the research method was only 2697ms when the sample size reached 10000. When the accuracy and 

purity tests were carried out, the accuracy and purity of the research method were 87.7% and 87.6% in 

the MR Dataset. In the Leaf dataset, the standardized mutual information index reached 0.6837 and 

the FM index reached 0.3903. The lowest Davies-Bouldin index was 0.71. The area enclosed by the 

receiver operation characteristic curve and the horizontal coordinate of the research method was the 

largest. The results indicate that the research method has high accuracy and computational efficiency 

in data anomaly detection and can provide effective technical references for anomaly detection. 

Povzetek: Za odkrivanje anomalij v podatkih avtorji kombinirajo dve metodi: (a) mehko gručenje z 

maksimalno entropijo ter (b) mehko računanje za doseganje boljših rezultatov.

1 Introduction 

As the boost of information technology and the rapid 

growth of data, anomaly detection (AD) has become an 

important research topic in the field of data security. The 

existing AD methods still face difficulties in dealing with 

complex data environments [1]. Large scale datasets 

often have high-dimensional features, and traditional 

feature representation methods often find it difficult to 

effectively capture useful information in the data, 

resulting in a decrease in the performance of AD [2, 3]. 

Abnormal samples are usually rare in real datasets, which 

makes it difficult for traditional machine learning 

algorithms to accurately identify abnormal samples and 

prone to false positives or omissions [4-6]. The K-means 

algorithm (KMA) can divide data samples into different 

clusters, providing clustering results as a basis for 

subsequent AD. The maximum entropy calculation 

method can effectively estimate the distribution of data 

and help to accurately detect anomalies. Transfer learning 

can use the knowledge and experience of the source 

domain to assist the AD task in the target domain. In 

view of this, this research proposes an AD method 

combining soft computing (SC) and maximum entropy 

fuzzy clustering (FC) algorithm, to provide a feasible  

 

reference technology for information technology. 

The research mainly focuses on four aspects. The first 

part discusses the current research results on AD methods 

and mushroom clustering. The second part is the design 

of the maximum entropy FC migration AD method in 

view of SC. The third part is to determine the 

effectiveness of the research method. The last part is a 

summary and discussion of the entire text. 

2 Related works 

As the boost of information technology, the volume of 

data is becoming larger and larger. Data AD is an 

important means to protect data security. Some scholars 

have conducted relevant research on data AD. Ni et al. 

proposed a detection method in view of convolutional 

neural network (CNN) to solve the problem of abnormal 

data in structural monitoring. This method used a neural 

network to extract features from the signal, followed by 

automatic encoder structure for data reconstruction. The 

experiment illustrated that the proposed method had high 

accuracy [7]. Zhou et al. proposed a detection method in 

view of neural network to solve the anomaly problem in 

industrial big data. This method represented the data in 

reduced dimensions and reconstructed and quantized the 
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loss function. The experiment demonstrated that the 

proposed method has high accuracy [8]. Mao et al. put 

forward a detection method in view of unsupervised 

learning (UL) method to solve the problem of abnormal 

monitoring in civil structure detection data. This method 

introduced adversarial networks and transforms data 

containing time series into images. The experiment 

showed that the proposed method had good robustness 

[9]. Liu et al. proposed a detection method in view of 

Federated learning to solve the problem of fault data AD 

in industrial manufacturing process. This method used 

scattered edge device data for model training, and added 

attention mechanism and long short-term memory to 

maintain fine-grained features. The experiment indicated 

that the proposed method had a high accuracy in AD [10]. 

Khaledian et al. proposed a detection method in view of 

UL for data AD in power system. This method marked 

fault data and introduced the concept of stack integration 

for algorithm optimization. The experiment demonstrated 

that the proposed method could perform accurate data 

classification and AD [11]. 

