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The logistics distribution and storage of finished cigarette products is a key link to ensure the stable 

supply of the tobacco market and the healthy development of the industry. Aiming at the loss problem 

of finished cigarette products during transportation, this paper proposes a method for optimizing the 

logistics distribution and storage path of finished cigarette products based on the improved Genetic 

Algorithm (GA) and A-star(A*) algorithm. This method first introduces a cost calculation model to 

calculate the loss of finished cigarette products during transportation, and uses the A* algorithm to 

solve the distribution in different areas. Then, the A* algorithm is combined with GA to construct an 

optimal path planning model based on minimum cost. Through experiments on the Solomn dataset and 

the Gehring dataset, the proposed method reached the minimum objective function value at 41 and 32 

iterations, and showed a fast convergence speed. In the performance evaluation, the area under the 

ROC curve values of the research method reached 0.985 and 0.967, respectively, showing high 

accuracy. In addition, the path planning error analysis showed that when the iteration was carried out 

to the 27th time, the error value dropped to 0.06, which met the performance requirements. In 

practical applications, the system began to stabilize and reached the optimal state after about 47 

iterations. The above results show that the research method has a faster convergence speed, smaller 

planning error and higher accuracy in the logistics distribution path planning of finished cigarette 

products, with good feasibility and effectiveness. 

Povzetek:Raziskava predlaga metodo za optimizacijo logističnih poti shranjevanja končnih cigaretnih 

izdelkov z uporabo hibridnega algoritma GA-A*. Uvedena je metoda izračuna stroškov, ki določa 

izgube med transportom, in kombinacija A* algoritma za iskanje najkrajših poti ter genetskega 

algoritma (GA) za iskanje optimalnih rešitev. Metoda izboljšuje hitrost dostave, zmanjšuje napake in 

poveča uporabnost pri distribuciji cigaret.

1 Introduction 

Optimizing the logistics and distribution storage path can 

improve the efficiency of distribution [1]. Nowadays, the 

distribution of finished cigarette products is facing many 

challenges and reforms. Traditional logistics methods are 

no longer suitable for modern market demand, and 

optimizing logistics paths can improve logistics delivery 

efficiency. Therefore, tobacco logistics and distribution 

storage path optimization has become an important issue 

[2]. Meanwhile, there are many problems with optimizing 

the logistics and storage routes for finished cigarettes, 

including the difficulty of standardizing distribution costs, 

the high complexity of transport routes and the huge 

statistical workload. Due to the delicate nature of the 

production process, the transportation and storage of 

finished cigarettes in the distribution process deserves 

attention to ensure that finished cigarettes are delivered to 

the customer's point of demand at a faster rate [3-4]. 

Some scholars believe that the crucial point to enhancing 

the efficiency and reducing the cost of finished cigarette 

logistics is to reduce the transportation costs, losses and 

distribution routes of finished cigarettes during the 

distribution process. This requires that cigarette 

distribution needs to be arranged in a reasonable and 

efficient way that meets the customer's time requirements. 

Currently, the usual approach to solving this problem is 

to transform the route optimization issue into a 

mathematical model issue and then use modern heuristic 

algorithms to find the optimal solution. Modern heuristic 

algorithms include Genetic algorithm (GA), A-star(A*) 

algorithm ant colony algorithms, particle swarm 

optimization algorithms, neural network algorithms, etc. 

[5]. These algorithms have their own advantages and 

disadvantages, such as the particle swarm optimization 

algorithm has a strong global optimization capability, but 

no proof of convergence. The ant colony algorithm is 

robust but has a slow search time. The neural network 

algorithm is adaptive but needs quantities of data. 

Considering that the GA can quickly find the combined 

optimal solution and the A * algorithm can search for the 

shortest path in the grid, the study proposes a storage path 

method based on the improved GA-A* algorithm for the 

distribution of finished cigarette logistics, with a view to 
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effectively providing some promotion for the 

construction as well as the development of China's 

finished cigarette distribution system. 

