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The booming development of e-commerce drives the demand of the logistics industry. An effective 

logistics vehicle positioning system is crucial for improving logistics operational efficiency. However, 

current positioning systems based on global positioning systems and global system mobile 

communication suffer from issues such as low positioning accuracy and poor real-time performance. A 

current research focus is to improve and optimize positioning systems. To address this issue, a logistics 

vehicle precise positioning model based on deep learning was constructed. High-definition images 

were captured using digital cameras. Data augmentation and preprocessing techniques were 

introduced to adapt to various environments and vehicle types. These experiments confirmed that 

through this model, the vehicle positioning accuracy reached up to 93.3%. The positioning accuracy 

under urban road conditions was 96%. The AP of different types of logistics vehicles ranged from 

92.4% to 94.7%, far exceeding other positioning algorithms. For CPU usage, the optimization 

algorithm gradually increased to 77% within 120 minutes of experimental time. Overall, this research 

model provides strong technical support for the logistics industry and an effective way to improve 

logistics operational efficiency and service quality. 

Povzetek: Uveden je nov model pozicioniranja logističnih vozil, ki temelji na globokem učenju in v 

urbanih okoljih pomembno izboljša učinkovitost logistike.

1 Introduction 

The booming development of e-commerce has made 

logistics transportation an indispensable part of modern 

society. Therefore, the development of precise 

positioning technology for logistics vehicles is 

particularly important. At present, traditional logistics 

vehicle positioning technologies include Global 

Positioning System (GPS) and Global System for Mobile 

Communication (GSM). These positioning technologies 

still face many challenges in terms of positioning 

accuracy and real-time performance [1-2]. The 

positioning accuracy and real-time performance of these 

technologies are easily limited by environmental 

interference and device performance. In addition, due to 

the complexity and diversity of logistics operation 

scenarios, precise positioning technology is more needed 

[3-4]. 

The promotion and application of deep learning have 

further increased the research on precise positioning of 

logistics vehicles. However, the large amount of training 

samples required for deep learning is a major challenge, 

especially in obtaining high-quality and effective image 

samples of logistics vehicles of various types and shapes 

[5-6]. On the other hand, deep learning generally faces 

problems such as high computational complexity and  

 

high computational resource consumption when 

processing large-scale high-dimensional data. Therefore, 

how to effectively reduce the computational complexity 

and resource consumption of algorithms becomes a 

common attention in academia and industry [7-9]. 

Meanwhile, it is necessary to maintain the accuracy and 

real-time positioning of logistics vehicles. 

This study consists of four parts in total. Firstly, the 

related works are sorted out, summarizing and 

elaborating on logistics vehicle positioning and deep 

learning networks. Next is the implementation of the 

proposed method. Then comes the method validation. 

Finally, the research results and prospects are 

summarized. 

The precise positioning of logistics vehicles has 

always been a focus of industry attention. Early research 

relied on traditional GPS for vehicle positioning. 

However, due to environmental interference and 

equipment performance constraints, it is difficult to 

obtain high-precision positioning of vehicles for GPS 

positioning. Subsequently, GSM-based positioning 

technology is introduced to improve positioning accuracy 

through multi-base station positioning methods. For 

example, An et al. used the method of fuzzy theory to 

integrate and calculate the importance of each positioning 
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method. Then the weighted average method was used to 

calculate the composite positioning, which was used as 

the measurement value in the FKF section. A new system 

architecture was designed through research. This 

architecture was used to calculate composite localization 

using methods such as fuzzy theory, weighted average 

method, and measurement values from the FKF part [10]. 

Averbakh and Yu assumed that there were m mobile 

service units located in a transportation network base 

station with n nodes. Then a certain service positioning 

algorithm was constructed to find an ideal warehouse 

location for the vehicle and minimize the expected travel 

distance. In general networks, this algorithm effectively 

reduced duplicate path selection, which was important for 

optimizing the operation of transportation networks [11]. 

Min et al. proposed a license plate localization method 

based on YOLO-L and license plate pre-recognition 

algorithm to detect license plates in complex road 

environments. This proposed method not only achieved 

an accuracy of 98.86% and a recall rate of 98.86%, but 

also had high efficiency in real-time performance. This 

new method helped to improve the accuracy and 

efficiency of license plate detection in various complex 

environments [12]. However, these methods still have 

limitations in complex environments and fail to meet the 

requirements of fast and accurate localization. 

In recent years, deep learning technologies show 

great potential in logistics vehicle positioning. There is 

often a significant imbalance between the foreground (i.e. 

object) and background points in outdoor LiDAR point 

clouds. P Wu et al. proposed a novel network for object 

detection through semantic point-voxel feature interaction. 