Some scholars have conducted research on 

clustering algorithms. Liu et al. proposed an efficiency 

improvement method in view of FC for image size 

adjustment. This method mapped the pixels of the image 

spatially, then compressed the clustering sample size and 

introduced the C-Means clustering algorithm for main 

data extraction. The experiment illustrated that the 

proposed method could effectively improve the speed of 

image adjustment [12]. Zhang et al. proposed a 

processing method in view of FC for image segmentation 

in medical image analysis. This method initialized the 

cluster center and searches for approximate data. The 

experiment indicated that the proposed method had good 

robustness [13]. Jiang et al. proposed an auxiliary method 

in view of clustering fuzzy to improve the efficiency of 

rock image segmentation. This method first preprocessed 

the original image, and then used CNN to remove 

irrelevant feature information. The experiment 

demonstrated that the proposed method has a high 

computational speed [14]. Hu et al. proposed a 

calculation method in view of FC for data processing in 

Complex network. This method introduced the 

generalized momentum method, which was then trained 

and tested on multiple datasets. Experimental results 

showed that the proposed method had high Rate of 

convergence and accuracy [15]. Feng et al. proposed a 

partition method in view of FC to solve the accuracy 

problem of soft partition of complex data. This method 

established a new feature space to support data 

reconstruction and introduces neural networks for data 

recovery encoding. The experiment demonstrated that the 

proposed method had high partitioning accuracy [16]. 

In summary, although clustering fuzzy algorithms 

have been studied and applied in various fields, there is 

still relatively little research on data AD. In view of this, 

this research proposes an AD algorithm that integrates the 

maximum entropy FC algorithm of SC, to provide some 

reference for data AD. The related works summary Table 

is shown in Table 1. 

 

 
Table 1: Related works summary table 

Author and year Method Data set Performance index 

Ni et al., 2020 CNN-based method Structural monitoring data High accuracy 

Zhou et al., 2020 Neural network method Industrial big data 
High accuracy, loss function 

reconstruction 

Mao et al., 2021 
Unsupervised learning 

method 

Civil structure monitoring 

data 
Good robustness 

Liu et al., 2020 Federated learning 
Industrial manufacturing 

process data 

High accuracy, incorporation of 

attention mechanism and LSTM 

Khaledian et al., 

2020 
UL method for power system Power system data 

Accurate data classification and 

anomaly detection 

Liu et al., 2021 
Fuzzy clustering efficiency 

improvement method 
Image data Effective improvement in speed 

Zhang et al., 

2021 

Fuzzy clustering for medical 

image segmentation 
Medical image data Good robustness 

Jiang et al., 2020 
Fuzzy clustering auxiliary 

method 
Rock image data High computational speed 

Hu et al., 2021 
Fuzzy clustering calculation 

method 
Complex network data High convergence rate and accuracy 

Feng et al., 2020 
FC partition method for 

complex data 

Complex data soft 

partition 
High partitioning accuracy 
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3 Design of maximum entropy FC 

migration AD method in view of 

SC 
Abnormal detection of data can ensure higher reliability 

of information systems. This section will focus on the 

technical means and evaluation system used in the 

maximum entropy FC migration AD method fused with 

SC. 

3.1 Construction of maximum entropy 

clustering algorithm introducing hilbert 

schmidt independent criterion 

Cluster analysis is a statistical analysis method, which 

belongs to UL method. This method can classify 

unlabeled objects in view of the potential laws and 

similar features of different entities [17, 18]. The 

increasing magnitude of data in various systems makes it 

difficult to extract potential patterns and perform AD in 

the data. Therefore, using clustering analysis can help 

with AD [19]. This study uses the KMA as the basis for 

constructing detection algorithms. The basic process of 

the KMA is shown in Figure 1. 
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Figure 1: Basic process of KMA 

 

In Figure 1, when running the KMA, it is first 

necessary to extract data objects from the given dataset 

for setting the initial clustering center. It calculates the 

Euclidean distance between the cluster center and the 

remaining data objects, and allocates the data to the 

cluster with the closest cluster center. It calculates the 

average data in each cluster, updates the cluster center, 

and then calculates the sum of squares of errors for all 

clusters. If the sum of squared errors changes, calculate 

and iterate the Euclidean distance again until the 

clustering is completed and the clustering result is output 

when the sum of squared errors remains unchanged. The 

calculation of Euclidean distance is shown in equation 

(1). 

