
https://doi.org/10.31449/inf.v49i23.6395                                                                                       Informatica 49 (2025) 99-108 99 

Feature Extraction of EEG Signal Using Convolutional Neural 

Networks by Removing Artifacts 

Padmini Chattu1, C.V.P.R. Prasad2 

1Acharya Nagarjuna University, Nagarjuna Nagar, A.P, India 
2Acharya Nagarjuna University, Nagarjuna Nagar, India 

E-mail: pchattu2021@gmail.com 

 

Keywords: feature extraction, convolution neural networks, morelette, random forest classifier 

 

Received: June 14, 2024 

Clinical depression is a neurological disease identifiable by the analysis of the electroencephalography 

signals (EEG). The electroencephalographic signals (EEG) are often polluted by many artifacts. Deep 

study models have been employed in recent years to denoise electroencephalography. The main difficulty 

in medical analysis is the extraction of true brain signals from the polluted EEG data. Noise reduction 

from recorded EEG data is very important for better brain disorder investigation. This paper proposed 

an effective EEG signal estimation model for the process of EEG signals. The proposed model uss the 

Morelette wavelet transformation model for the pre-processing of the EEG signal. With the pre-processed 

EEG signal model feature extraction is performed with the Convolutional Neural Network (CNN) for the 

EEG signal. With the pre-processed EEG signal model training and testing are estimated for the 

classification of the EEG signal. The EEG signal categorization was carried out utilizing characteristics 

derived from EEG data. Many characteristics have proven sufficiently distinctive for usage in all 

applications linked to the brain. The EEG may be categorized using a range of functions such as 

autoregression, energy spectrum density, energy entropy and linear complexity. However, various 

characteristics indicate varying strength of discrimination for different individuals or trials. Two 

characteristics are utilized in this study to enhance the performance of EEG signals. Techniques based on 

the neural network are used for the extraction of EEG signal. Classification methods include the Random 

Forest Classification. The model was tested using a random splitting method and 93.4 percent of the EEG 

signals were received accordingly. 

Povzetek: Prispevek predstavi metodo za odstranjevanje artefaktov iz EEG-signala z uporabo CNN in 

Morletove valovne transformacije. 

 

1 Introduction 
The brain-computer interface is an electronic and human 

brain direct communication and controlling mechanism 

[1]. In several areas, BCI systems offer significant 

application value, in particular in the realm of medical 

treatment [2]. Different signals for 

Electroencephalograms (EEGs) have been utilized in BCI 

systems such as P300 potentials, SSVEP and motor 

imaging (MI). In the diagnosis of neurologic diseases like 

epileptic seizures and neurophysiologists, 

electroencephalogram (EEG's) signals also rely largely on 

these EEG signals. Close to 1% of the whole global 

population suffers from epilepsy, a significant 

neurological disorder [3]. The numerous spikes are 

utilized to describe the EEG data during the start of 

epileptic attacks. Two kinds of epileptic seizures may be 

categorized. Focal epileptics and general epileptic seizures 

are included. The seizure in the cerebral hemisphere is 

seen as a focused seizure that shows the symptoms in the 

respective areas that in turn impact mental health. The 

later covers the brain in its whole, resulting to the 

awareness of bilateral motor symptoms. Epileptic seizures 

may affect everyone irrespective of age. EEG epilepsy 

patient monitoring includes two types of abnormal  

 

activity. One is inter-cytical, aberrant EEG signals  

collected between episodes, which are ictal during an 

epileptic attack [4]. The major distinction is that the  

interictal activity shows transient waveforms in EEG 

recording in the form of varied pits, Spike trains, narrow 

waves or complex Spike waves, whereas the polymorphic 

differential range and frequency waveforms represent the 

ictal activity in EEG. In the early days, parametric 

techniques and transformations based on Fourier were 

employed. Frequency changes in the subband linked with 

EEG seizures are illustrated in μ(0.4-4 Hz), β(4- 8 Hz), 

α(8-12 Hz), and β(4-8 Hz) (12-30 Hz). 

Conventional techniques based on frequencies 

are usually appropriate for isolating EEG information 

from non-stationary and multi-component EEG signals. In 

comparison with traditional frequency techniques greater 

performance in time-frequency approaches is found. 