2 Background review 

As cigarette consumption in China increases year by year, 

the demands for the distribution and storage of cigarettes 

are getting higher. To enhance the distribution efficiency 

of finished cigarette products and reduce storage costs, 

many experts studied logistics, distribution, and 

warehousing. Liu proposed a method that combines RFID 

technology with logistics and distribution storage 

management to improve the management efficiency of 

logistics and distribution storage in warehouses. It was 

verified that the method had higher warehouse storage 

capacity and faster outgoing and incoming storage speed 

compared with the traditional method [6]. Shen proposed 

to establish a dynamic road network logistics and 

distribution path optimization model for the dynamic 

uncertainty of urban road networks. The model usedGA 

to handle the optimization model. The model could 

greatly enhance the transportation efficiency of urban 

logistics [7]. Jardas et al. proposed a method to optimize 

the transportation process to reduce the burden of the 

city's transportation network. The method used a quantity 

of data analysis and the centre of gravity method to 

determine the location of distribution centre and thus 

optimize transport routes. It was verified that the method 

could reduce local transport pressure [8]. Yang et al. 

solved the Vehicle Routing Problem (VRP) by proposing 

an improved ant colony algorithm. The method 

adaptively adjusted key parameters in the application and 

searches for optimal paths. The algorithm could minimize 

paths to reduce computational costs [9]. Liu et al. 

constructed an integer programming model to address the 

problems of backward technology, poor management and 

serious energy consumption in cold chain logistics, and 

applied a hybrid model to find the optimal solution. The 

hybrid model had obvious advantages over GA [10]. 

Peng et al. proposed a method for adding a global 

performance index of smoothness at joint acceleration 

level to address the functional redundancy problem 

arising when planning robot paths. The method used a 

sequential linearized planning approach to improve on the 

traditional method and provided an initial solution that is 

then used for robot path planning. It was verified that the 

model generated smoother robot paths [11]. 

The advantages of the A* algorithm include the 

ability to handle search problems in high-dimensional 

spaces and can be used in many application areas. Min et 

al. addressed the shortcomings of the A* algorithm in 

autonomous driving path planning applications and 

proposed a vehicle local motion planning algorithm. The 

algorithm setup a safety space and considers path 

curvature. The algorithm was easier to obtain better 

constrained paths for vehicles [12]. Beed et al. proposed a 

hybrid GA-a* algorithm for optimizing the carpool path 

selection problem. The algorithm could provide the 

shortest route between any two points. Practice showed 

that the algorithm could greatly improve vehicle 

utilization and reduce the diversions distance and cost 

[13]. Yue et al. addressed the problem of inaccurate 

navigation positioning and more path folds for mobile 

robots. They proposed a mobile smooth navigation 

strategy. The strategy enhanced the A* algorithm to a 

bidirectional mode and then used the Bézier curve to 

optimize the path. The results showed that the strategy 

could reduce the running time [14]. Meng et al. suggested 

an enhanced hybrid A* algorithm. This algorithm 

integrated Voronoi field potential into the path search 

stage and dynamically optimized it at each stage. It was 

verified that this algorithm significantly improved the 

efficiency of path search [15]. Zhang et al. proposed to 

construct a dynamic network radar model to improve the 

path safety and penetrating path search efficiency of 

UAVs. The model used the proposed penetrating path 

planning method to plan UAV way-points. The results 

showed that the method had optimal path cost and higher 

safety [16]. 

From the above research, many experts and scholars 

have designed quantities of improved algorithms for 

optimizing logistics distribution storage paths. Currently 

GA and A* algorithms have been widely used in many 

fields, with most of the research revolving around tourism 

and other areas of related research, with few areas 

analyzing the logistics distribution paths of finished 

cigarette products in the tobacco industry. In this regard, 

the research proposes an improved GA-A*-based method 

for optimizing the distribution and storage paths of 

finished cigarette logistics, in the expectation that the 

rational planning of the distribution and storage paths will 

facilitate the development of transportation in the tobacco 

industry. Summary of related work is shown in Table 1. 