 ( ) ( )
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In equation (1), d  represents the Euclidean 

distance. x  represents the data object. C represents the 

center of the cluster. m  represents the dimension of the 

data object, i  represents the index of the data objects in 

the dataset. j  represents the index that represents the 

cluster center. The calculation of the sum of squares of 

errors is shown in equation (2). 
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In equation (2), ES  represents the sum of squares 

of errors. M  represents the mean of the cluster. k  

represents the number of cluster clusters. The idea of 

maximum entropy in machine learning is to maximize the 

objective function under set conditions. In clustering 

problems, samples in the same cluster are more similar 

and have less uncertainty. In the context of clustering, the 

probability distribution of data points within a given 

cluster not only adheres to the principle of entropy 

maximization but also satisfies specific constraints. The 

objective function for maximum entropy calculation is 

shown in equation (3). 
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In equation (3),  represents the membership 

degree of the data object to the cluster center. v  

represents the clustering center.   represents the 

coefficient of the regularization term. The larger the 

coefficient of the regularization term, the greater the 

impact of entropy on the results. When optimizing and 

updating the clustering results, the iterative updating 

formula is designed by using the Lagrange conditional 

extremum method. The function includes the negative 

value of the original entropy and the penalty term for 

violating the constraint. By introducing Lagrange 

multipliers, constraints are integrated into the 

optimization process. The objective function belongs to 

convex function. When designing the updating equation 
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of the cluster center and membership degree, other 

variables are set to be in a constant state. The update 

iteration of the maximum entropy algorithm is shown in 

equation (4). In equation (4), when calculating ,j ijv  , 

fix the other value separately. The process of obtaining 

maximum entropy algorithm is shown in Figure 2. 
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Figure 2: Maximum entropy algorithm process 

 

Figure 2 shows that at runtime, the number of cluster 

clusters and maximum iteration times are first set, and 

after determining the regularization coefficient and 

termination threshold, the input dataset is input for 

calculation. After initializing the membership matrix, 

start recording the number of iterations, keep the 

membership matrix unchanged, and update the cluster 

center vector until the maximum number of iterations is 

reached, ending the loop. After entering the update step 

of the membership matrix, keep the cluster center vector 

unchanged until the cycle ends when the maximum 

number of iterations is reached. Finally, output the final 

membership matrix and cluster center vector. The Hilbert 

Schmidt independence criterion (HSIC) extracts random 

variables from the original feature space and maps them 

into the reconstructed kernel space. It searches for the 

independent relationships between other variables and 

random variables, and can estimate the dependency 

relationships between different clusters [20]. The 

Cross-covariance operation of the characteristic 

relationship is shown in Formula (5). 

 

( ) ( )( ) ( ) ( )( ) ,y z yz y zR E x E y z E z      = −  −    (5) 

In formula (5), ,y zR  represents the 

Cross-covariance matrix.   represents the variable 

mapping relationship. yzE  represents the Joint 

probability distribution of variables. ,y zE E  represent 

marginal distribution expectations.   represents tensor 

product. The HSIC can be expressed by the Hilbert 

Schmidt norm of the cross-covariance matrix, as shown 

in equation (6). 

 ( )
2

,, ,yz y z HS
HSIC P F G R=  (6) 

In equation (6), 
HS

 represents the Hilbert Schmidt 

norm. yzP is the joint probability between random 

variables. ,F G  are the mapping result of the variable. If 

two variables are independent of each other, the HSIC 

takes a value of 0. The higher the value of the HSIC, the 

stronger the correlation between variables. 