Voxel queries using Manhattan distance were used to 

quickly sample voxel features around key points to 

achieve the efficient interaction between points and 

voxels. PV-RCNN++ achieved 3D mAP of 81.60%, 

40.18%, and 68.21% on vehicles, pedestrians, and 

cyclists, respectively. Compared to the most advanced 

technology currently available, the performance of this 

method was comparable or even better. This narrowed the 

gap between the foreground and background points, 

improving the accuracy of 3D object detection [13]. Fang 

et al. proposed a hybrid method for robust detection to 

address the low percentage of object regions in current 

universal object detectors in processing bounding boxes. 

This method achieved significant improvements in both 

detection and localization. The practical application 

proved that this method was effective and practical [14]. 

Luo et al. utilized Faster RCNN (F-RCNN) for vehicle 

detection and achieved effective detection of multi-scale 

vehicle targets in traffic scenes. After training and testing 

on multiple datasets, their method exhibited advanced 

detection performance. This method provided a new 

perspective for vehicle detection and an effective method 

for dealing with vehicle detection problems in various 

traffic environments and driving conditions [15]. The 

findings of the above literature and this study are drawn 

into a table, as shown in Table 1. 

 

 
Table 1: Summary of literature review 

Reference Accuracy (%) 
Computational 

complexity 
Robustness Methods 

[10] 
Positioning 

accuracy is 91.43. 
Medium High 

Fuzzy theory + 

weighted average 

method +FKF 

[11] 92.38 Low Medium 
Service location 

algorithm 

[12] 

Accuracy is 

98.86, and recall 

rate is 98.86. 

Low High 

YOLO-L model + 

license plate 

pre-recognition 

[13] 

81.60 for 

vehicles, 40.18 

for pedestrians, 

and 68.21 for 

cyclists. 

High Medium 

Semantic 

point-voxel 

feature interaction 

[14] 

It's a big 

improvement 

from before. 

High Medium Hybrid method 

[15] 98.63 Medium High F-RCNN 

This research The mAP is 93.3 Low High 

Deep learning + 

optimized 

F-RCNN + Adam 

 

In summary, while improving the accuracy of 

logistics vehicle positioning, current positioning models 

still need to consider the complexity of the model and the 

consumption of computing resources. Therefore, a 
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high-precision multi-environment logistics vehicle 

precise positioning model is constructed in this study. 

 

 

2 Construction of precise positioning 

model for logistics vehicles 
An optimized F-RCNN combined with high-definition 

image acquisition model is utilized to improve the 

logistics vehicle positioning accuracy. The Adam 

gradient descent method is utilized to calculate the loss. 

The algorithm is optimized through Non-maximum 

Suppression (NMS). This system not only saves 

manpower and time costs, but also improves the logistics 

operation efficiency and service quality. 

 

2.1 Construction of high-definition image 

acquisition model for logistics vehicles 
The continuous improvement of operational efficiency 

and accuracy requirements in the logistics industry. 

Therefore, vehicle positioning accuracy is a research 

focus. The high-definition image acquisition model is 

responsible for providing high-quality raw data input to 

ensure the accuracy and reliability of subsequent 

localization algorithms. Considering the actual needs of 

logistics vehicles operating in different environments and 

lighting conditions, the construction of image acquisition 

models must take into account a wide range of 

adaptability. Therefore, selecting a suitable image 

acquisition device is a preliminary goal for model 

construction. Generally speaking, high-resolution digital 

cameras are selected as the main acquisition equipment. 

These cameras should have a resolution of at least 1080P 

and High Dynamic Range (HDR) function to adapt to 

high-light contrast and low-brightness environments. To 

ensure accurate positioning of logistics vehicles and 

achieve accurate recognition of vehicle features, it is first 

necessary to construct a high-definition image acquisition 

model for vehicles. Figure 1 is a common classification 

directory for logistics engineering vehicles. 

 

Single and double 

bridge van

Special 

vehicle

Tank 

car

dumper

Tractor 

truck

 

Figure 1: Logistics vehicle classification 

 

In Figure 1, common logistics vehicles include five 

categories. Data augmentation technology is introduced 

to optimize the high-definition image acquisition system. 

Figure 2 shows the principle of multi-scale image scaling. 

 

 

Figure 2: Picture scaling principle 
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In Figure 2, in vehicle image acquisition, multi-scale 

scaling can scale logistics vehicles while preserving the 

original scale features, avoiding the destruction of the 

original vehicle feature information. In a multi-scale 

scaling matrix, there is a following matrix. 
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  (1) 

In formula (1), 1 1( , )x y  is a scaled position matrix. 