 

Table 1: Summary of related work 

Author(s) Method/Algorithm Shortcomings Observations 

Liu [6] 

A method of combining 

RFID technology with 

logistics distribution 

storage management 

Time-consuming 

Higher storage capacity 

and faster entry and exit 

speeds 

Shen [7] 

A dynamic road network 

logistics distribution path 

optimization model 

High vehicle exhaust 

emissions 

Improving the 

transportation efficiency of 

urban logistics 

Jardas et al. [8] A method for optimizing More data are required Reduce transportation 
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the transportation process stress 

Yang et al. [9] 
An improved ant colony 

algorithm 
Limited Reduce computing costs 

Liu et al. [10] 
A mixed integer 

programming model 
Complicated solution Obvious advantages 

Peng et al. [11] 

A method for adding a 

global performance 

indicator of smoothness at 

the level of joint 

acceleration 

High accuracy 

requirements for robot 

operation 

Smoother path 

Min et al. [12] 

Vehicle local motion 

planning algorithm based 

on improved A* algorithm 

Path curvature must be 

considered 

Better vehicle constrained 

paths 

Beed et al. [13] A hybrid GA-A* algorithm 
The shortest path between 

two points are required 

Vehicle utilization is 

improved, detour distances 

and costs are reduced 

Yue et al. [14] 

Mobile smooth navigation 

strategy based on A* 

algorithm 

A* algorithm is improved 

to bidirectional mode 

The planned path length is 

shortened and the running 

time is reduced 

Meng et al. [15] 
An improved hybrid A* 

algorithm 
Time-consuming 

The path search efficiency 

is improved significantly 

Zhang et al. [16] 
Building a dynamic 

network radar model 

The penetration path 

planning method needs to 

be adopted 

Optimal path cost and 

higher security 

 

3 Construction of an improved 

GA-A*-based storage path 

optimization model for finished 

cigarette logistics distribution 

 

3.1 Cigarette finished logistics transportation 

cost path optimization modeling 
The finished cigarette logistics route optimization 

problem is a complex problem derived from the VRP. 

Before planning the path for the finished cigarette 

logistics, all costs incurred during transportation need to 

be considered. Based on the constraints of customer 

demand, time window requirements and the maximum 

mileage of refrigerated trucks, a path optimization model 

for the logistics transportation cost of finished cigarettes 

is constructed [17]. The distribution route schematic of 

the VRP problem is shown in Figure 1. 
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Figure 1: VRP distribution roadmap 

 

The location and coordinates of the customers are 

known, because the demand for finished goods varies 

from customer to customer. The goods carried by each 

delivery vehicle must not exceed its specified capacity 
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and must be delivered within the time required by each 

customer. Therefore, the distribution route and sequence 

must be scientifically and reasonably optimized to 

ultimately achieve the purpose of reducing distribution 

costs. The key to optimizing the logistics distribution 

route is in the optimization of logistics routes and 

logistics costs. Logistics cost optimization includes 

reducing the fixed cost of vehicles and transport, 

optimizing vehicle delivery time and reducing the cost of 

goods damage. The calculation of fixed costs of vehicles 

and transport is shown in equation (1). 

 

1

0 1 1

n n M

ij ijk

i j k

TC K d x 
= = =

=  +   (1) 

 

In equation (1), 1TC  is the fixed cost of the vehicle 

and transport;  0.1.2.3....i n=  is the distribution point 

number including the distribution centre; 

 0.1.2.3....j n=  is the distribution point number 

excluding the distribution centre;  0.1.2.3....K n=  is 

the number of vehicles participating in this distribution; 

  is the fixed cost of each vehicle;   is the cost of 

each vehicle participating in the distribution service; ijd  

is the distance from point i  to point j . There are 

overtime compensation costs for the delivery of finished 

cigarettes en route. The overtime compensation cost is the 

cost incurred by the customer when the delivery vehicle 

fails to reach the delivery point on time, causing the 

customer to penalize the company for the loss. The study 

uses a hybrid time window to classify delivery times into 

desired and acceptable times [18]. Figure 2 illustrates the 

relationship between customer satisfaction and delivery 

time. 
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Figure 2: Relationship between customer satisfaction and delivery time 

 

