
 Informatica 29 (2005) 483–490 483

Open Source Software Usage Implications in the Context of Software

Development

Gregor Polančič, Marjan Heričko and Romana Vajde Horvat
Institute of Informatics,
University of Maribor,
FERI, Smetanova 17, SI-2000 Maribor,
Slovenia
E-mail: gregor.polancic@uni-mb.si, marjan.hericko@uni-mb.si, romana.vajde@uni-mb.si

Keywords: open source software, open source projects, business process diagrams, risk benefit analysis.

Received: May 6, 2005

Open source software (OSS) is becoming increasingly popular in several aspects of software engineering

activities, ranging from using OSS for development or execution environments to incorporating OSS directly

into developed products. OSS and its development projects differ from proprietary software and closed source

projects in several aspects. Therefore, these aspects should be known and analyzed, before making a decision

for using OSS in a software development project. This paper analyses various OSS usage strategies in the

context of software development projects. Dependent on cases of usage, different open source project

collaboration models, based on business process models, are analyzed from several relevant aspects.

Povzetek: Na osnovi procesov sodelovanja in definiranih atributov so analizirane prednosti in tveganja

različnih modelov uporabe odprtega programja v kontekstu projektov razvoja programske opreme.

1 Introduction
Software development projects are often timely and
financial ineffective, while on the other hand producing
low qualitative and vulnerably artefacts (software). Lack
of quality and productivity in software development
projects has raised several strategies capable of
confronting with this problem.
According to Boehm (Boehm 1999), there are three
major strategies for improving software development
productivity and software quality:
- working faster (usually with better tools),
- working smarter (usually with more optimized

processes) and
- work avoidance (usually with software reuse).
Two strategies presented above (working faster and work
avoidance) are realized with software. Such software can
be developed “in-house”, obtained from another
company (for free or purchased) or open source based.
In this article we analyse implications of incorporating
open source software into software development strategy.
Open source software (OSS), which is becoming
increasingly popular and important (Brown & Booch
2002; Ruffin & Ebert 2004), is computer software that
has its source code made available under an open source
definition (OSD) based license (Open Source Initiative
2005). OSD based license implicates that the source code
of software is released with binary, allowing users and
developers to use and to modify the software and to
distribute any improvements they make. Consequently,
most of OSS is being developed in public accessible
projects where everyone capable of contributing
knowledge, ideas or code is welcome to join in. Such

projects are called open source projects – OSP (see also
Figure 1).

Open source

software

(OSS)

Open source

movement

(OSM)

Open source

license

Open source

definition

(OSD)

Open source

initiative

(OSI)

Is based on

Must be compliant to Is defined by

Is owned by

Free software

guideline

(FSF) - project

Debian

Is related to

Open source

project

(OSP)

Is created in

Open source software

development model

(OSSD)
Is based on

Open source

community
Is supported by

Figure 1: Relations between common open source terms

 According to open source advocates, such development
model leads directly to more robust software and more
diverse business models (Wu & Lin 2001).
Software development companies are looking toward
OSS as a way to provide greater flexibility on their
development practises, jump-start their development
efforts by reusing existing code and provide access to a
much broader market of users (Brown & Booch 2002;
Kasper Edwards 2004).
On the other hand, there are several risks and limitations
concerned with using open source software, which
should be properly addressed. Low code quality, non-

484 Informatica 29 (2005) 483–490 G. Polančič et al.

existing project plan and non-deterministic stability of
the project are some of them (Fitzgerald 2004).
Related to open source software (potential) benefits and
risks, which were mentioned above, the research question
can be stated as “What are the implications of a specific
open source software usage strategy in a software
development project?”
Based on the research question, we identify and analyse
different open source software usage strategies, for the
purpose of determine benefits and risks of each strategy,
with respect to software license, development processes
and software, from the point of view of closed source
software developer and in the context of business process
models.