0 0( , )x y  is a position coordinate of a pixel before scaling. 
  is a scaling factor. However, in actual collection, 

vehicles will enter the collection area with different 

motion trajectories. Therefore, there is a need for oblique 

shooting. To adapt to various angles and shooting needs, 

the principle of image rotation is chosen. The image 

center is set as the rotation center. Therefore, the 

corresponding relationship before and after image 

rotation is represented by formula (2). 
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 (2) 

In formula (2), r  is the rotation point and the 

rotation center’s distance.   is a rotation angle. ( , )x y  

is a coordinate point after rotation. The frequency of 

image acquisition is represented by formula (3). 

v
f

d
=   (3) 

In formula (3), f  is the acquisition frequency. v  

is the vehicle speed. d  is the required image spatial 

resolution. Image acquisition faces interference from 

environmental variables, including but not limited to 

weather conditions, lighting intensity, background 

complexity, etc. Figure 3 shows various environments. 

 

(a) Mixing tank truck (b) A flathead dump truck

(c) Oval tank car (d) Square tank truck

 

Figure 3: Image collection in multiple environments 

 

Figure 3 shows image collection in multiple 

environments. Therefore, adopting adaptive exposure 

control algorithm is an effective way to reduce 

environmental interference. This algorithm 

automatically adjusts exposure parameters based on 

the brightness level of real-time images to maintain 

image clarity and recognizability. Saturated lighting 

can adapt to logistics vehicle recognition in complex 

backgrounds with different lighting conditions. After 

calculating the maximum and minimum pixel values 

of logistics vehicles, saturation is calculated using 

formula (4). 

/ 2

/ 0.5

/ (2 ) 0.5

L value

S delta value L

S delta value L

=


= 
 = − 

 (4) 

In formula (4), L  represents brightness. S  

refers to color saturation. value  is a measure of color 

brightness. delta  refers to the maximum and 

minimum values’ difference of color. By setting 

saturation and adjusting lighting, adaptive exposure is 

represented by formula (5). 
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*E L = +   (5) 

In formula (5), E  is the exposure value. L  

refers to the measured value of image brightness.   

and   are adjustment coefficients. During 

preprocessing, a Gaussian filter is selected for noise 

suppression, represented by formula (6). 

2 2 2( ( )/(2 ))

2

1
( , ) ( )* x yG x y e 



− +=  (6) 

In formula (6), ( , )G x y  is a pixel value. ( , )x y  

refers to a pixel and the filtering center’s distance.   

is a standard deviation parameter. 

 

2.2 Construction and optimization of 

logistics vehicle positioning model 

The precise positioning of logistics vehicles is the key 

to improving operational efficiency. When 

constructing a precise positioning model for logistics 

vehicles, the study chooses F-RCNN for vehicle 

positioning recognition and optimization. F-RCNN 

combines object detection and classification functions 

to improve the efficiency of model training through 

end-to-end joint training. When locating logistics 

vehicles, F-RCNN can also perform regression 

training on different types, achieving accurate and fast 

positioning of logistics vehicles. Figure 4 shows the 

F-RCNN structure. 
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Figure 4: Network structure diagram 

 

From Figure 4, F-RCNN combines with VGG16 

extracting model and utilizes RNP for localization. 

However, in practical applications, F-RCNN often 

generates many redundant candidate boxes, which not 

only increases computational complexity but may also 

interfere with the localization accuracy. Therefore, 

integrating NMS into F-RCNN and suppressing local 

maximum search and non-maximum elements can reduce 

redundant candidate boxes. In the calculation of the 

intersection area of redundant boxes, the candidate box 

overlap’s area is represented by formula (7). 

*overlap overlap overlapS W H=  (7) 

In formula (7), overlapS  is the area of the 

overlapping area. overlapW  refers to the width. overlapH  

is the height. overlapW  is represented by formula (8). 

2 4 1 3( , ) ( , ) 1overlapW Min x x Max x x= − +  (8) 

overlapH  is represented by formula (9). 

2 4 1 3( , ) ( , ) 1overlapH Min y y Max y y= − +  (9) 

In formulas (8) and (9), 2x  and 3x  are the 

abscissa of the rightmost and leftmost intersection areas. 

1x  and 4x  are the rightmost horizontal coordinates. y  

is the same. Therefore, the intersection and union ratio is 
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represented by formula (10). 

overlap

A B

S
IoU

S S
=


  (10) 

In formula (10), 
AS  and 

BS  are the suggested 

box areas with the highest confidence scores. The Adam 

gradient descent method is chosen for calculating the loss 

to improve the recognition effect. The gradient is 

represented by formula (11). 