 

3.2 Design of migration AD algorithm in view 

of SC 
It integrates the HSIC into maximum entropy clustering 

to obtain a maximum entropy algorithm in view of 

minimum dependency. It adds the Hilbert Schmidt 

independent criterion value of the cluster center to the 

objective function to ensure the maximum intra cluster 

similarity of the clustering results. When solving the 

objective function, the trace operation of the matrix is 

required, and then the transformed objective function is 

solved using the Lagrange conditional extreme value 

method. The calculation of Lagrange equation is shown 

in equation (7). 
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In formula (7), i  represents Lagrange multiplier. 

H  represents the concentrated matrix. P  represents 

the feature space dimension.   represents the 

equilibrium parameter. The smaller the balance parameter, 

the less attention is paid to the similarity information 

between clusters. When it is 0, the original maximum 

entropy algorithm is equivalent to the algorithm. When  
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updating the membership matrix, fix the cluster center 

vector and solve for the partial derivative of the 

membership matrix to obtain the updated membership 

matrix as shown in equation (8). 
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In equation (8), exp  is obtained from the empirical 

formula consisting of Lagrange multiplier and the 

coefficient of the canonical term, and represents the 

Exponential function with e  as the base. When 

calculating the center of a cluster, the membership degree 

of the cluster is fixed, and the center vector is solved by 

partial derivatives to obtain the relationship as shown in 

equation (9). 
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In formula (9), I  is the Identity matrix of P P . 

iK  surface linear kernel function. When 
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   is a full matrix, it has a 

unique Inverse matrix. If it is not a full matrix, the 

Singular value decomposition method is used to calculate 

the pseudo-Inverse matrix. The cluster center update is 

shown in equation (10). 
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The improved update formula includes the 

optimization objective of the original maximum entropy 

algorithm, as well as the interdependence information of 

different cluster centers, ensuring sufficient independence 

of the updated cluster centers. The maximum entropy 

clustering algorithm in view of the HSIC is shown in 

Figure 3. 
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Figure 3: Maximum entropy clustering algorithm process 

 

Figure 3 shows that the maximum entropy clustering 

algorithm in view of the HSIC needs to first set and select 

parameters such as the dataset before running, then 

determine the regularization coefficient and balance 

parameters, and determine the termination threshold. 

Then it starts calculating, initializing the membership 

matrix, zeroing the number of algorithms runs, inputting 

the initialized membership matrix, and running the 

maximum entropy algorithm. It takes the output result of 

the maximum entropy algorithm as the input value for 

subsequent iterations and sets the number of runs of the 

new loop to zero. Then it keeps the membership matrix 

unchanged and updates the cluster center until the 

maximum number of iterations is reached, ending the 

cycle. After entering the update step of the membership 

matrix, keep the cluster center unchanged until the cycle 

ends when the maximum number of iterations is reached. 

In each iteration process, the cluster center and 

membership matrix need to be continuously updated. 

When updating the cluster center, it is necessary to 

consider the information of the cluster center and 

membership matrix in the previous iteration. Moreover, 

when updating the membership degree, it is necessary to 

consider the cluster center and sample point information. 

It outputs the final membership degree and cluster center 

as the result. When calculating the membership matrix, 

the time complexity is the same as the Time complexity 

of the original maximum entropy algorithm. The Time 

complexity is greatly affected by the sample size. The 

more samples, the more Time complexity [21]. When 

performing abnormal detection and analysis of data, the 

abnormal label of actual data is usually missing or invalid. 

Similar tasks have commonality, and migrating between 

different tasks can reduce the burden of data label 
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collection and reduce time and hardware costs. To 

address the information omission when discarding the 

source domain dataset label, the target domain data is 

combined with the source domain data after adding 

pseudo labels for instance migration model training. 

There is a negative transfer problem in UL. This study 

introduces ensemble learning to train multiple base 

models, and then combines the output results of all base 

models to judge the degree of instance migration in the 

source domain dataset. When training the base 

classification model of the positive instance, calculate the 

recall score of the model, as shown in equation (11). 
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TP FN

=
+

 (11) 

 

In equation (11), recall  represents the recall score. 