1.1 Scope of the Paper

Section two of the paper connects this research to the
existing body of knowledge. In the section three, open
source projects, their development model, its common
design and characteristics are introduced. Additionally, a
comparative study is performed, comparing open source
and closed source (proprietary) projects.
Based on open source development model, its unique
characteristics and related work (concerned with open
source software usage in commercial environment),
different usage strategies are presented and evaluated
accordingly to predefined attributes.
The research has the following limitations. Closed source
projects are defined as projects which are based on a well
established development model. In the context of
software collaboration processes between open source
and closed source projects, only technical activities are
analysed. Additionally, because of parsimony, the open
source and closed source software development
processes are presented on a high level view.

2. Related Work
Several descriptive studies exist in the field of using open
source software (OSS) in commercial context.
In the article “Using open source software in product
development: A primer”, Ruffin and Ebert (Ruffin &
Ebert 2004) state, that the use of OSS in industrial
products is growing. They discuss major legal aspects
and risks in using OSS and how to mitigate them in
product development. Additionally, OSS must meet
several criteria, required to reduce risks of technical and
legal exposure during deployment.
Madanmohan and De in the article, titled “Open source
reuse in commercial firms” (Madanmoban & De 2004)
state, that using OSS components raises many issues,
from requirements negotiation to product selection and
integration. They define a model of the stages involved
in locating and using an OSS component. Five critical
issues for reusable OSS components are identified: cost,
customization requirements, component characteristics,
licensing, maintenance and support. They state that if the
OSS component offers the best solution and reliability
for the price, then it is the most appropriate.

In the article titled “Reusing open-source software and
practices: The impact of open-source on commercial
vendors”, authors Brown and Booch (Brown & Booch
2002) find out that as a result of the open-source
movement there is a great deal of reusable software
available in the public domain, which can be used in
commercial projects. Open source movement is
described as a diverse collection of ideas, knowledge,
techniques and solutions. Additionally, the authors state,
that there are several questions concerned with applying
OSS ideas into commercial environment.
The paper, titled: “Towards a Product Model of Open
Source Software in a Commercial Environment”, from
Deng, Seifert and Vogel (Jianjun Deng, Tilman Seifert,
& Sascha Vogel 2003) state that there are many reasons
for commercial organisations to be interested in using
OSS. Aspects of OSS development for commercial use
are analysed in the paper. Second, different categories of
OSP are identified together with typical requirements,
which have to be realized by instances of OSS. Third, an
open source process model, based on the concept of work
products and product networks is defined.
Another type of research has published Edwards in the
article titled “An economic perspective on software
licenses—open source, maintainers and user-developers”
(Kasper Edwards 2004). Based on economic theory, he
defined several models, which illustrate the possible
choices available to users and developers once a program
has been distributed under a specific type of software
license. The basics premise of the research is that users
are prepared to contribute to projects if there is a net
benefit. Based on two different open source (GPL and
BSD) and a proprietary (Microsoft EULA) software
license, three different models are developed by
deducting the behaviour (activities) possible for software
developers and users. Based on developed models, the
incentives for developers and users together with their
relationships are analysed. Individuals and organisations
related to open source software are treated differently,
because of different incentives for contributing to open
source projects.

3. Open Source Projects
Open source projects (OSP) are software projects, which
are based on open source software development model
(OSSD), a recent phenomenon, which became available
with the existence of the global communication
infrastructure – internet. Because of open source license,
OSP have different project structure, compared to
“traditional” software projects.

3.1 Open Source Software Development

Model

Most of commercial or proprietary software projects are
based on closed source software development model
(CSSD) (Vidyasagar Potdar & Elizabeth Chang 2004).
Such development model follows strictly defined
activities and their relationships. Several CSSD models
exist, for example: cascade, spiral, iterative-incremental

OPEN AOURCE SOFTWARE USAGE... Informatica 29 (2005) 483–490 485

(Figure 2), V-model and RUP (Rational Unified
Process).

Figure 2: Spiral software development model

On the other hand, open source project are based on open
source software development model (OSSD) (Vidyasagar
Potdar & Elizabeth Chang 2004). OSSD is an
evolutionary development model (Figure 3), where
software is permanently evolving according to user needs
(Vidyasagar Potdar & Elizabeth Chang 2004). OSS never
reaches its final state, because it keeps evolving as long
as there is an active user community available.
Consequently, such development model emphasizes
frequent minor point releases and as much feedback on
these releases as possible.
Because no strict sequence of phases is defined in OSSD
(Figure 3), OSP cannot be tracked according to phases.
Instead, the progress is usually tracked with file
versioning system, for example CVS (Concurrent
Versioning System).