( )t tg f =    (11) 

In formula (11),   refers to the model’s all 

parameters using this update rule. The unbiased 

estimation of the square gradient at each moment is 

represented by formula (12). 

 

1 -1 1  ·   (1 -  )t t tm m g = +  (12) 

 

The unbiased estimation of gradients at each time 

step is represented by formula (13). 

 

22 2 ·   (1 -  )t l t
v v g = +   (13) 

In formulas (12) and (13), 1  and 2  are 

hyperparameters, usually set to 0.9 and 0.999, 

respectively. tg  is the corresponding gradient value. 

Therefore, the parameter update is represented by 

formula (14). 

   -  · ( )
jj j m J   =   (14) 

In formula (14),   is a learning rate. m  is the 

batch size of the corresponding batch of samples. n  is a 

parameter dimension. To adjust  , for a given dataset, 

the average loss minimum strategy is used for 

optimization, represented by formula (15). 

( )1
( ) ( ) ( )

D

i

w

t

L W f X R W
D

= +   (15) 

In formula (15), )( )(i

w XF  is a loss function of the 

data. )(WR  is a regular term.   is a weight. To 

increase  , the decay of the learning rate is ensured 

through the deployment form, represented by formula 

(16). 

1
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iter
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 
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In formula (16), power  is a power function 

parameter. iter  refers to the current iteration. 

itermax_  refers to the total iteration. Figure 5 shows 

the optimization algorithm. 
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Figure 5: Simple algorithm flow 

 

From Figure 5, based on F-RCNN, image 

acquisition and data processing are combined for vehicle 

recognition and localization. In the high-definition image 

acquisition model of logistics vehicles, a high-resolution 

digital camera is selected to cope with different lighting 

conditions with 1080P resolution and HDR function. 

Meanwhile, high-definition images are obtained. Data 

augmentation technology is adopted to adapt to the actual 

situation of logistics vehicles entering the collection area 

from multiple angles. During preprocessing, Gaussian 

filters are selected for noise suppression. After obtaining 

high-definition images of logistics vehicles, F-RCNN is 

constructed for logistics vehicle localization and 

recognition. F-RCNN generates many redundant 

candidate boxes in applications. This may increase 

computational complexity and accuracy in interference 

localization. Therefore, NMS is integrated into F-RCNN 

to screen redundant candidate boxes. Finally, the Adam 

gradient descent method is used to calculate the loss and 

improve the recognition performance. In the gradient 

calculation, the unbiased estimation of square gradients 

and unbiased estimation of gradients are used to adjust 

model parameters. The adjustment of   is mainly 

achieved through minimizing average loss and reducing 
  through deployment. Specifically, data enhancement 

simulates the vehicle entering the acquisition area from 

different angles by applying a rotation transform to the 

captured image. The imaging effect of vehicles at 

different distances is simulated by multi-scale images. 

Color conversion includes brightness, contrast, and 

saturation adjustment to simulate vehicle images under 

different lighting conditions. Random noise is added to 

the image to simulate the possible image noise in the 

actual acquisition process. Then the model robustness to 
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noise can be improved. The image is flipped horizontally 

to increase data diversity while simulating a vehicle 

entering the acquisition area from the opposite direction. 

A part of the original image is cropped randomly to 

simulate the local view when the image is collected. The 

model’s recognition ability to the local features of the 

vehicle is enhanced. In the pre-processing step, Gaussian 

filter is used to de-noise the image. The Gaussian filter 

can reduce the noise that may be introduced in the image 

acquisition and improve the image quality. The histogram 

of the image is equalized to enhance the contrast of the 

image. Then the model can recognize the detailed 

features of the vehicle better. The image pixel values are 

normalized to the range of 0 to 1 to accelerate the 

convergence of model training. Meanwhile, the model 

adaptability to different lighting conditions can be 

improved. Each channel of the image is normalized to 

have a mean of 0 and a standard deviation of 1. Through 

data enhancement techniques, the sample diversity in the 

data set is significantly increased, which helps the model 

learn a more comprehensive feature representation. The 

enhanced data set enables the model to better generalize 

to previously unseen data, reducing the risk of overfitting. 

The pre-processing steps ensure the stability and 

robustness of the model when dealing with noise and 

illumination changes. Adam gradient descent 

optimization sets an initial learning rate at the beginning 

of training. As the training progresses, the learning rate 

can be attenuated according to a predetermined plan to 

ensure the stability of convergence. A regular term is 

added to the loss function to avoid overfitting. This is 

equivalent to applying an attenuation to the parameter 

value each time the parameter is updated. L1 

regularization is similar to L2 regularization, but uses the 

sum of the absolute values of the parameters. L1 

regularization helps to produce sparse weight matrices 

and sometimes improves the interpretability of the model. 