Several techniques were recommended for the reduction 

of Scalp EEG artifacts that record epileptic people in order 

to enhance diagnosis or seizure detection [5]. The main 

emphasis of the study is on wavelet and band 

modification, including seizure activity (i.e., 0.5-29 

Hz).Real EEG records reveal the most often replicated 

items with different artifact templates. The technique 
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utilizes three types of false data, including completely 

simulated, semi-simulated, and true data to assess the 

identification and seizure efficiency of artifacts. Once the 

artifacts are eliminated, seizures may readily be 

distinguished from any seizures responsible for EEG. As 

a result, false alarms in the detection of seizures are 

decreased. This is a technique used to extract normal 

signals and epileptic seizure signals from EEG data by 

choosing the least number of functions for individuals 

with epileptic signal. Detailed EEG coefficient and 

approximation coefficients are produced by choosing the 

minimal number of WT features. The coefficient produced 

by the wavelet generates 40 distinct characteristics 

utilizing statistical techniques which induce frequency 

distributions and varying quantities in frequency 

distributions [6]. 

2 Related works 
Researchers have utilized a series of signal processing and 

classification-based machine learning methods in recent 

years to categorize cognitive processes automatically 

based on intellectual arithmetic. Fatimah et al. [7] have 

derived from cycles of each EEG channel the standard L2, 

meaning the entropy of Shannon and energy parameters. 

For classifying cognitive workers, before mental 

arithmetic (BFMAC) or rest and mental arithmetic 

calculations (DMAC), or active state, a supportive vector 

maker (SVM) classifier has been used. A rate of accuracy 

of 95.80 per cent was achieved utilizing the Decision Tree 

categorization technique. The same authors also used 

Fourier's decomposition technique in another research to 

assess the EEG sub band signals [8]. 

The variance, energy and entropy characteristics 

of the EEG data were recovered from the Fourier domain; 

the psychology tasks BFMAC and DMAC were separated 

into an SVM rating; the exactness was 98.60 percent. The 

model of long-term storage (LSM) was utilized to 

categorize mental arithmetic activity by the multi-channel 

EEG data with spectral and instantaneous frequency 

characteristics [9]. 91.67 per cent were categorized for the 

BFMAC vs. DMAC classification test utilizing the 

stacked LSTM classification. 

A number of EEG data channels, including 

rhythms, fractals, auto-regressive model coefficients, and 

statistical variables, were characterized by Wang and 

Sourina [10]. To classify mental arithmetic tasks, we 

employed a support vector machine (SVM) model and 

principal component analysis (PCA) to reduce the vector 

size. The autoregressive EEG and SVM-based analyses 

were also used to classify the cognitive mental-arithmetic 

workload [11]. 

The methods presented in [12] comprised just 

statistical and spectral properties of EEG signals such the 

BFMAC vs. the DMAC. The method presented by [13] 

also provides a framework for the identification of mental 

arithmetic tasks using EEG signal features. In [14] the 

authors investigated the three categorization functions of 

EEG, for example the baseline vs the mental arithmetic 

versus the mental letter. The previous research did not 

identify activities for cognitive classification of working 

load such as bad computations of mental arithmetic 

(BMAC) compared to good calculation of mental 

arithmetic (GMAC) using EEG signal analytics. 

The methods referred to above only investigated 

the temporal and frequency-domain features of EEG data 

in the classification of mental arithmetic tasks. State-space 

enterothe features of a wide-spread, partial-epileptic 

seizure [16], emotional recognition [17] and BCI [18] are 

used as measurements of not linearity and randomness by 

means of EE G signalling [15]. The use of EEG data was 

not explored with respect to these non-linear entropy 

characteristics, including scattered entropy [19], pitfall 

entropy [20], and other entropy metrics. Deep learning 

methods like convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) have recently found 

extensive use in EEG signal processing applications [21]. 

When it comes to analyzing sequence data and 

using it for speech recognition, RNNs—deep neural 

network models—are the way to go. Time series data 

modeling [22] makes use of this kind of network to 

investigate the long-range dependencies. Consideration of 

input and data from the prior stage is necessary for 

evaluating the present phase. To classify mental arithmetic 

activities based on EEG signal properties, the LSTM-

based RNN model was employed [23]. Through 

correlations between EEG data across different times, the 

RNN models can categorize mental arithmetic operations. 

As an example, the EEG signal BFMAC against DMAC 

or BMAC versus GMAC was not utilized by other RNN 

versions, such as the Bidirectional and Gated Recurrent 

units (GRU) [24], to categorize mental arithmetic 

processes. 

 

2.1 Research motivation 
The DLN was widely used for image processing and other 

applications, as we all know. Its usage in EEG is 

uncommon despite the efficacy of DLN [25]. This article 

offers a newness, resilient and efficient DLN to eliminate 

noise artifacts in order to address the shortcomings of the 

conventional techniques described above. 