In Figure 2, jEET  is the earliest point at which the 

customer is acceptable; jET  is the earliest point at 

which the customer is satisfied; jLT  is the latest point at 

which the customer is satisfied; and jLLT  is the latest 

point at which the customer is acceptable. If jET  and 

jLT  are delivered, the customer is very satisfied, while if 

jEET  and jLLT  are delivered outside the time period, 

the customer satisfaction is 0. Let the penalty cost for 

early arrival be 1u  and the penalty cost for late arrival 

be 2u . Based on the relationship between customer 

satisfaction and delivery time and the penalty cost in 

Figure 2, a time window penalty cost segmentation 

function can be constructed to calculate the formula in 

equation (2). 
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 (2) 

In equation (2), M  is an infinite amount. The total 

cost of the time window penalty can be obtained from 

equation (2) in equation (3). 

   2 1 2

0 0

2 max ,0 max ,0
n n

i i i i

j j

TC M u ET t u t LT
= =

= + − + −  (3) 

In equation (3), 2TC  is the time window penalty 

cost. During transportation and unloading, the cost of 

damage to the finished cigarette product is very likely to 

be caused by crushing and deformation, moisture 

deterioration and other problems. Assuming a constant 

rate of goods damage, the longer the time, the greater the 
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rate of goods damage. Equation (4) indicates the 

calculation. 
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In equation (4), 3TC  is the cost of damage; is the 

cost of transport damage; 1E  and 2E  are the cost of 

damage during loading and unloading; jq  is the site 

demand; jt  is the time for the vehicle to arrive at the 

site j ; 
I

Q  is the cargo load; A  is the price of the 

product; 
t

ijkT  is the time for the first k  vehicle to travel 

from i  to j  at t ; and 
k

sjt  is the service time for the 

vehicle k  at the site j . The objective function model 

for the total cost of transportation of finished tobacco 

products based on the fixed cost of vehicles and 

transportation, the total cost of time window penalties, 

and the cost of damage is shown in equation (5). 

 

1 2 3minTC TC TC TC= + +  (5) 

 

This total cost minimization function is subject to 

the constraints of the condition in equation (6). 
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In equation (6), 
1

1
n

jk

j

y
=

=  constrains all vehicles 

not to deliver to the same distribution point; 

1 1

n n

ijk ijk

j j

x x
= =

=   constrains all distribution vehicles to 

start and end at a distribution centre; 
0 0

1
n n

ijk

i j

x
= =

  

constrains all vehicles to start from a fixed location and 

deliver to all sites from that location; 

( )1
0 1 0 1

1
n n n n

ijk i j k
i j i j

x x
−

= = = =

− =   constrains vehicles to 

schedule the next site immediately after delivering to a 

site; 
1

n

jk j

j

y q Q
=

  constrains all vehicles to deliver to 

the maximum number of sites; 
0 1

n n

ijk i j

i j

x d L
= =

  

constrains vehicles to deliver over a range of distances. 
, ,j j j j j j jET t LT orEET t ET orLT t LLT      . The 

constraint vehicle must complete the distribution within 

the specified time. Logistics distribution route 

optimization means that the total transport distance for 

the entire distribution process is required to be minimized. 

With k  car distribution; car load for kQ ; vehicle a 

distribution of the most travel distance for kD ; site cargo 

demand for iq ; site i  to site j  distance for ijd ; 

distribution centre to site i  distance for oid ; the k  car 

distribution site number kn ; k  path for KR ; site in the 

route k  order i  for kir . A functional model of the 

shortest distribution path is shown in equation (7). 
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The constraints of equation (7) are shown in 

equation (8). 
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In equation (8), 
( )

( )
1

1

•
k

kk i rki

n

r kn ko k k

i

d d r sign n D
−

=

+   

constrains the distance of each distribution route not to 

exceed the maximum distance travelled by the vehicle 

transport; 0 1kn   constrains that each route stop does 

not exceed the total stops; 
1

k

k

i

n L
=

=  constrains that 

each distribution point is delivered; 

  1,2,..., , 1,2,3...,k ki ki k kR r r n i n =  represents the 

stop composition of each route; 1 2 1 2,k kR R k k =    

constrains that each stop is delivered by one vehicle; 

( )
1 1
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n
sign n
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 constrains whether the vehicle is 

involved in the delivery. 