Adam algorithm includes momentum, which calculates 

an exponentially weighted average of a gradient to 

produce an effect similar to momentum. RMSprop 

calculates the square root of the exponentially weighted 

average of the square gradient, which is used to adjust the 

learning rate for each parameter. Based on the estimates 

of the first and second moments, an adaptive learning rate 

is calculated for each parameter. In the beginning, the 

estimates of first and second moments may be biased. 

Adam algorithm solves this problem by correcting for the 

bias. Finally, the calculated adaptive learning rate is used 

to update the model parameters. 

 

3 Analysis of precise positioning 

model for logistics vehicles 
Firstly, the configuration of the experimental 

environment was determined to analyze the optimized 

logistics vehicle positioning model. The algorithm testing 

was conducted in different environments. Afterwards, 

this model was applied in practice and evaluated based on 

the satisfaction ratings of practitioners towards its use in 

actual operating environments. 

 

3.1 Model experiment analysis 
The experimental data set comes from the pictures 

collected on the site of the logistics park. After one year's 

collection, 10,000 pictures with good features are selected. 

The dataset contains 10,000 images for training, 

validation, and testing. Data enhancement methods such 

as multi-scale equal scaling, random image flipping, and 

saturated illumination are carried out to increase the 

diversity of samples and solve the problem of sample 

uniformity. The data sets are divided into training, 

validation, and test sets, with the ratio of 10:1:1 to ensure 

independent co-distribution between samples and balance 

between categories. The batch size is 2 pictures. The total 

training iteration is 90,000 times. Since each image goes 

through 20 iterations, for a training set of 9,000 images, 

this is equivalent to training 20 epochs. The basic 

learning rate is set to 0.001. The multi-stage learning rate 

adjustment strategy is adopted. The learning rate is 

adjusted to the original 0.1 when the iterations are [22500, 

45,000, 90,000]. Hyperparameter uses Adam 

optimization algorithm, which combines the advantages 

of AdaGrad and RMSProp algorithms. The Adam 

optimization algorithm has the ability to adjust the 

learning rate of each parameter adaptively. Batch 

Normalization is also used to speed up the training and 

reduce the reliance on other regularization methods. 

Table 2 shows the experimental configuration. 

 

 
Table 2: Experimental environment configuration 

Form Recommended products Note 

Digital camera Canon 5D  

With high resolution and HDR 

function, it adapts to different 

lighting environments. 

Computing hardware NVIDIA GeForce RTX 3090 

Powerful GPU performance for 

running computationally demanding 

models. 

Storage hardware Seagate Exos X16 16TB Enterprise Huge storage space, stable, and 
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Hard Drive reliable performance. 

Operating system Ubuntu 20.04 LTS 

Combining stability and new 

features, it is widely used in scientific 

research. 

Development environment 

(computer) 
Python 3.7 

Tested for best compatibility with 

most Python libraries. 

Deep learning framework TensorFlow 2.x 
Provide powerful model building and 

training capabilities. 

Image processing library OpenCV 4.5.2 

Provide rich image processing 

functions, including image 

enhancement, noise reduction, and so 

on. 

Data visualization library Matplotlib 3.3.4 
Used for data visualization and 

drawing complex statistical charts. 

 

In the precise positioning system for logistics 

vehicles, the Canon 5D digital camera was chosen as the 

camera, which had high resolution and HDR function to 

adapt to image acquisition under different lighting 

conditions. For hardware, NVIDIA GeForce RTX 3090 

was selected for GPU. Seagate Exos X16 16TB enterprise 

hard drive was used for storage hardware. For software, 

the Ubuntu 20.04 LTS operating system was chosen, with 

Python 3.7 as the development environment. TensorFlow 

2.x and OpenCV 4.5.2 served as deep learning 

frameworks and image processing libraries, respectively. 

Matplotlib 3.3.4, as a data visualization library, can 

provide intuitive feedback information during training. To 

ensure the detection and positioning of logistics vehicles 

in different environments, multiple environments were 

selected for accuracy testing in Figure 6. 
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Figure 6: Comparison of accuracy 

 

Figure 6 shows the comparison of logistics vehicle 

positioning accuracy under different algorithms. The 

testing scenarios include urban road conditions, 

expressways, indoor warehouses, villas, mountains, and 

forests. In these six testing environments, F-RCNN 

achieved an accuracy of 96% in urban road conditions, 

90% in SSD, and 93% in BP-SVM. In indoor warehouses, 

the accuracy of this optimization algorithm exceeded 

90%, higher than other centralized algorithms, with only 

ED remaining the same. In logistics vehicle positioning in 
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expressways and complex natural environments 

(mountains and forests), this optimization algorithm 

performed better than other algorithms and had better 

positioning effects. In stability analysis, the reliability 

comparison under different testing environments was 

compared in Table 3. 