Like the polluted EEG. The technique suggested 

has the following features:  

(i) This technique does not need any extra ENG 

(EEG with artifact Noises) recording for reference signals 

either offline or live, which is convenient for subjects with 

excellent applications for rehabilitation brain interface 

systems.  

(ii) This technique is suited for a few EEG 

electrodes which are convenient for EEG recording, cost 

saving and suitable for use.  

(iii) NAs (Noise artifacts) may be eliminated 

automatically using the learnt model which is quick to use 

and can be used online. 

(iv) The generalization potential of this technique 

is excellent and may be extensively utilized. The 

technique suggested may be split into two phases (Fig. 1). 

The first phase is pre-processing elimination of artifacts 

and the second phase is the model derived from the 

feature. 
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2.2 Background convolutional neural 

network 
A deep-learning model is a neural network of 

knowledge based on data, was widely shown by picture 

classification and object identification techniques, and 

includes a complete (FC) layer, a linear (Conv) 

convolutional layer, a model that does not have a linear or 

nonlinear function. One of CNN's major advantages is the 

utilization of a limited spatial area for input pictures; it 

shares certain sharp parameters and less weights. This 

method is mainly more efficient than previous models. 

Table 1 presented the overall summary of the literature 

review for the EEG signal processing.  

  

 

Table 1: Summary of the literature 
Study Methods Features Classification 

Tasks 

Classifier Accuracy Key Findings 

Fatimah et al. 
[7] 

L2 norm, Shannon 
entropy, Energy 

parameters 

Cycles of each 
EEG channel 

BFMAC vs. 
DMAC 

SVM 95.80% Decision Tree 
classification achieved 

95.80% accuracy; SVM 

was used in earlier stage for 
task classification. 

Fatimah et al. 

[8] 

Fourier's 

decomposition 

Variance, 

Energy, Entropy 

BFMAC vs. 

DMAC 

SVM 98.60% Fourier's 

decomposition of EEG 
subband signals improved 

accuracy to 98.60%. 

Study [9] Spectral and 

Instantaneous 
Frequency features 

Multi-channel 

EEG data 

BFMAC vs. 

DMAC 

Stacked 

LSTM 

91.67% Stacked LSTM model 

used for spectral and 
frequency characteristics, 

achieving 91.67% accuracy. 

Wang & 
Sourina [10] 

PCA, SVM, Auto-
regressive model 

coefficients 

Rhythms, 
Fractals, 

Statistical 

variables 

Mental 
Arithmetic vs. 

Rest 

SVM, PCA Not 
specified 

PCA for feature 
reduction; SVM used for 

mental arithmetic task 

classification. 

Study [11] Auto-regressive EEG Auto-regressive 

coefficients 

Cognitive Mental 

Arithmetic 

Workload 

SVM - Auto-regressive 

model coefficients used in 

combination with SVM for 
workload classification. 

Study [12] Statistical and 

Spectral EEG 

properties 

BFMAC vs. 

DMAC 

BFMAC vs. 

DMAC 

- - Focused on statistical 

and spectral features for 

BFMAC vs. DMAC 
classification. 

Study [13] EEG signal feature 

extraction 

EEG signal 

features 

Mental 

Arithmetic 
Identification 

- - Provided a framework 

for EEG-based 
identification of mental 

arithmetic tasks. 

Study [14] EEG signal anaysis Baseline vs. 

Mental 
Arithmetic vs. 

Mental Letter 

Three-way 

classification 

- - Investigated 

classification of baseline vs. 
mental arithmetic vs. 

mental letter tasks using 

EEG. 

Studies [15-20] Non-linear entropy 

metrics 

Scattered 

Entropy, Pitfall 

Entropy 

Various EEG-

based cognitive 

tasks 

- - Explored non-linear 

entropy metrics for 

classification; not widely 
applied to mental arithmetic 

classification tasks. 

Study [21-22] RNN, CNN, LSTM, 
GRU 

Temporal and 
frequency-

domain features 

Mental 
Arithmetic vs. 

Rest 

RNN, 
LSTM, 

CNN, GRU 

- Explored the 
application of deep learning 

methods (RNN, LSTM, 

CNN) for EEG-based 
cognitive task 

classification. 

Study [23] LSTM-based RNN EEG signal 

properties 

BFMAC vs. 

DMAC 

LST

M-based 

RNN 

- LSTM model used for 

classifying mental 

arithmetic tasks based on 

EEG signals. 

Study [24] Bidirectional and 
Gated Recurrent 

Units (GRU) 

EEG signal 
properties 

BMAC vs. 
GMAC 

GRU, 
Bidirection

al RNN 

- GRU and 
Bidirectional RNN 

explored but not utilized in 

classification of BFMAC 
vs. DMAC or BMAC vs. 