 

3.2 Fusing Improved GA-A* algorithm for 

finished cigarette logistics route transport 

storage path 

After planning for the transportation costs of finished 

cigarette logistics, the specific distribution and storage 

paths of the finished cigarette products in the 

transportation process also need to be analyzed. 

Compared to other algorithms, GA is able to manipulate 

parameter codes and find the optimal solution quickly. 

However, the algorithm also suffers from the problem of 

prematurely falling into a local optimum solution. The 

study therefore applies the A* algorithm to logistics 
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distribution route planning, incorporating the GA to solve 

for the paths [19]. The general flow of the A* algorithm 

is shown in Figure 3. 
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Figure 3: A * Algorithm flow diagram 

 

As shown in Figure 3, the general process of the A* 

algorithm is to grid mark the target area with target points 

in the run path as 1A , 2A , 3A , ... , nA , the grid map is 

set for R  rows C  columns, then the node coordinates 

are calculated in the way shown in equation (9). 

( )mod ,
2

2

a
x a N C

a N
y a R ceil

R

  
=  −  
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 (9) 

In equation (9), a  is the length of each grid; mod  

is the remainder function; ceil  returns the smallest 

integer of the values. The start and end points are then 

determined and the starting point is placed in an open list 

to calculate the evaluation function ( )f n , the actual 

cost of the node to the starting point ( )g n  and the 

estimated cost of the target point to the node ( )h n . 

Equation (10) gives the details of the calculation. 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

i s i s

i s i s

f n g n h n

g n x x y y

h n x x y y

 = +



= − + −

 = − + −

 (10) 

It then determines if the node is the termination 

point and, if so, returns to the previously passed node and 

constructs the path.Otherwise, the node M  is placed in 

the closing list, and the actual cost of the node M  is 

calculated with the distance from the node to the adjacent 

nodes at this point ( )g t ; Finally, whether the adjacent 

nodes are qualified is determined. For the traditional A* 

algorithm to construct paths with a large number of 

redundant turns and invalid points, the study uses the 

setting of parameters to limit the search direction of 

neighboring nodes to improve. The heuristic function is a 

key part of the A* algorithm, which is used to evaluate 

the distance from the current node to the target node. The 

study introduces weights to the heuristic function and 

adds a new evaluation metric based on this ( )h p . 

Equation (11) shows the detailed calculation process. 

 

( ) ( ) ( ) ( )f n g n h n h p= + +    (11) 

In equation (11),   is the weight value; ( )h p  is 

the distance from the parent node of the current child 

node to the target. The general flow of the GA is shown 

in Figure 4. 
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Figure 4: Operation process of GA 

 

As shown in Figure 4, the general process of the 

traditional GA is to first encode the target point. The 

population is initialized, and then the fitness is calculated. 

Individuals with high fitness are selected. Crossover and 

mutation operations are carried out. All individuals are 

evaluated, and the fitness value of individuals is 

determined according to the fitness function. The above 

steps are repeated until the target problem result is 

selected. In terms of coding and decoding, the practical 

problem of logistics path optimization is not directly 

understood by traditional GA. Let a chromosome of 

length X replace X distribution points, i. e. each gene 

refers to one distribution point. When encoding, the 

solution to the distribution path problem is transformed 

into the genotype string structure data in the GA. When 

decoding, a route is constructed at each gene 

corresponding to as many distribution points as possible, 

and a new route is constructed if the route does not hold 

[20]. For example, the coding of 8 distribution 

points 51273684  is shown in equation (12). 

 

0 5 1 2 0

0 7 3 6 0

0 8 4 0

− − − −


− − − −
 − − −

  (12) 

 

In equation (12), 0 5 1 2 0− − − −  is path 1; 

0 7 3 6 0− − − −  is path 2; 0 8 4 0− − −  is path 3; and 0 

represents the distribution centre. For the initial group, 

the study is improved using a savings algorithm. The 

algorithm takes the distance that can be saved by 

distribution points, inserts distribution points that are not 

on the distribution route into the route, and repeats the 

operation until all distribution points are on the 

distribution route. The calculation of the savings value for 

two nodes in the savings algorithm is shown in equation 

(13). 