 

Table 3: Stability comparison 

Algorithm Failure rate 

Precision fluctuation 

Urban roads 
Express

ways 

Indoor 

warehous

es 

Villas Mountains Forests 

F-RCNN 0.001 0.01 0.02 0.02 0.01 0.02 0.02 

YOLOv5 0.002 0.03 0.04 0.04 0.05 0.03 0.04 

SSD 0.005 0.05 0.04 0.04 0.05 0.05 0.06 

BP-SVM 0.006 0.03 0.04 0.04 0.04 0.03 0.03 

RetinaNet 0.004 0.04 0.05 0.04 0.05 0.05 0.04 

CenterNet 0.003 0.05 0.05 0.05 0.06 0.06 0.05 

EfficientDet 0.001 0.05 0.06 0.02 0.03 0.05 0.04 

 

From Table 3, the failure rates of F-RCNN, SSD, 

YOLOv5, BP-SVM, RetinaNet, CenterNet, and 

EfficientDet were all within 0.007, indicating relatively 

high stability. F-RCNN had the lowest failure rate, only 

0.001. For accuracy, F-RCNN had a fluctuation of only 

0.01 in urban and mountainous environments, which was 

the smallest among all algorithms. The fluctuations of 

F-RCNN in other environments did not exceed 0.02. This 

indicated that F-RCNN was ahead of other algorithms in 

terms of stability and accuracy. For accuracy fluctuations, 

EfficientDet achieved fluctuations of 0.06 and 0.02 in 

indoor and villa environments, respectively. This was the 

highest among all algorithms, indicating that EfficientDet 

might have unstable outputs in these environments. 

CenterNet's accuracy fluctuated above 0.05 in all 

environments, and even reached 0.06 in complex natural 

environments. This indicated that the performance of 

CenterNet was not ideal in complex environments. In 

summary, in achieving precise positioning of logistics 

vehicles, considering both stability and accuracy 

fluctuations, this optimization algorithm performed well 

overall and had high robustness. Figure 7 shows a 

comparison of algorithmic convergence speed. 
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Figure 7: Algorithmic convergence speed comparison 

 

Figure 7 shows the comparison of convergence rates 

between different algorithms. F-RCNN had the best 

performance among all compared algorithms, reaching a 

convergence value of 1.00 at iteration 150. At 130 

iterations, the convergence value of F-RCNN was close 

to 1.00, indicating a faster convergence speed. On the 

contrary, the convergence values of other recognition 

algorithms did not achieve the effect of F-RCNN under 

the same iteration. Although EfficientDet converged to 

1.00 at iteration 150, its convergence value was only 0.99 

at iteration 130, still lower than F-RCNN. The loss 

functions of F-RCNN, YOLOv5, SSD, and BP-SVM 

algorithms are shown in Figure 8. 
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Figure 8: Loss function diagram of F-RCNN, YOLOv5, SSD, and BP-SVM algorithms 

 

In Figure 8, F-RCNN showed a lower loss function 

value, which had less deviation from the actual value 

during the prediction. After 1000 iterations, F-RCNN 

successfully reduced the loss value to below 0.20, which 

highlighted the superior performance and fast 

convergence rate. In contrast, the BP-SVM algorithm had 

a higher loss function value with a peak value of 0.45, 

indicating a large bias in the prediction. Meanwhile, more 

time or adjustment is needed to optimize the parameters 

to achieve a similar performance as F-RCNN. 

3.2 Practical application analysis of the 

model 
In practical application analysis, the evaluation indicators 

of various types of logistics engineering vehicle models 

were first compared in Table 4. 

 

 
Table 4: Resolution and high dynamic range 

Category 
Simple 

bridge 

Double 

bridges 

Semi-trai

ler 

Full 

hanging 
Flat 

Poi

nted 

Elli

pse 

Squ

are 
Stir 

mA

P 

Original 

FasterR-CNN 
82 83.3 86.8 81.2 80.7 85.5 84.6 80.9 83.2 84.2 

Sample_minin

g_fc 
83.8 84.6 82 85.9 85.3 82.8 85.7 84.8 82.6 84.7 

Sample 

mining_1:1 
84 81.8 83.1 85.6 85.3 84.7 85 85.4 85 85.1 

Sample 

Dig_1:10 
85.4 84 86.2 86.3 87.4 86.8 86.2 86.5 87.5 86.4 

Sample 

Dig_1:3 
88.5 87.6 88.7 87.4 89.6 88.9 89.5 88.8 89.9 88.7 

Data 

enhancement 
88.6 88.8 90.5 89 90.6 89.3 90.6 89.7 90 89.8 

BP-SVM 89.8 90.8 91.8 90.9 92.7 91.5 90.5 90.9 91.7 91.3 

Optimization 

algorithm 
92.8 93.3 93.8 92.9 94.7 93 93.5 92.4 93.2 93.3 

 