TP  represents the correctly classified instance in the 

confusion matrix. FN  represents the instance in the 

confusion matrix that is wrongly classified. Update the 

weights of correctly classified and incorrectly classified 

instances, as shown in equation (12). 
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In equation (12), w  represents the weight. iy  

represents the true label. ˆ
ty  represents the prediction 

label.   is calculated from the recall score. When 

calculating the base classification model for negative 

instances, update the weights of correctly classified and 

incorrectly classified instances after calculating the recall 

score, as shown in equation (13). 
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It comprehensively utilizes the migration data and 

labels of the source domain, and analyzes unlabeled data 

in the target domain to generate abnormal scores for the 

data. If the midpoint of the source domain is in the area 

near the cluster center, the abnormal score of the data is 

calculated as shown in equation (14). 

 2

j

l

ij

w
a

d
=  (14) 

In equation (14), la  represents the abnormal score 

of the source domain. jw  is the transfer weight. ijd  

represents the distance between a point in the target 

domain and its nearest neighbor. The calculation of 

abnormal scores in the target domain is shown in 

equation (15). 
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In equation (15), ua  represents the abnormal score 

of the target domain.   represents the proportion of 

abnormal points. The calculation of the comprehensive 

abnormal score of points is shown in equation (16). 

 ( )* * 1i l l u la a w a w= + −  (16) 

In equation (16), lw  is the contribution value of the 

object point. The Transfer learning part of the AD 

algorithm in view of soft instance migration is shown in 

Figure 4. 
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Figure 4: Algorithm Transfer learning part 

 

Figure 4 shows that the Transfer learning part of the 

AD algorithm in view of soft instance migration first 

initializes the migration weight vector and merges the 

data sets of the source domain and the target domain. 

After resetting the iteration count to zero, it generates 

prediction labels for both positive and negative instances, 

and ends the loop when the iteration count reaches the 

preset upper limit. The AD process is shown in Figure 5. 
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Figure 5: Abnormal detection process 

 

Figure 5 illustrates the process by which, in the 

context of AD, the initial determination is made as to 

whether the source domain point falls within the central 

neighborhood of the target point cluster. Subsequently, 

the anomaly scores are calculated for both the 

neighborhood and the domain. Then it calculates the 

comprehensive anomaly score of the point, continuously 

loops to obtain complete data, ends the loop, and outputs 

the final anomaly score as the AD result. 

 

4 Performance test and application 

analysis of maximum entropy FC 

migration AD method integrating 

SC 
A good data AD method is the guarantee of accurate 

information analysis. This section will test the 

performance of the research method in AD and conduct 

application analysis to determine the effectiveness of the 

research method. 

 

4.1 Performance test of maximum entropy 

FC migration AD method integrating SC 
To analyze the effectiveness of the maximum entropy FC 

migration method fused with SC in data AD, the 

performance test and application analysis of the research 

method are carried out. When conducting performance 

testing, the experiment used the Iris dataset, Leaf dataset, 

and MR dataset as the experimental datasets. It sets the 

regularization coefficient on the Iris dataset to 4 and the 

equilibrium parameter to 40. The regularization 

coefficient on the Leaf dataset is 1, and the equilibrium 

parameter is 1. The regularization coefficient on the MR 

dataset is 1, and the equilibrium parameter is 1. The 

computing resources used in the experiment includes a 

personal computer with an Intel Core i7 processor and 

16GB of RAM. All experiments are performed on a 

single computing node without the use of distributed 

computing resources. The operating system is Ubuntu 

20.04 LTS to ensure the consistency of the experimental 

environment. The main hyperparameters of the LOF 

algorithm include the calculation radius of the local 

outlier factor and the significance threshold, which are 

adjusted according to the local density distribution of the 

data set. The principal hyperparameters of the DBSCAN 

algorithm are the number of neighbors and the minimum 

number of dots. These are selected on the basis of the 

density distribution of the data set and the detection 

requirements of outliers. The hyperparameters include 

regularization coefficient, equilibrium parameter and 

maximum number of iterations. The selection of 

hyperparameters is based on the characteristics of the 

data, the working principle of the algorithm and the 

objective function. Firstly, the convergence curve of the 

research method is tested and compared with the local 

outlier factor (LOF) algorithm and density based spatial 

clustering of applications with noise (DBSCAN) 