Figure 3: Evolutionary software development model

(Michael Nash 2003)

3.2 Open Source Community Structure

Open source projects (OSP) are based on virtual
community concepts. Because the available project
resources are proportional to the user community size,
they support open standards and standard development
and collaboration tools. Because OSP usually lack of
finances, they are trying to minimise project costs with
using public available information infrastructure (for
example “Sourceforge.net” repository).
OSS software communities are virtual work groups
consisting of members with skills in software
development. They work in temporary, cultural diverse,
geographically dispersed, electronically communicating
work groups (Wolfgang Maass 2004). Based on user
roles, open source communities, are generally organized
as presented below (Jen-Fang Lee & Tzu-Ying Chan
2004; Richard P.Gabriel & Ron Goldman 2002).
In the centre of the community is a small group of core
developers (see also Figure 4). Core developers have

most rights and also responsibilities in OSP. They have
write access to source code’s baseline. They make
decisions concerned with code merging, quality
assurance and releases.
Beside code developers, there is usually a larger group of
code developers, which are developing new functions
and performing other, less responsible tasks, for
example: improving user interface, fixing bugs and
writing documentation.
The largest group is represented by active and passive
users. Active users participate in OSP in form of
identifying bugs, proposing new features, creating
documentation and offering user support. Passive users
only use OSS and other project artefacts.

Figure 4: High level use case diagram of open source

community

3.3 Open Source Project Characteristics

Open source projects have in common following
characteristics (Gacek & Arief 2004):
a. Adherence to OSD (Open Source Definition), which

acts as an open source accordance guideline.
b. Open source software developers represent a subset

of open source user community (see also Figure 4).
Consequently OSS developers are also OSS users.

Despite of commonalities presented above, OSP differ in
several aspects (Gacek & Arief 2004):
a. Project starting point. OSP can start from scratch or

from existing proprietary or research (closed source)
project.

b. Motivation. A lot of open source research is related
to motivational aspect of willing to freely participate
in OSP (Andrea Bonaccorsi & Cristina Rossi 2005;
Wolfgang Maass 2004). Individuals usually
participate from personal believes or because they
require functions which might be provided by OSS.
Corporations usually get involved to gain market
share, to lower their software infrastructure costs or
to be less dependent from commercial software
vendors.

c. Community. Two basic types of open source
communities exist: centralized and decentralized.
Central organized communities have a strict
hierarchy of active users, which allows a more
centralized power structure. Their opposites are

486 Informatica 29 (2005) 483–490 G. Polančič et al.

decentralized communities, which have looser
organisational structures with most of developers on
the same level. One-level organisational structure
requires more sophisticated decision making
processes.
The basic idea, underlying open source projects, is
that knowledge, shown through contributions,
increases the contributor’s perceived merit, which in
turn leads to power (this is called meritocratic
culture).

d. Software development support. OSP differ in their
modularity (high modularity is prerequisite for
effective remote collaboration), visibility of software
architecture (system architecture might be available
or not), documentation, testing, submission
acceptance (involves choosing the work area,
decision making and disseminating the submission
information), tools and collaboration support.

e. Licensing. Several types of licenses conform to
OSD. From the user point of view the most
important license characteristics are its impact on
derived works and possibility to “close” the licensed
software (Table 1).

Table 1: Implications of main OSD licenses
(Gacek & Arief 2004)

OSD based license Impact

on

derived

works?

Can be

closed?