From Table 4, for single-bridge, double-bridge, and 

semi-trailer vehicles, the AP of this optimization 

algorithm reached 92.8%, 93.3%, and 93.8%, all higher 

than other algorithms. In full hanging, flat, and pointed 

logistics vehicles, this optimization algorithm also 

achieved high-precision positioning rates of 92.9%, 

94.7%, and 93%. In detecting ellipse, square, and stir 

logistics vehicles, this optimization algorithm achieved 

accuracy of 93.5%, 92.4%, and 93.2%, respectively. 

When calculating the Mean Average Precision (mAP) of 

all categories, this optimization algorithm achieved a high 

accuracy of 93.3%, far exceeding other localization 

algorithms. Figure 9 shows the CPU usage without the 

algorithm. 
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Figure 9: CPU usage 

 

Figure 9 shows the CPU usage of optimization 

algorithms and other mainstream logistics vehicle 

positioning methods at different time nodes. The CPU 

usage of this optimization algorithm gradually increased 

from 60% in 10 minutes to 77% in 120 minutes. As time 

went on, this optimization algorithm gradually increased 

its CPU usage in handling logistics vehicle positioning 

tasks. However, compared to other algorithms, the CPU 

usage of this optimization algorithm always remained at a 

relatively low level. At 120 minutes, CenterNet had the 

highest usage rate, reaching 92%. Compared to 77% of 

this optimization algorithm, CenterNet posed greater 

pressure on the CPU. The CPU utilization of F-RCNN 

was 70% at 10 minutes and increased to 85% at 120 

minutes. The usage rate of CenterNet increased from 77% 

to 92%. 

Overall, this optimization algorithm had lower CPU 

usage compared to other mainstream positioning 

algorithms when handling logistics vehicle positioning 

tasks, meaning less pressure on the CPU. This indicated 

that this optimization algorithm was superior to other 

localization algorithms in resource management. After 

practical application, the system was reasonably rated by 

relevant practitioners. The rating is based on a score of 

1-10, with 1 indicating very dissatisfied and 10 indicating 

very satisfied. Table 5 shows the scoring results. 

 

 
Table 5: Comparison of satisfaction scores 

Sports event 
Optimization 

algorithm 
BP-SVM SSD Yolov5 

RetinaN

et 

CenterN

et 
EfficientDet 

Accuracy High (9.5) 
Excellent 

(8.4) 
Good (7.5) Good (7.3) 

Good 

(7.6) 

Good 

(7.4) 

Excellent 

(8.1) 

Topicality 
Extremely fast 

(9.8) 
Faster (8.0) Faster (8.1) 

Medium 

(6.5) 

Medium 

(6.9) 

Slower 

(5.7) 

Medium 

(6.6) 

Stability 
Very stable 

(9.6) 
Stable (8.2) 

More stable 

(7.2) 

More 

stable (7.1) 

Stable 

(8.3) 

Stable 

(8.0) 

More stable 

(7.4) 

Anti-noise High (9.3) High (8.6) 
Medium 

(7.1) 

Medium 

(7.0) 

High 

(8.7) 

High 

(8.5) 
High (7.8) 

Usability Intuitive (9.5) 

More 

intuitive 

(8.1) 

More 

intuitive 

(7.9) 

General 

(6.8) 

General 

(6.6) 

Difficult 

(5.9) 

More 

intuitive 

(7.8) 

Scope of 

application 
Wide (9.4) 

Broader 

(8.3) 

Broader 

(7.8) 

General 

(6.5) 

Hiro 

(8.5) 

Hiro 

(8.9) 

Broader 

(7.6) 

Total 

satisfaction 
Very happy Dissatisfied 

More 

satisfied 
General 

Dissatisf

ied 

Dissatisf

ied 

More 

satisfied 

 