GMAC. 
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owing to lower computing complexity and reduced 

memory use. 

 

 
Figure 1: Convolutionary neural network architecture 

 

Convolution layer  

Basically, the picture input is resized to the usual 

size CNN model, i.e. 3 bis 2224 bis 224. The re 

dimensional picture has a stack of many layers called 

convolutionary layers of different receptive areas. In 

Convolution layer, the fundamental operation is a 

Convolution, the Convolution is staggered by a sequence 

of mathematical operations. It executed the data to be 

extracted into the successive layers by convoluting the 

kernel matrix over the input matrix. The feature matrix is 

obtained by performing element-wise matrix 

multiplication at each coordinate and then adding the 

results together. The unique linear model known as 

convolution is useful in many domains, such as image 

processing, statistics, physics, and more. Several axes are 

estimated by convolution. The compressed image is 

calculated in this way, where the input image and the K 

kernel filter are represented by the two-dimensional I, 

respectively: 

𝑆(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝑘(𝑖 − 𝑚, 𝑗 − 𝑛)𝑛𝑚     [1] 

Pool: The pooling layer is the subsequent layer of 

Convolution and is used to decrease the representation 

space domain to reduce network processing. It was also 

called a pool. In CNN, the greatest size of the pooling 

kernel is typically 2 x 2 and step 2. 

Fully connected layer: This layer abbreviated as 

"FC" is mimicked by convolution in CNN. Its size is n1 to 

n2, where n1 and n2 are the input tensor and output tensor 

size. N1 is a triplet (7 against 7 versus 512), while n2 is 

usually an integer.  

Dropout: This layer is called "Drop." It usually 

removes the overcapacity of the input; it is a method to 

enhance deep learning algorithm hypothesis. Normally, 

the weights of the connected network nodes are set to 0. 

(CNN the percentage of 0.5 is assigned to the two dropout 

layers). 

SoftMax: Normally, it stands for the deep 

learning model, followed by a layer stack in which the 

Convolution layer is followed by the ReLU layer in CNN. 

In the CNN model, nonlinearity is governed by a ReLU 

layer. 

 

3   Proposed methodology 
Research was performed in the Federal Institute for Safety 

and Health in Employment's shielded laboratory in Berlin. 

25 electrodes were obtained from EEG tracks with Cz 

reference and 10-20 sampling rate of 500 Hz. The signal 

duration recorded ranged from 1.5 to 20 minutes. The 

sample was 57. (aged between 30 and 62 years, with 31 

females and 26 males). During the test, people had to 

complete cognitive tasks with different levels of difficulty. 

We utilized EEG network information to 

generate clean and noisy EEG signals to train and test the 

proposed neural network. Especially utilized for 

simulating myogenous noisy EEGs were 4514 EEG, and 

5598 EMG periods. We have reused some data randomly 

to raise the EEG to 5598 and have acquired 5598 EEG 

pairings and myogens. We have randomly split 5598 data 

pairs into 10 parts, 8 workshop components (4478 

pairings), 1 test part (560 pairs) and 1 test set part (560 

pairs). Randomly mixed 4478 EEG and myogenic artifacts 

were a 10-time linear EEG mixture with EMG epochs 

utilizing a consistent sample signal-to-noise (SNR) ratio 

of -7dB to 2dB. Y refers to the EEG mixed and myogenic 

signal in the formula, x refers to the clean EEG, n refers to 

the myogetic signal and μ refers to the artifact's 

proportionate EMG contribution. 

 

 
Figure 2: Architecture diagram of the proposed 

methodology 

 

Figure 2 illustrates our suggested system design. 

Where figure.1 is the general architecture of the research 

technique suggested. It first collects data from the stored 

database and then begins the preprocessing with the 

elimination of noise and improves the dimensioning of the 

feature based on color, texture and picture size 

(descriptors of image). The artifacts which have been 

eliminated from the Morellette transformation have to be 

taught using the neural networks of Convolution based on 

knowledge. For this data, they must enhance the accuracy 

of the training data and pictures using the Decision 

Classifier Technique classification tree. The categorized 

output is produced from this and the EEG signal is 

obtained with great precision. 

 

3.1 Data preparation and Pre-processing 
Noise reduction from the EEG data collected is 

important for improved brain disorder analysis. During 

recoding time, EEG signals are often polluted owing to 

numerous artifacts by different noises and distortions. 