GPL

(GNU General Public License)

Yes No

LGPL (GNU Lesser GPL) No No

BSD (Berkley Software

Distribution)

No Yes

IBM Public License No Yes

MPL (Mozilla Public License) No Yes

3.4 Open Source Project Compared to

Closed Source Projects

Beside different development models, open source
projects differ from closed source (proprietary) projects
in several other aspects. Some of them are briefly
presented below (Vidyasagar Potdar & Elizabeth Chang
2004):
a. Documentation. Within CSP, the process of writing

documentation is defined in project plan or
requirements. On the other side, OSP participants
usually prefer writing code. Consequently, there is
usually lack of qualitative and updated
documentation.

b. Testing. In OSP software users act as software
testers. This is called “many eyeballs” principle
(Eric S.Raymond 2000). They either try to solve
problems or to notice the community. CSP are tested
by specified number of software testers.

c. Security. In CSP the security of software is achieved
through obscurity, while in the OSP the security is
achieved through openness of the code. Both

strategies have their strengths and risks. However in
highly secure systems, openness is preferred.

d. Release and delivery. In CSP, software might be
released because of market pressures or defined
project milestones. OSS is released when it meets
release criteria. OSP releases are usually frequent
but not scheduled.

e. Development environment. CSP are usually
centralized on a single physical location. OSP
development occurs in virtual communities which
offer decentralized and distributed development.

4. Modelling Open Source Software

Usage Strategies
Despite of differences between open source and closed
source projects a lot of different collaboration
opportunities exist between them (Brown & Booch 2002;
Kasper Edwards 2004). Such OSS usage models depend
on several factors, for example: business strategy,
software license and software type.

4.1 Identification of Usage Strategies

Several OSS usage classifications exist. According to
Gacek and Arief (Gacek & Arief 2004) following OSS
business models are viable:
- using OSS for personal use,
- packaging and selling OSS,
- using OSS as a platform or foundation for

commercial or research software development.
On the other hand, Edwards classifies software use,
according to software licenses (Kasper Edwards 2004)
into:
- commercial or proprietary license,
- BSD based open source license and
- GPL based open source license.
Ruffin and Ebert (Ruffin & Ebert 2004) classify OSS
usage, dependent on the licensee role, into:
- end user OSS and
- OSS that is embedded into in a product that is

further distributed. This is called software reuse.
Based on classifications presented above, their
differences and commonalities, a use case model of
common open source software usage strategies in closed
source projects can be defined (Figure 5):

Figure 5: Use case model of common open source
software usage strategies in proprietary projects

The identified strategies of using OSS in proprietary
software projects are following (Figure 5):

OPEN AOURCE SOFTWARE USAGE... Informatica 29 (2005) 483–490 487

a. Using OSS. OSS is used for project or product
infrastructure, which includes: development tools,
collaboration tools, software testing environment
and software execution environment.

b. Reusing OSS. Reused OSS (for example: software
snippet, software component or software framework)
is embedded into developed product.

c. Redistributing OSS. Added value, based on
additional artefacts (commercial software,
documentation, plug-ins, etc.) and services is
included and distributed with OSS. Distribution can
be proprietary or open source based.

Each of the main strategies presented above, can be
additionally divided accordingly to (Figure 5):
- using OSS as-is or suiting it to specific needs;
- treating modifications as intellectual property or

committing them to the open source community.
Based on use case model presented on Figure 5, twelve
(3x2x2) different OSS usage scenarios might occur, each
with its strengths and risks.

4.2 Notation Used for Modelling Usage

Strategies

Models of OSS usage strategies, resulting from use case
model presented in section 4.1 (Figure 5), are based on
business process modelling notation – BPMN (BPMI
2004). BPMN is developed by business process
management initiative (BPMI). The current specification
of BPMN, which is 1.0, was released to the public in
May, 2004. BPMN defines a business process diagram
(BPD), which is based on a flowcharting technique
tailored for creating graphical models of business process
operations. A business process model is a network of
graphical objects, which are activities and the flow
controls that define their order of performance. Four
basic categories of elements in BPMN are (Stephen
A.White 2004):
- flow objects (events, activities, gateways),
- connecting objects (sequence flows, message flows,

associations),
- swimlanes (pools and lanes) and
- artefacts (data objects, groups and annotations).
We decided to use BPMN because it is easily
understandable, supported by OMG (Object Management
Group) and highly expressive.
We used Microsoft Visio as a software modelling tool.
Additional, an open source based BPMN stencil was
used. The stencil is available on Sourceforge.net
repository (https://sourceforge.net/projects/bpmnpop).