From Table 5, this optimization algorithm had the 

highest accuracy with a score of 9.5. This algorithm 

performed excellently in the prediction task of logistics 

vehicle positioning. For real-time performance, this 

optimization algorithm scored over 9.5, making it suitable 

for real-time and efficient positioning tasks. This 

optimization algorithm had the highest stability with a 

score of 9.6, indicating that it maintained high accuracy 

in various environments and data. For noise resistance, 

this optimization algorithm (9.3 points) also demonstrated 

excellent adaptability, ensuring good stability in the face 

of noise and flawed data. For ease of use, this 
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optimization algorithm was intuitive and easy to learn, 

had a wide range of applications, and met the practical 

needs of various logistics vehicle positioning. Compared 

with other algorithms, this optimization algorithm 

showed significant advantages in both single evaluation 

metrics and overall satisfaction. Based on a 

comprehensive analysis of satisfaction, this optimization 

algorithm has superiority in the precise positioning task 

of logistics vehicles. Figure 10 shows the comparison of 

localization and classification performance between 

F-RCNN and SSD algorithms. F-RCNN performed better 

in localization and classification. SSD was more 

dispersed and prone to mislocalization. 
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Figure 10: Positioning classification effect 

 

Finally, the performance of the proposed logistics 

vehicle positioning model in different environments was 

visualized, as shown in Figure 11. 
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Figure 11: Visual presentation of model performance in different environments 

 

In Figure 11, the accuracy, positioning accuracy, 

error, and reasonableness scores of the proposed logistics 

vehicle positioning model were all above 0.9 in both city 

and rural environments. The proposed logistics vehicle 

location model could provide high quality location 

service in various environments, which had good 

generalization ability and practicability. This has 

important practical significance for the operation 

management and vehicle scheduling of the logistics 

industry. The method can significantly improve logistics 

efficiency and reduce unnecessary costs. 
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4 Discussion 

A precise positioning model of logistics vehicles based 

on deep learning was constructed and optimized to 

improve the accuracy and real-time location of logistics 

vehicles. The proposed model achieved an average 

accuracy of 93.3%, which was much higher than other 

methods. For example, the positioning accuracy of 

reference [10] was 91.43%, and that of reference [11] was 

92.38%. Although reference [12] performed well in 

complex road environment, its accuracy and recall were 

both 98.86%, which still did not exceed the model in this 

study. Especially for single bridge, double bridge, and 

semi-mounted vehicles, the AP values of the optimization 

algorithm reached 92.8%, 93.3%, and 93.8%, 

respectively, showing extremely high positioning 

accuracy. The proposed model exhibited lower resource 

consumption in terms of computational complexity. On 

the basis of the optimization of F-RCNN, Adam gradient 

descent method and NMS were optimized to achieve low 

computational complexity. In contrast, the method in 

reference [13] is excellent in 3D object detection. 

However, this method had high computational 

complexity and might not be suitable for real-time 

applications. In this study, multi-scale scaling, image 

rotation, color transformation, and other data 

enhancement techniques were used to improve the 

model’s adaptability to different environmental and 

lighting conditions. Meanwhile, Gaussian filter and other 

pre-processing steps were used. F-RCNN was selected 

and optimized by introducing Adam gradient descent 

method and NMS. The improved model reduced 

computational complexity and improved real-time 

performance while maintaining high accuracy. The 

adaptive exposure control algorithm and Gaussian filter 

were used to reduce the environmental interference and 

improve the model robustness in complex environment. 

5 Conclusion 

Logistics transportation is an important component of 

modern social life. Therefore, the positioning accuracy 

and real-time performance can be improved by studying a 

logistics vehicle precise positioning model based on deep 

learning. These experiments confirmed that this model 

exhibited high-precision and high real-time positioning 

advantages in various environments and vehicle types. 

Compared to other algorithms, this optimization 

algorithm had higher robustness in achieving precise 

positioning of logistics vehicles. Its CPU usage was low, 

demonstrating excellent resource management 

capabilities, thereby improving operational efficiency and 

service quality. In the precise positioning task of logistics 

vehicles, this model exhibited high positioning accuracy, 

with an mAP of 93.3%. Its positioning accuracy in 

specific types of logistics vehicles such as single-bridge, 

double-bridge, semi-trailer, etc. was as high as 92.4% to 

94.7%. Secondly, for operational efficiency, this model 

exhibited superior performance, with a usage rate of only 

77% at 120 minutes. The usage rate was significantly 

lower than other logistics vehicle positioning algorithms. 

Finally, the logistics vehicle positioning system using this 

model achieved a satisfaction score of 9.5 among 

practitioners, demonstrating a wide range of application 

prospects and user acceptance. However, the lack of 

research is due to the limited range of high-quality image 

acquisition. In the future, multi-source data can be used to 

further improve the positioning accuracy of logistics 

vehicles and meet the needs of more complex and diverse 

scenarios. Overall, this constructed logistics vehicle 

precise positioning model based on deep learning 

effectively improves the positioning accuracy and 

real-time performance of logistics vehicles. 
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