 

( ) ( ) ( ) ( ), ,0 , ,S i j d i d o j d i j= + −  (13) 

 

In equation (13), 0  is the distribution centre 

location; i  and j  are both distribution point locations. 

For the selection operator, perform cross operation This 

strategy not only ensures that the selected individual is 

optimal, but also guarantees its randomness and diversity. 

Equation (14) shows the specific calculation. 

 

1

i

i n

i

i

f
p

f
=

=


  (14) 

 

In equation (14), if  is the adaptation of 

distribution individuals i ; n  is the total number of 

distribution individuals; 
1

n

i

i

f
=

  the sum of all 

distribution individual’s adaptation. In response to the 
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problem that the traditional crossover operator affects the 

convergence of the algorithm, the study uses adaptive 

crossover probability. The method automatically selects 

the crossover probability depending on the actual 

situation. The specific calculation is shown in equation 

(15). 

( )( )
( )( )

max max

max max

2

c

c

P f f

P f f f f fP
f f

f f f f

 


− − += 


− −

(15) 

In equation (15), cP  is the set crossover probability; 

maxf  is the maximum fitness value; f  is the average 

fitness value per individual per generation; and P  is the 

desired adaptive crossover rate. The study uses the 

inversion method for the variation operator, i.e. two 

randomly selected variation points are inverted to obtain 

new individuals. The method is described in Figure 5. 

 

Temp 1674529 38

Temp1 5476129 38

 

Figure 5: Mutation operation 

 

For the individual assessment, the study introduces a 

new fitness function for the individual at the distribution 

point, which is used to evaluate the strengths and 

weaknesses of that individual. Equation (16) indicates the 

specific calculation. 

( ) ( )max

1 0 0 1 0 1

j jk i k k

ij ijk ojk i i

k i j k j i

f x C C X X P S  
= = = = = =

 
= − + + 

 
   (16) 

In equation (16), ( )f x  is the adaptive degree 

value; maxC  is the maximum value of ( )g x  in this 

generation; ( )g x  is the objective function value. The 

specific optimization process and code flow are finally 

shown in Figure 6. 
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Population 1

 

Figure 6: Improvement of the optimization process of the GA for solving the problem and pseudocode 
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In Figure 6(a), GA is used to solve the transportation 

path of finished cigarette products. The parameters of the 

GA are set as follows: the population size is 100, the 

crossover rate is 0.8, the mutation rate is 0.01, and the 

number of iterations is 200. The initial population is 

initialized by randomly generating the path code of the 

distribution point. 

 

4 Performance analysis and 

application of a storage path 

optimization model for finished 

cigarette logistics distribution 
After completing the optimization of the storage path for 

the distribution of finished cigarette logistics, the 

performance of the algorithm under actual operation also 

needs to be analyzed to check its effectiveness. To test 

the performance of the improved GA-A* algorithm in the 

storage path planning for the distribution of finished 

cigarette logistics, the experimental environment and 

basic parameters were first set up. Table 2 demonstrated 

the basic hardware environment settings for the 

experiments. 

 

 
Table 2: The experimental basic environmental parameters 

Parameter variables Parameter selection 

The overall implementation platform of the system Simulink 

Operating system Windows 10 

Operating environment MATLAB R2015b 

System Memory Memory 8GB 

CPU main frequency 2.62Hz 

Global procurement unit RTX-2070 

Central Processing Unit Intel Corei7-4590 

Data storage MySQL data bank 

Data regression analysis platform SPSS 26.0 

Standard moving distance (meter) 400 

Standard moving distance in overapping area(meter) 200 

 

To ensure the ultimate fairness and reasonableness 

of the process of conducting the experiments, the 

parameters of the Improved Genetic Algorithm (IGA), 

the Improved A* Algorithm (IA*) and the reference [21], 

as well as the distance matrix for testing, were set 

identically to those of the research method, except for the 

experimental parameters specific to the research model. 