4.3 Analysis of Usage Strategies

Based on resulting business process models, we
performed two types of analyses.
First, we performed a high level risk-benefit analysis for
each resulting model. Risk is the potential harm that may
arise from some present process or from some future
event. Risk-benefit analysis is the comparison of the risk
of a situation to its related benefits. Risk-benefit analysis

was performed on activities and relevant events that
occur in resulting business process models.
Second, we performed a comparative study of all three
usage strategies. Several attributes were defined for
comparative study, ranging from user types, major
benefits and desirable OSS characteristics. These
attributes are presented in section 5.5.

5. Resulting Models
Based on OSS usage strategies, defined in section 4.1 we
modelled and descriptively presented one generic and
three special business models. They are presented and
analysed in following subsections.

5.1 Generic Model

All special OSS usage models are derived from the top
level usage model which is presented on Figure 6.
Therefore the special models include same BPMN
constructs (pools, events, messages, processes) as
presented on generic model.
The generic model consists of two pools (rectangles),
representing independent processes of OSP (Open
Source Project) and CSP (Close Source Project), which
differ in the underlying software development model.
CSP development and OSP development are modelled
with repeatable sub-processes (rounded rectangles with
curved arrow and “+” sign).
The collaboration between projects is modelled with bi-
directional data exchange using BPMN messages
mechanism (dotted arrows) exchanging data objects
(documents).

Figure 6: Generic OSS usage model

Additionally, different events (presented as rules in
circles) initiate, direct flow and finish OSP and CSP.
There is usually a business need for starting a CSP,
requiring sufficient human and financial resources. On

488 Informatica 29 (2005) 483–490 G. Polančič et al.

the other hand, OSP start, because there is a personal
need for some functionality (software).
CSP usually have a predictive end, consisting of
documented list of functional and non-functional
requirements, which have to be fulfilled. OSP usually do
not have a predictive end. Non predictive end might
present a risk to CSP. Because OSP are “organic
projects” they are finished if there is no interest for
software being developed.

5.2 Using of OSS

Based on the business model on Figure 7, using OSS is
comparable to using proprietary software. Because OSS
is (in most cases) used as provided by OSP, modification
activities are not modelled. However, OSS can be suited
to specific needs, if necessary. As a new version of OSS
is released, software developer (if necessary) installs new
release and uses it as infrastructure software
(development, maintenance, execution or collaboration
software). When OSS is used, feedback information can
be sent to OSP, for example: modification proposals,
new feature requests and identified bugs. Using OSS
might end with fulfilled CSP project requirements.

Figure 7: Model of using OSS

a. Benefits. The main objective of using OSS in CSP is

to lower the cost of project infrastructure or decrease
dependency from specific commercial software
vendors. Additional, a benefit of using OSS can be
free support and add-ons which are available from
open source community. Beside, OSS can be
influenced with sending feedback to CSP. In such
way, OSS can be better suited to CSP needs.

b. Risks. There are several risks concerned with using
OSS. First, releases are usually not determined.
Therefore, planning the OSP on some future OSS
releases is risky. Second, there are no legal
guaranties for using OSS. For example, if there is a
bug in OSS or a defined release date was postponed,
nobody is responsible for potential damage. Third,
there is no guarantee that feedback information will

be considered by OSP. Feedback is usually
considered if there is a community size interest for
them.

5.3 Redistributing OSS

Commercial vendor can decide to redistribute OSS.
Based on the model on Figure 8, an OSS redistribution
project is restarted each time new stable version of OSS
is released. Additional, CSP can make some
modifications or additions to OSS, which can be sent
back to community (for example: identified bugs or
functions which can be further developed by user
community) or (if the OSS license allows), treated as
intellectual property of commercial vendor. Finally
commercial vendor releases software (SW) package.
Final users might send feedback information to CSP,
which can further be mediated to OSP.