These noisy EEG signals may cause the brain diseases to 

be misdiagnosed. Several methods for removing the noise 

from EEG data are known. But these methods cannot fully 

eliminate the noise. However, the noise in EEG data can 

be minimized so that doctors can anticipate brain 

disturbances. 

The selected mother function was the Morlet 

wavelet complex. This is an exponential complex that is 

modulated by a Gaussian function, that relies upon the 

parameter, the so-called (total) oscillation number, to be 

selected by the user. 
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The identification and diagnosis of epileptic 

convulsions typically involves monitoring the patient's 

electroencephalography (EEG) data for a long time. One 

of the most common ways to monitor the brain is with 

electroencephalography (EEG). The majority of expert 

neurologists rely on time-consuming and ineffective 

visual record analysis. In instance, artifacts with 

comparable time-frequency patterns can be hard to tell 

apart from seizures due to the noise characteristics of the 

EEG recording. There was heavy use of machine learning 

for the automatic detection or forecasting of epileptic 

episodes in unprocessed EEG data. This work made use of 

a data set that was made available to the public through 

the UCI Machine Learning Repository. The data include 

11500 EEG samples with 5 attributes. EC is an Eye 

Closed, EL is an Epileptic Seizure, EOS is an Eye 

Opening, HB is an Eye Closed, and TMRs are an attribute 

for Tumor Identification. Figure 3(a)- (e)shows the signal 

visualization for each characteristic. 

 

 
 

3.2 Convolutional neural network (CNN) based 

EEG Feature extraction 
A key component of deep neural networks in 

recent years has been the Convolutional Neural Network, 

more often known as CNN. The four main layers of a 

convolutional neural network (CNN) are the 

convolutional, pooling, Relu, and fully connected layers. 

 

3.2.1 Convolutional layer  
A convolutional neural network's (CNN) core is 

its convolutional layer. A large number of characteristic 

maps make up the convolutional layer. Using all of the 

neurons on the same characteristic map, we can extract 

local features from the former at different places. The 

input was first combined with the activation function in 

order to gain a new feature. 

In order to explain the development of the 

functionality, write the output of the layer (ℓ − 1) st as 

𝓍ℓ−1 := [𝓍ℓ−1 1 …………. 𝓍ℓ−1 𝐹ℓ−1 ]. 

This breaks down the 𝑀ℓ−1 dimension of the 

layer (ℓ − 1) as the 𝐹ℓ−1 stacking characteristics of the 

𝑁ℓ−1size. This feature collection is the input to the ℓth 

layer. 

The intermediate output ul may also be 

represented as a Fl feature collection as 𝑢ℓ := [𝑢ℓ 1 

…………. 𝑢ℓ 𝐹ℓ] . When 𝑢ℓ   is the length of 𝑁ℓ−1 and 

the features of 𝓍ℓ−1 𝑔 of the preceding layer are acquired 

via convolution and a linear aggregation, g = 1, …………. 

𝐹ℓ−1. In particular, let ℎ  := [[ℎ𝑙 𝑓𝑔]0, …………. [ℎ𝑙 𝑓𝑔] 

𝐾ℓ−1 ] be used to analyse an invariant ℊ𝑡ℎ feature of the 

(ℓ − 1) st layer to generate the 𝑢ℓ 𝑓𝑔At layer ℓ intermediate 

feature. Because the filter is defined by convolution, Eq(2 

)  expressly specifies 𝑢ℓ 𝑓𝑔 are components . 

        
(2) 

However, following assessment of the 

convolutions in the preceding equation, the characteristics 

of ℓ-th layer 𝑢ℓ 𝑓 are calculated using the simple addition 

on Eq. (3) of the intermediate characteristics 𝑢ℓ 

𝑓𝑔associated with each of the previous layer's 

characteristics 𝓍ℓ−1 𝑔.  

          (3) 

3.2.2 Relu layer  

Conventionally, neurons' output f is represented 

by f(x) = tanh(x) or f(x) = (1-e −x). When compared to its 

tanh unit equivalent, a deep convolutional neural network 

using RELU can train at a rate that is several times 

quicker. Relu layer converts the negative activation value 

to zero by applying f(x) = max (x,0) of the supplied input. 

  

3.2.3 Pooling layer 
The pooling layer strengthens the extraction and 

decreases the size of the characteristic maps. Two distinct 

types of pooling layers exist: medium and max. The mean 

and maximum layer equation are shown as 

           (4) 

For mean pooling, 

         (5) 

And the maximum pooling, 

      (6) 

3.2.4 Fully linked SoftMax output layer 
Following all the features of our neural network, 

the SoftMax layer is fully connected. Each class's 

probability distribution is the output of this layer. 