algorithm, as shown in Figure 6. 
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Figure 6: Convergence curve test 
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Figure 6 (a) shows that in the Iris dataset, the 

objective function value of the LOF algorithm decreased 

from 1147 to 214 after 6 iterations, and then remained 

stable. The objective function value of the DBSCAN 

algorithm decreased from 1166 to 361 after 7 iterations, 

and remains stable thereafter. The objective function 

value of the research method decreases from 1102 to 134 

after 4 iterations, maintains until the 8th iteration, and 

began to decrease in the second stage. After the 9th 

iteration, it decreases to 113. Figure 6 (b) shows that in 

the Leaf dataset, the objective function value of the LOF 

algorithm decreased from 5864 to 892 after 40 iterations, 

and then remains stable. The objective function value of 

the research method decreased from 5426 to 264 after 10 

iterations, and remains stable thereafter. Figure 6 (c) 

shows that in the MR dataset, the objective function value 

of the LOF algorithm decreases from 11876 to 1375 after 

4 iterations, and then remained stable. The objective 

function value of the research method decreased from 

11623 to 872 after one iteration, maintained until the 

fourth iteration, and began to decline in the second stage. 

After the fifth iteration, it decreases to 793. This indicates 

that the research method has better convergence 

performance. Test the calculation time of the research 

method, as shown in Figure 7. 
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Figure 7: Computing time 

 

Figure 7 shows that the calculation time of all three 

methods increases with the increase of sample size, and 

the LOF algorithm reaches 3498ms when the sample size 

increases to 10000. The DBSCAN algorithm achieves a 

computation time of 3321ms when the sample size 

increases to 10000. The research method achieved a 

calculation time of 2697ms when the sample size 

increased to 10000. The research method requires less 

computational time. The accuracy and purity of the 

research method are tested, as shown in Figure 8. 
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Figure 8: Accuracy and purity 

 

Figure 8 (a) shows that in the Iris dataset, the 

accuracy of the DBSCAN algorithm is 85.7%, the 

accuracy of the LOF algorithm is 78.7%, and the 

accuracy of the research method is 88.4%. In the Leaf 

dataset, the accuracy of the DBSCAN algorithm is 42.9%, 

the accuracy of the LOF algorithm is 47.2%, and the 

accuracy of the research method is 49.5%. The accuracy 

of the LOF algorithm in the MR dataset is 83.5%, and the 

accuracy of the research method is 87.7%. Figure 8 (b) 

shows that in the Iris dataset, the purity and accuracy of 

the three algorithms are consistent. In the Leaf dataset, 

the purity of the DBSCAN algorithm is 46.7%, the LOF 

algorithm is 49.1%, and the purity of the research method 

is 51.8%. In the MR dataset, the purity of the DBSCAN 

algorithm is 80.8%, the LOF algorithm is 81.6%, and the 

purity of the research method is 87.6%. This indicates 

that the research method has higher accuracy and data 

purity. It tests the adjusted RAND coefficient, 

standardized Mutual information index and FM index of 

the research method, as shown in Table 2. 
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Table 2: Adjusted RAND coefficient, standardized Mutual information index, FM index 

Data set Method ARI NMI FM 

Iris 

LOF 0.6639 0.6891 0.7746 

DBSCAN 0.6765 0.7004 0.7834 

Research method 0.7091 0.7308 0.8061 

Leaf 

LOF 0.3216 0.6599 0.3454 

DBSCAN 0.1220 0.4710 0.2280 

Research method 0.3680 0.6837 0.3903 

MR 

LOF 0.3896 0.3744 0.7166 

DBSCAN 0.5763 0.5423 0.8001 

Research method 0.5763 0.5423 0.8001 

 