The Solomn dataset and the Gehring dataset were 

selected for the experiments and the three algorithms 

mentioned above were experimented with the research 

method and compared to record the optimal path 

distances. The convergence criterion of the algorithm was 

defined as: within 1010 consecutive generations, the 

objective function value of the optimal solution was 

improved to a minimum value of 4.2. The convergence of 

the different algorithms was first compared, as shown in 

Figure 7. 
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Figure 7: Comparison of convergence of the four algorithms 

 

Figure 7(a) demonstrated the algorithm convergence 

results for the algorithms on the Solomn dataset. The 

objective function values of all the algorithms showed a 

decreasing trend under increasing changes in the number 

of iterations. Among them, IGA, IA* and reference [21] 

started to converge at the 62nd, 60th and 58th iteration, 
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respectively, and appeared to have a minimum objective 

function value. In contrast, the research method startedto 

have a minimum function value at the 41st iteration, with 

better overall convergence accuracy. Figure 7(b) 

illustrated the method’s results on the Gehring dataset. 

The IGA, IA* and the reference [21] all showed a rapid 

change in the objective function value at the beginning of 

the iteration. The change in IGA was not stable and kept 

fluctuating throughout the run. The research method 

reached a stable convergence at the 32nd iteration. It was 

verified that the research method could reach a stable 

convergence state relatively quickly throughout the run, 

with a fast convergence rate [22]. To extend the 

experiment, the study used the Solomn dataset as the 

main dataset and compares the AUC values of the four 

algorithms, corresponding to the ROC curves obtained in 

Figure 8. 
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Figure 8: ROC curves for the four algorithms 

 

In Figure 8, the area under the ROC curve for the 

research method was significantly larger than the other 

algorithms, while the AUC values for the method in the 

reference [21] were larger than the values for the other 

methods. The area under the ROC curve was calculated 

to be 0.985, 0.967, 0.941 and 0.875 for the research 

method, IGA, IA* and reference [21] respectively, and 

the AUC values for the research method were greater 

than the other methods by the significance results, which 

also indicated that the results obtained by the research 

method were more realistic. 80% and 60% of the 

Solomon and Gehring datasets were selected as training 

sets, respectively. The remaining data was used as a 

validation set for analyzing the path planning error results 

of the research method, as shown in Figure 9. 
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Figure 9: Error results for the study method path planning 
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In Figure 9, as the training steps increases, the error 

values under the study method gradually decreased and 

converged to the target value. By the 27th iteration, the 

model achieved an error value of 0.06 for the path 

planning results and the performance is optimal. This was 

a low value compared to the set error target and meets the 

system performance requirements. To further observe the 

path planning results of the system model under the 

research method, the experiments were statistically and 

graphically plotted for the research model training, 

validation, testing and all data in the dataset as output 

versus input, see Figure 10. 
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Figure 10: Study model training, validation, testing and output and input correlation coefficients for all data 

 

In Figure 10, the correlation coefficient R values of 

0.9677, 0.9434, 0.9605, and 0.9625 for the training, 

validation, test, and all data of the research model were 

all greater than 0.9. This indicated that the research model 

was not overfitted during the run. In addition, the 

correlation coefficient value obtained from the training of 

the research model was larger than that obtained from the 

validation dataset, at 0.0243, indicating that the research 

model was also free from overfitting on the different 

datasets. In summary, the research model was able to map 

the relationship between input and output information, 

and thus made more accurate predictions for the route 

planning of finished cigarette logistics and distribution. 