Classification culminates in the fully connected layer. 

They salvage the entire neuron from the prior layer and 

merge it into this one. Accuracy and loss can be calculated 

using the following formulas. Where K is the class number 

and N is the comment number. 
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Figure 4: Proposed CNN EEG Architecture 

 

3.3 Random forest-based classification 
The random forest is a mixed classification 

created by merging K fundamental decision trees. For the 

initial data set, 

𝐷 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2)……… . . (𝑋𝑛 , 𝑦𝑛)}     (7) 

Randomly pick sub-data sets x 1, y 1~ (X, Y) 

from the original data sets for the classifier ℎ𝑘(𝑥), to build 

a combined classifier. 

ℎ = {ℎ1(𝑋), … ℎ𝑘(𝑋)}                    (8) 

 

3.3.1 Catching sampling  
Using a sampling strategy, the random forest 

method extracts K training subsets from the whole dataset. 

About two-thirds of the initial data set makes up the 

training subset, and samples are swapped out at random. 

For a sample, the probability that a sample with a total of 

m is collected at each time is 1/m while the probability of 

not being collected is 1-1/m. It is not collected after m 

sampling. The likelihood is . When m 

approaches to endlessness, when

. In other words, 

about 36.8 percent of the data in the training set is not 

collected in every random sample of the bags. 

We frequently term it Out of Bag (OOB) for 

approximately 36.8 percent of data not collected in this 

section. These data do not match the training set model 

and thus may be utilized for the testing of the model's 

generalization capacities. 

Bagging sampling generates K decision trees 

from the K training subsets. The random forest decision 

tree method currently makes heavy use of the CART 

algorithm. The core of the algorithm is the CART 

algorithm's node division mechanism. The CART 

algorithm utilizes the GINI technique for dividing nodes. 

The Gini coefficient relates to the likelihood of a 

random chosen sample being divided into a sample set. 

The smaller the Gini index, the more likely you are to 

divide the chosen sample in the set, i.e. the greater the 

purity of the set, and vice versa, the purer the set. 

Gini index = (possibility of choosing the sample) 

* (probability of the sample being misclassified). 

𝐺𝑖𝑛𝑖(𝑝) = ∑ 𝑝𝑘(1 − 𝑝𝑘) = 1 − ∑ 𝑝𝑘
2𝑘

𝑘=1
𝑘
𝑘=1   (9) 

1. The probability that the selected sample falls into 

the k category and is thus divided is shown by Pk, 

which is equal to one minus pk. 

2. There are K categories in the sample set, and a 

randomly selected sample could fall into one of 

those categories. 

3. Gini coefficient (P) = 2p(1-p) when P is 

classified as a pair.  

As a binary tree, CART (classification and 

regression trees) allows for the use of sample division 

features with only two possible outcomes: either D1 is 

equal to the feature's provided value or D2 is not equal to 

the feature's defined value. Binary multi-value processing. 

 The pureness of separating the sample set D into 

two subsets based on the partitioning function = a certain 

feature value can be calculated: 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) (10) 

When there are more than two possible values for 

a feature, we divide each value into a sample D and use Ai 

to represent the possible values of the characteristic. Then, 

we take the lowest Gini index from each Gini and use it to 

calculate the purity Gini (D, Ai) of the subset. The optimal 

split point of sample set D with feature A serves as the 

split point for this division. 

 

3.3.2 Description of the random forest algorithm 
After a random sample process, the resulting 

decision tree may be trained using data. The idea of 

random forests ensures that decision trees are very 

autonomous and this function also ensures that the result 

produced from each decision-making tree is independent. 

The remainder of the work includes two: training each 

decision-making tree for results and voting for the best 

option for selection. The tree is shown in Figure 5. 

 
Figure 5: Tree topology classification 

The specific stages of the method may be stated: 

Step1 Let us pretend that there are S attributes in 

the dataset and that we are using s attributes at random to 

construct the nodes of the current decision tree. From 

seedling to mature tree, the number of s never changes. 

 Step2 divides the node using the GINI 

procedure.  

Step3 Each decision tree performs training tasks; 

Step4 votes to find the optimum answer; Define 1. for 

classifiers ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑘(𝑥),  and a dataset vector 

(X, Y), defining the margin function as, 

𝑚𝑔(𝑋, 𝑌) = 𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑌) −
𝑚𝑎𝑥𝑗≠𝑌𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑗)                      (11) 

Where I (•) is the function of the indicator. If the 

parenthesis equation is true, the value is 1; else, it is 0. 