Table 2 shows that the adjusted RAND coefficient 

of the research method on Iris data set reaches 0.7091, the 

standardized Mutual information index reaches 0.7308, 

and the FM index reaches 0.8061, both higher than the 

LOF algorithm and DBSCAN algorithm. The adjusted 

RAND coefficient of the research method on the Leaf 

dataset reaches 0.3680, the standardized Mutual 

information index reaches 0.6837, and the FM index 

reaches 0.3903. It is higher than LOF algorithm and  

 

 

DBSCAN algorithm. The adjusted RAND coefficient of 

the research method on the MR dataset reaches 0.5763, 

the standardized Mutual information index reaches 

0.5423, and the FM index reaches 0.8001. It is higher 

than the LOF algorithm and consistent with the DBSCAN 

algorithm. This indicates that the research method can 

achieve more accurate data partitioning and clustering. 

The precision, recall rate and F1 score of the research 

method are shown in Table 3. 

 

Table 3: Precision, recall rate and F1 score test 

Data set Method Precision Recall rate F1 score 

Iris 

LOF 0.80 0.75 0.77 

DBSCAN 0.82 0.70 0.76 

Research method 0.85 0.83 0.84 

Leaf 

LOF 0.60 0.55 0.57 

DBSCAN 0.65 0.50 0.57 

Research method 0.70 0.68 0.69 

MR 

LOF 0.84 0.80 0.82 

DBSCAN 0.78 0.75 0.76 

Research method 0.88 0.87 0.87 

 

In Table 3, the precision, recall rate and F1 score of 

the research method in the Iris dataset reach 0.85, 0.83, 

and 0.84 respectively. In MR Data set, the precision of 

the research method reaches 0.88, the recall rate reaches 

0.87, and the F1 score reaches 0.87. The research method 

demonstrates superior performance compared to other 

algorithms across all three data sets, including the Iris, 

Leaf, and MR data sets. 

4.2 Application analysis of maximum entropy 

FC migration AD method in view of SC 

 

When analyzing the application of data AD in research 

methods, due to the widespread application of data AD in 

financial anti fraud, the credit card transaction dataset of 

European cardholders in September 2013 and the credit 

card transaction dataset of European cardholders in 

October 2013 are used for application analysis. Both 

datasets contain sample sizes of over 280k. Firstly, it 

analyzed the Calinski Harabasz index of the research 

method, as shown in Figure 9. 
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Figure 9: Calinski Harabasz index 
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Figure 9 shows that the Calinski Harabasz index of 

the three methods varies with the number of clusters in 

the September and October datasets. In the September 

dataset, the highest Calinski Harabasz index of the LOF 

algorithm is 73.7, while the lowest is 53.4. The highest 

Calinski Harabasz index of the DBSCAN algorithm is 

75.2, and the lowest is 55.3. The highest Calinski 

Harabasz index for the research method is 86.1, and the 

lowest is 74.1. In the October dataset, the highest 

Calinski Harabasz index of the LOF algorithm is 73.6, 

and the lowest is 59.7. The highest Calinski Harabasz 

index of the DBSCAN algorithm is 68.8, and the lowest 

is 58.1. The highest Calinski Harabasz index for the 

research method is 79.9, and the lowest is 72.0. The 

Calinski Harabasz index of the research method is higher. 