To demonstrate the usefulness of the research method to 

find the optimal route planning for the distribution of 

finished cigarette logistics, the research method was 

validated by applying it to the data example Solomn 

dataset, and the results are shown in Figure 11. 
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Figure 11: Path finding results of the study method on the Solomn dataset 

 

Figure 11 showed the logistic optimization paths for 

the Solomn dataset obtained by solving using the study's 

improved GA-A* method. Figure 11(a) and Figure 11(b) 

showed the optimal path planning plots corresponding to 

the minimum total cost under the reference [21] and the 

research method respectively. Figure 11(c) then 

showedthe comparison of the optimal search curves for 

the two methods. From Figure 11(c), in the optimal path 

planning state, the research method started to stabilize 

and reach the optimal state when iterating for about 47 

iterations under the same conditions, whereas the method 

in the reference [21] needed to iterate up to 69 times 

before it started to proceed to the steady state.In addition, 

based on the above results, the number of delivery points 

was increased to 20, and the number of iterations of 

different algorithms to find the optimal path was 

compared to analyze the scalability. Meanwhile, the 

percentage of system memory occupied by different 

algorithms was compared to analyze the computational 

complexity of different algorithms. The results were 

shown in Table 3. 

 

 
Table 3: Comparison of scalability and computational complexity 

Method/Algorithm Number of iterations (scalability) 
Memory usage/% (computational 

complexity) 

Shen [7] 64 90.12 

Imrane et al. [21] 67 89.17 

IGA 62 84.21 

IA* 58 80.30 

Research algorithm 53 60.52 

 

As shown in Table 3, compared with the other four 

algorithms, the proposed method had better scalability 

when it was iterated to the 53rd time, and the 

corresponding memory usage reached a stable state, with 

a value of only 60.52%. This showed that the proposed 

method could still maintain high performance when 

dealing with large-scale problems, and when dealing with 

problems of the same scale, the proposed method could 



Optimization of Cigarette Logistics Paths Using Hybrid GA-A…                      Informatica 48 (2024) 140–154   152 

obtain better solutions at a lower computational cost. 

5 Discussion 

The cigarette finished product logistics distribution and 

storage path optimization method proposed in the study 

based on the improved GA-A* algorithm showed 

significant advantages in multiple key performance 

indicators. In terms of convergence speed, the method 

proposed by the research reached a stable state when it 

iterated to the 41st iteration on the Solomn data set and 

the 32nd iteration on the Gehring data set; in addition, the 

method proposed by the research institute achieved path 

planning at the 27th iteration. The error was reduced to 

0.06, and the performance reached the optimal level, 

which was not mentioned in the literature [21], indicating 

that the proposed method also had advantages in terms of 

accuracy. Although the logistics distribution path 

optimization model based on dynamic road network 

proposed by Scholar Shen could greatly improve the 

transportation efficiency of urban logistics, the cost was 

higher than the model proposed in the research. The 

model proposed by the study cost significantly less than 

other methods under the same path transportation 

conditions. The rapid convergence and high accuracy of 

the research method meant that it could provide logistics 

decision-makers with timely and reliable path planning 

solutions in practical applications. In addition, the high 

efficiency of this method also meant that in a dynamically 

changing logistics environment, it could quickly respond 

to demand changes and update distribution routes in real 

time, thereby improving the adaptability of the logistics 

system and customer satisfaction. 

6 Conclusion 

To reduce the loss of cigarette products during 

transportation and meet customer needs, the study 

proposes a storage path planning method based on an 

improved GA-A* algorithm for the logistics distribution 

of finished cigarette products. The results showed that the 

area under the ROC curves of the research method, IGA, 

IA* and reference [21] were 0.985, 0.967, 0.941 and 

0.875 respectively in the comparison of AUC values. In 

the path planning error, when the 27th iteration was 

performed, the research method had an error value of 

0.06 for path planning, which was the optimal 

performance; the correlation coefficient of the research 

method was greater than 0.9 on all data, and no 

over-fitting occurs. Convergence was also compared on 

the Solomn dataset, with the research method, IGA, IA* 

and the reference [21] starting to converge at the 41st, 

62nd, 60th and 58th iterations respectively. In the path 

finding results, the research method was able to obtain 

the optimal path at around the 47th iteration. The above 

data show that the fusion of GA-A* algorithm can help in 

the sub-path planning of the distribution of finished 

cigarette logistics and can effectively identify the optimal 

path, which is of great significance to the development of 

the tobacco transportation industry in China. However, as 

the research method only considers for application testing 

on known datasets and does not extend the scope of the 

study, subsequent research is yet to be conducted using 

multiple datasets to ensure the universality of the method. 
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