Figure 8: Model of redistributing OSS

a. Benefits. The main objective of redistributing OSS is

to gain market share or to make profit from selling
software, supporting services or distributions.
Second OSP can be directly influenced by CSP with
sending modified OSS code back to the open source
community. In such way open source community
can further develop or maintain code, which was
primary developed by CSP. Consequently CSP costs
are lowered.

b. Risks. Most of the risks, concerned with
redistributing OSS, are related to non determined
OSS releases and potentially unstable open source
community. Therefore, planning release dated might
be risky. Second there might be legal problems
concerned with viral OSS licenses which prohibit
that OSS changes licensing model. For example we
cannot make binary distributions of GPL based
software. Third, future directions of OSS might
change unpredictably. For example, if CSP is
distributing OSS with a proprietary plug-in,

OPEN AOURCE SOFTWARE USAGE... Informatica 29 (2005) 483–490 489

problems could be caused with changed plug-in
interface.

5.4 Reusing OSS

When reusing OSS in CSP, following activities occur
(Figure 9). First, if a specific OSS component is suitable
for software development, it can be adapted (if
necessary) and afterwards included into developing
software. Modified OSS can be sent back to OSP or it
can be treated as intellectual property of CSP. Finally
software is released together with reused OSS. End users
use released software (SW) and if necessary, send
feedback information to CSP. CSP can react to feedbacks
with direct software changes or mediate feedbacks to
open source community. OSS modification and
integration activities are usually performed, when there is
a new version of OSS available.

Figure 9: Model of reusing OSS

a. Benefits. The main objectives of reusing OSS in

proprietary projects are simultaneously increasing
productivity and software quality through OSP
developed and maintained reusable software
artefacts. Productivity is increased, because parts of
software (reused OSS) are developed and
maintained by OSP. Second software quality is
increased because reused OSS is tested and
improved by open source community.

b. Risks. Several risks are present in such reuse
strategy. First, rarely or delayed OSS releases might
influence (expand) CSP project plan. Second if,
there are to frequent releases and unstable OSS
architecture, a lot of effort is spent for OSS
integration. Third, OSS license might prohibit
reusing OSS in proprietary software (for example
GPL or LGPL license).

5.5 Comparing Three Usage Models

Models, defined in previous section differ in complexity,
benefits and risks. Additional, there are several other
factors that should be considered before making a
decision for a specific usage strategy. Following factors
and sub-factors were considered in the comparative
study:
a. Open source software (suitable software licenses

according to Table 1, desirable software
characteristics and most suitable software types).

b. Open source software user (OSS user roles, closed
source developer activities when using OSS, most
frequent collaboration artefacts between OSP and
CSP).

c. Open source project major desirable characteristics.
d. Closed source project (major benefits, major

investments and major risks).

Results of the comparative study are summarized below
in Table 2.

Table 2: Results of comparing different OSS usage
models

OSS usage

strategy

Using

OSS

Redistribute

OSS

Reusing

OSS
Suitable

software

license

All Non viral

licenses

Non viral

licenses (BSD,

IBM, MPL)

Desirable OSS

characteristics

Quality in-use Quality in-use,

software

quality, process

quality

Software

quality,

process quality,

reusability

Suitable OSS

types

Infrastructure

software

Infrastructure

software and

office tools

Reusable

components and

frameworks

OSS user roles

in CSP

Active user Developer

Closed source

developer

activities

related to OSS

Usage Usage,

modifications,

packaging

Reuse,

modifications,

integration

Collaboration

artefacts

between CSP

and OSP

Identified

bugs, feature

requests

Identified bugs,

feature requests,

code

OSP major

desirable

characteristics

Good support Stable releases Stable

architecture

Major benefits Lower direct

and indirect

cost

Commercial

distributions,

market

penetration

Increased

productivity and

software quality

Major OSS

cost factors

Learning OSS Learning OSS

modifying

OSS,

collaborating

with OSP

Learning OSS

modifying OSS,

integrating OSS,

collaborating

with OSP

Major risk Low OSS

quality, lack

of support

Unsuitable OSS

license,

undetermined

OSP stability

Unsuitable OSS

license,

unstable OSS

architecture,

week OSS

reusability.