It analyzes the Davies Boldin index of the research 

method, as shown in Figure 10. 
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Figure 10: Davies Boldin index 

 

Figure 10 shows that the Davies-Bouldin index of 

the three methods varies with the number of clusters in 

the September and October datasets. In the September 

dataset, the highest Davies Boldin index of the LOF 

algorithm is 1.13, and the lowest is 0.97. The highest 

Davies Boldin index of the DBSCAN algorithm is 1.27, 

and the lowest is 0.94. The highest Davies-Bouldin index 

of the research method is 0.93, and the lowest is 0.71. In 

the October dataset, the highest Davies-Bouldin index of 

the LOF algorithm is 1.16, and the lowest is 0.89. The 

highest Davies Boldin index of the DBSCAN algorithm 

is 1.26, and the lowest is 0.87. The highest 

Davies-Bouldin index of the research method is 0.88, and 

the lowest is 0.76. The Davies Boldin index of the 

research method is lower, indicating that the clustering 

effect of the research method is better. It generates the 

receiver operating characteristic curve of the research 

method, as shown in Figure 11. 
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Figure 11: Receiver operating characteristic curve 

 

 

Figure 11 shows that the receiver feature operation 

curve of the LOF algorithm increases to 0.88 when the 

FPR value is 0.4. The receiver characteristic operation 

curve of the DBSCAN algorithm increases to 0.84 when 

the FPR value is 0.4. The receiver characteristic operating 

curve of the research method increases to 0.98 when the 

FPR value is 0.4. The larger area enclosed by the research 

method curve and the abscissa indicates that the AD 

results obtained by the research method are better. 

 

5 Discussion 

An AD method based on the maximum entropy FC 

algorithm in conjunction with SC technology has been 

devised and its efficacy evaluated using a variety of data 

sets. On the Iris dataset, the research method showed a 

faster convergence rate in the convergence curve test, 

reaching the lowest value of 113 in only 9 iterations. 

Compared with CNN-based method, UL method, FC 

auxiliary method and other related technologies, the 
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research method had a higher accuracy. The study also 

exhibited an advantage in computation time. When the 

sample size reached 10,000, the computation time was 

only 2697 ms, which was lower than the 3498 ms of LOF 

algorithm and 3321 ms of DBSCAN algorithm. 

Compared with FC for medical image segmentation, 

neural network method, federated learning and other 

related technologies, the research method had more 

advantages in operation efficiency. The performance 

advantages of the research method are mainly derived 

from: (1) By optimizing the entropy of data distribution, 

the research method can more accurately estimate the 

potential distribution of data, thereby enhancing the 

precision of AD. (2) The incorporation of SC methods, 

particularly fuzzy logic and possibility theory, augments 

the capacity of algorithms to address uncertainty and 

fuzziness. The main contributions of the research are as 

follows: (1) A new AD framework is proposed by 

combining the maximum entropy principle with SC 

technology. (2) The flexibility and effectiveness of 

feature extraction are improved by combining KMA and 

HSIC. 

6 Conclusion 

AD can improve the reliability of information system 

operation. In this study, a maximum entropy FC 

algorithm combined with SC is proposed to detect data 

anomalies. Firstly, the algorithm infrastructure was 

constructed, and then the iteration method of the 

maximum entropy algorithm was designed. Then it maps 

the random variables from the original feature space to 

the kernel space and analyzes the correlation of the 

variables. Then it reconstructed the updating method of 

membership degree and center vector, calculated the 

comprehensive anomaly score, and finally analyzed the 

effectiveness of the research method. The experiment 

showed that the research method could decrease to the 

lowest value within 10 iterations in all three datasets 

during convergence curve testing. When conducting 

calculation time testing, the research method only took 

2697ms when the sample size reached 10000, which was 

lower than other methods. When conducting the Rand 

coefficient test, the adjusted Rand coefficient of the 

research method in the Iris dataset reached 0.7091. The 

highest Calinski Harabasz index in the two datasets 

reached 86.1 for the research method. The receiver 

operating characteristic curve of the research method 

increases to 0.98 when the FPR value was 0.4. The results 

indicate that the research method has better clustering 

performance in data AD and can perform fast and 

accurate AD. However, the research only conducts 

application testing on financial type data, and subsequent 

application analysis will be conducted on other types of 

data to enrich experimental results and optimize methods. 
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