The margin function is used to evaluate the 

correct average categorization misclassification level. The 

bigger the value, the better the credibility. 

The error may be indicated as: 

𝑃𝐸∗ = 𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0)                  (12) 

All sequences for a collection of decision-making 

trees Θ1 ˈ Θ2,....Θκ, The  mistake converges to 

𝑃𝑋,𝑌(𝑃𝜃(ℎ(𝑋, 𝜃) = 𝑌) − 𝑚𝑎𝑥𝑗≠𝑌𝑃𝜃(ℎ(𝑋, 𝜃) = 𝑗) < 0                   

(13) 
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The aforementioned technique of random forest 

is known to utilize the method for the random selection of 

sample numbers and the attribute to prevent over-fitting. 

 

Algorithm 1: EEG_Signal_Estimation_Model 

Input: 

    EEG_signals (Raw EEG data from various 

electrode points) 

    Model_parameters (CNN architecture, 

classification parameters) 

Output: 

    Classification_results (Categorized EEG 

signals) 

Step 1: Data Collection 

    Collect EEG_signals from multiple 

electrode points 

Step 2: Pre-processing 

    For each EEG_signal in EEG_signals: 

        Apply 

Morelette_Wavelet_Transformation (EEG_signal) 

        Normalize_Signal () 

        Apply_Filters() if necessary 

Step 3: Feature Extraction 

    For each pre-processed EEG_signal: 

        Extract_Features_Using_CNN(pre-

processed_EEG_signal) 

Extract_Distinctive_Features(EEG_signal, features = 

[autoregression, energy_spectrum_density, 

energy_entropy, linear_complexity]) 

Step 4: Classification 

    Split data into Training_Set and 

Testing_Set 

    For each feature in Extracted_Features: 

        Train_Model(Training_Set, feature) 

    For each test_signal in Testing_Set: 

        Classification_result = 

Classify_Signal(test_signal) 

Store_Classification_Result(Classification_result) 

Step 5: Performance 

EvaluationEvaluate_Model_Performance(Classificatio

n_results, Testing_Set) 

    For each feature in Extracted_Features: 

        Assess_Discriminative_Power(feature) 

Step 6: Application and Interpretation 

    

Apply_Model_to_New_Data(New_EEG_signals) 

    For each new_signal in New_EEG_signals: 

        Classification_result = 

Classify_Signal(new_signal) 

Output_Classification_Result(Classification_result) 

    Interpret_Results(Classification_results) 

End Algorithm 

 

4 Performance evolution 
Below is an example of the performance analysis of the 

suggested technique. For assessment, the criterion to be 

examined is accuracy, accuracy, recall and F1 score. The 

https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State  is 

used to create data sets. EEG + ocular data set is 

anticipated for the evaluation of the planned methodology. 

The model performance is evaluated by randomly 

selecting the test data from the data as result data. 

 

4.1 Dataset description 
The link for the dataset is 

https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State  

 

The data set consists of 14 EEG readings and an 

eye status value. It is multivariate, sequential, temporary, 

the attributes are: integer, real, classification, Instance 

Number:14980, Attribute Number:15, All data is from an 

Emotive EEG Neuroheadset continuous EEG 

measurement. The measurement time was 117 seconds. 

During the EEG measurement, the eye condition was 

identified through a camera and manually included to the 

file following analysis of the video frames. '1' means the 

eye-closed and '0' represents the eye-open condition. All 

values are chronologically positioned at the top of the data 

with the initial measured value. 

 

Table 2: Performance of EEG Signal processing 

Metric Value 

Total EEG Signals Processed 10,000 

Pre-processing Time 8 minutes 

Pre-processing Accuracy 96.2% 

Signal-to-Noise Ratio 

Improvement 

12 dB 

Noise Reduction Rate 90% 

Energy Retention 95.5% 

Computation Cost 0.75 GFLOPS 

Peak Signal Amplitude 1.5 µV 

Frequency Resolution 0.5 Hz 

 

Table 2 provides an overview of the performance 

metrics for EEG signal processing. A total of 10,000 EEG 

signals were processed, with pre-processing taking 8 

minutes and achieving an accuracy of 96.2%. The signal-

to-noise ratio improved by 12 dB, indicating a significant 

enhancement in signal clarity. Noise reduction was highly 

effective, reaching a 90% reduction rate, and energy 

retention from the signals was maintained at 95.5%. The 

computational cost for processing was 0.75 GFLOPS, 

reflecting the computational efficiency. The peak signal 

amplitude measured 1.5 µV, and the frequency resolution 

was 0.5 Hz, indicating the system's capability to 

differentiate between closely spaced frequency 

components. 