490 Informatica 29 (2005) 483–490 G. Polančič et al.

6. Conclusion
In this study we analysed open source projects from the
closed source software development point of view. We
presented open source project structure its characteristics,
and specialities compared to traditional software projects.
Because of increasing interest in using open source
software in commercial projects, following basic open
source software usage strategies were identified: using,
redistributing and reusing open source software. All
strategies were presented in business process models,
based on business process modelling notation - BPMN.
Additionally risk-benefit analysis was performed on
activities and events of each business model. Finally a
comparative study, comparing all three models was
performed, based on predefined attributes.
Future research might be directed into specifying cost
models of specific usage strategies. Additional,
empirically testable success factors should be defined for
OSS that is commonly used in a specific usage strategy.
To summarize, open source software has a huge usage
potential in commercial software development
environment, where open source community acts as a
resource of software developers and testers. Open source
can supply commercial projects with software
infrastructure, reusable components or products, which
can be further commercially redistributed. However
technical, managerial and legal aspects should be
properly studied before deciding for a specific usage
strategy.

References

[1] Andrea Bonaccorsi & Cristina Rossi "Contributing

to OS Projects. A Comparison between Individual
and Firms", in Collaboration, Conflict and Control,
pp. 18-22.

[2] Boehm, B. 1999, "Managing software productivity
and reuse", Computer, vol. 32, no. 9, pp. 111-113.

[3] BPMI. Busines Proces Modelling Notation ver 1.0.
2004. Busines Process Management Initiative
(BPMI).
Ref Type: Generic

[4] Brown, A. W. & Booch, G. 2002, "Reusing open-
source software and practices: The impact of open-
source on commercial vendors", Software Reuse:

Methods, Techniques, and Tools, Proceedings, vol.
2319, pp. 123-136.

[5] Eric S.Raymond 2000, "The cathedral and the
bazaar", Computers & Mathematics with

Applications, vol. 39, no. 3-4, p. 263.
[6] Fitzgerald, B. 2004, "A critical look at open

source", Computer, vol. 37, no. 7, pp. 92-94.
[7] Gacek, C. & Arief, B. 2004, "The many meanings

of open source", IEEE Software, vol. 21, no. 1, p.
34-+.

[8] Jen-Fang Lee & Tzu-Ying Chan 2004,
"Organisational Structure of "User Collaboration
Community": Insights from the Case of an Open

Source Software Project", in 4th Workshop on Open

Source Software Engineering, pp. 105-109.
[9] Jianjun Deng, Tilman Seifert, & Sascha Vogel

"Towards a Product Model of Open Source
Software in a Commercial Environment", in 3rd

Workshop on Open Source Software Engineering,
pp. 31-38.

[10] Kasper Edwards 2004, "An economic perspective
on software licenses—open source, maintainers and
user-developers", Telematics and Informatics.

[11] Madanmoban, T. R. & De, R. 2004, "Open source
reuse in commercial firms", Ieee Software, vol. 21,
no. 6, p. 62-+.

[12] Michael Nash 2003, Java Frameworks and

Components: Accelerate Your Web Application

Development Cambridge University Press.
[13] Open Source Initiative. Open Source Initiative -

OSI - The Open Source Definition. 2005. 20-8-
2005.
Ref Type: Generic

[14] Richard P.Gabriel & Ron Goldman 2002, "Open
Source: beyond the Fairytales", Perspectives on

Business Innovation no. 8.
[15] Ruffin, M. & Ebert, C. 2004, "Using open source

software in product development: A primer", Ieee

Software, vol. 21, no. 1, p. 82-+.
[16] Stephen A.White. Introduction to BPMN. July

2004. 2004. BPTrends.
Ref Type: Unpublished Work

[17] Vidyasagar Potdar & Elizabeth Chang 2004, "Open
Source and Closed Source Development
Methodologies", in 4th Workshop on Open Source

Software Engineering, pp. 105-109.
[18] Wolfgang Maass 2004, "Inside an Open Source

Software Community: Empirical Analysis on
Individual and Group Level", in 4th Workshop on

Open Source Software Engineering, pp. 105-109.
[19] Wu, M. W. & Lin, Y. D. 2001, "Open source

software development: An overview", Computer,
vol. 34, no. 6, p. 33-+.