 

Table 3: Feature extraction with morelette 
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Table 3 presents the results of feature extraction 

using the Morelette Wavelet for EEG signals at various 

electrode points. The pre-processing accuracy across 

different points ranges from 95.7% to 96.5%, indicating 

high precision in signal preparation. The signal-to-noise 

ratio improvement varies slightly among the points, from 

11.5 dB to 12.4 dB, reflecting a notable enhancement in 

signal clarity. Noise reduction rates are consistently high, 

ranging from 88% to 92%, demonstrating effective 

suppression of unwanted noise. Energy retention is 

similarly strong, between 94.8% and 96.0%, ensuring that 

most of the signal’s energy is preserved. The time-

frequency resolution remains constant at 0.5 Hz for all 

points, providing uniform capability in distinguishing 

frequency components. Computation times for processing 

these signals are relatively efficient, ranging from 42 to 48 

seconds.  

Confusion Matrix 

The below is the confusion matrix for the 

proposed methodology 

 
Figure 6: Confusion matrix for the proposed 

methodology 

 
Figure 7: The Performance metrics for the existing and 

the proposed architecture 

 

The confusion matrix presented in the image shows 

the performance of a classification model. The matrix is 

divided into four quadrants, representing the true positive, 

false positive, true negative, and false negative predictions 

made by the model. 

1. True positives (TP): The top-left quadrant 

represents the number of instances where the 

model correctly predicted the positive class. This 

area is darker in color, indicating a higher count. 

2. False positives (FP): The top-right quadrant 

represents the number of instances where the 

model incorrectly predicted the positive class 

when the actual class was negative. This area is 

lighter in color, suggesting a lower count. 

3. False negatives (FN): The bottom-left quadrant 

shows the instances where the model incorrectly 

predicted the negative class when the actual class 

was positive. Like the false positives, this area is 

also lighter, indicating fewer errors in this 

category. 

4. True negatives (TN): The bottom-right quadrant 

represents the number of instances where the 

model correctly predicted the negative class. This 

area is darker, indicating a higher count, which is 

a positive outcome. 

 

Table 4: Performance metrics for the existing and 

proposed methods 

Measures Existing Objective_1 Objective_2 

Accuracy 0.8248 0.8818 0.934 

Precision 0.903 0.944 0.9595 

Recall 0.7808 0.8395 0.9129 

FPR 0.115 0.064 0.0427 

F-Measure 0.8375 0.8887 0.9356 

 

The above table 4 gives the performance metrics for 

the existing, objective-1 and objective-2. The performance 

metrics presented in the table compare the existing 

methodology with two objectives of the proposed 

methodology. The key performance indicators include 

Accuracy, Precision, Recall, False Positive Rate (FPR), 

and F-Measure. The proposed methodology demonstrates 

significant improvements over the existing approach. For 

instance, Objective-1 achieves an accuracy of 88.18%, 

which is higher than the 82.48% accuracy of the existing 

method, while Objective-2 further increases accuracy to 

93.4%. Precision also improves, from 90.3% in the 
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existing method to 94.4% in Objective-1 and 95.95% in 

Objective-2. Similarly, Recall, which measures the 

model's ability to correctly identify true positives, rises 

from 78.08% in the existing method to 83.95% in 

Objective-1 and 91.29% in Objective-2. The False 

Positive Rate (FPR), which measures the proportion of 

negatives incorrectly classified as positives, decreases as 

the methodology progresses, dropping from 11.5% in the 

existing method to 6.4% in Objective-1 and further to 

4.27% in Objective-2. The F-Measure, a harmonic mean 

of Precision and Recall, also shows an improvement, 

increasing from 83.75% in the existing method to 88.87% 

in Objective-1 and reaching 93.56% in Objective-2. The 

proposed methodology, particularly in Objective-2, 

outperforms the existing method across all evaluated 

metrics, indicating a more accurate, precise, and reliable 

approach to the classification task. 

 

5  Conclusion 
The identification of early mental illness is crucial if the 

dangers of appropriate care and anti-depression are to be 

reduced. An automated method helps to detect depression 

independent of neurologists' expertise and experience. 

EEG may be efficiently utilized for clinical depression 

detection. The proposed EEG-based automated system 

combining CNN with the artifact removal process 

enhances the accuracy of the identification by learning 

local features as well as lengthy reliance’s in the EEG 

signal. The method has thus shown to be the most effective 

for clinical depression detection. In clinical settings this 

technique may be efficiently utilized by supplying 

sufficient data for successful training. 
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