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This study proposes a cost prediction model for road and bridge projects that combines principal 

component regression (PCR) and support vector machine (SVM). Principal component analysis (PCA) 

identifies the primary cost-influencing factors, while PCR and SVM predict costs. In this model, PCR 

is used to analyze and reduce the dimensionality of assumed independent variable data, and handle 

linear factors. SVM is used to handle nonlinear factors and predict costs. In order to determine the 

performance of the proposed model, the R-squared index is used to evaluate it. The weight proportions 

of each factor were analyzed. The model is compared with PCR and SVM-RBF models, showing 

superior performance with convergence after 70 iterations and an R-squared value of 0.87. Key cost 

factors include materials (63%), labor (13%), and equipment (12%). The above results show that 

PCR-SVM model can accurately predict the cost and influence factors of road and bridge engineering. 

Povzetek: Inovativni model za napoved stroškov projektov cest in mostov z združitvijo PCA, MLRM in 

SVM učinkovito identificira ključne stroškovne dejavnike.

1 Introduction 

With population growth and rapid economic development, 

infrastructure is under increasing pressure. At the same 

time, road and bridge facilities are under particularly high 

pressure, because car ownership is growing rapidly. If the 

pressure on the road and bridge network is to be relieved, 

it is necessary to expand or build additional road and 

bridge facilities. Road and bridge construction is often 

characterized by long construction periods and large 

capital investments. To ensure that the road and bridge 

construction process is adequately funded, it is necessary 

to accurately predict the cost of road and bridge projects 

to reasonably control the construction cost. Currently, the 

commonly used project cost prediction methods are least 

squares regression method, index measurement method, 

engineering coefficient estimation method, etc. These 

methods often have low accuracy and require constant 

adjustment, making it difficult to meet the requirements 

of cost prediction for road and bridge engineering. They 

lack good decision-making for cost control in the later 

stages of construction. The multiple linear regression 

model (MLRM) is more accurate, because it predicts the 

dependent variable by multiple independent variables. 

However, factor selection and expression in regression 

analysis are only guesses, which affects the diversity of 

independent variables and the unpredictability of some 

factors. At the same time, it is difficult to consider all the 

factors that affect the project cost prediction results, so it 

is necessary to identify the main influencing factors.  

 

Principal component analysis (PCA) can analyze and 

simplify many factors to get the main influencing factors 

and reduce the influence between evaluation indicators 

and engineering budget calculations. However, the 

interpretation meaning of PCA is often vague and not as 

clear as the original data [1-2]. Among the influencing 

factors of engineering cost, there are both linear and 

nonlinear influencing factors. This requires the model to 

be able to deal with both linear and nonlinear problems. 

Support vector machine (SVM) is widely used because it 

can solve both linear and nonlinear problems, as well as 

classification and regression problems at the same time 

[3]. Therefore, a road and bridge project cost prediction 

model based on principal component regression and SVM 

(PCR-SVM) is proposed by combining the above three 

algorithms. It accurately predicts project costs while 

reflecting the impact of various influencing factors on the 

prediction results. 

The main contents are as follows. Chapter 1 gives a 

brief introduction to the current research status of 

engineering cost prediction models and the application of 

MLRM. Chapter 2 investigates the algorithm of 

PCR-SVM model. Chapter 3 analyzes the project cost 

prediction results of PCR-SVM model and the degree of 

main influencing factors. Chapter 4 summarizes the 

research results of the full text. 

2 Literature review 

The cost of roads and bridges is influenced by numerous 
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factors, causing the composition and calculation to be 

complex. Wang et al. proposed a cost prediction model 

based on PCA, particle swarm optimization algorithm, 

and least squares SVM. The model used PCA to process 

the data and particle swarm algorithm for the optimal 

parameters and regularization parameters of the least 

squares SVM. The mean square error and average relative 

error of the prediction model results were tested to be 

10.01% and 0.79%, respectively, which accurately 

predicted the cost of highway engineering [4]. Sharma et 

al. proposed an assisted optimization scheme based on 

machine learning for the problem of how to optimize the 

construction cost. The method used gradient 

augmentation tree to predict the construction cost and 

then used Bayesian optimization to optimize the 

construction cost. The test results showed that the method 

calculated a suitable construction cost optimization 

scheme [5]. Fan and Sharma proposed a cost prediction 

model based on SVM and LSSVM for the problem of 

how to accurately predict cost. The test results indicated 

that the relative error of the model was less than 7% and 

the accuracy met the requirements [6]. Priti and Salunkhe 

proposed an engineering cost prediction model based on 

artificial neural network for construction cost prediction. 

It used material cost as input data for project cost 

prediction. The prediction results of construction cost 

were accurate [7]. Ashour et al. proposed a cost control 

method based on earned value correction for the problem 

of how to achieve construction cost control. The method 

compared the difference between the predicted cost and 

the actual cost by correcting the earned value. The test 

results indicated that the final cost obtained by this 

method was lower than the predicted cost and lower than 

the actual cost [8]. 

MLRM is widely used in many fields such as 

biology, medicine, and air quality because they can 

calculate multiple independent variables to produce a 

unique result and the result is realistic. Croteau et al. 

proposed a mixed toxicity evaluation model based on 

MLRM and stepwise regression to evaluate the toxicity 

of nickel to aquatic organisms. Test results showed that 

the model was more accurate in evaluating the magnitude 

of elemental nickel toxicity to aquatic organisms than the 

Pooledll yuck MLR model [9]. Zi et al. proposed a 

prediction model based on multiple linear regression and 

SVM for the problem of how to predict the electrical 

conductivity of imidazole-based ionic liquids at different 

temperatures. The model was used to calculate and 

correlate the electrical conductivity of different imidazole 

ionic liquids by quantitative structure-property 

relationship method. The R-square of the model was 

tested to be about 0.99, and the mean absolute relative 

deviation was about 7.5% [10]. Attanayake et al. 

proposed a MLRM based morbidity prediction model for 

the dengue morbidity prediction. The model used interval 

value data analysis method to process the data, and then 

used temperature, rainfall and other data to predict the 

interval value of dengue incidence rate [11]. Mansor et al. 

proposed a PM10 prediction model based on MLRM for 

the problem of how to achieve PM10 prediction within 

three hours. The test results showed that the R-square of 

PM10 prediction results for 1, 2 and 3 hours were about 

0.61, 0.42 and 0.35, respectively, which showed that the 

MLRM had the most accurate prediction for PM10 within 

1 hour [12]. Hashemi et al. proposed a linear regression 

method for the problem of how to analyze the factors 

affecting the shear performance of reinforced concrete 

deep beams. Test results showed that this model fitted 

well with the actual results and fully reflected the degree 

of influence of factors [13]. 

In summary, the current research on construction 

cost prediction models has achieved certain results, but 

most of the project cost prediction models are predicted 

based on historical data, which are weak in 

interpretability and can hardly reflect the importance of 

influencing factors. Therefore, the research proposes a 

road and bridge project cost prediction model based on 

MLRM, PCA and SVM to accurately predict cost and 

reflect the importance of each influencing factor. The 

relevant research is shown in Table 1. 

 

 
Table 1: Summary of the literature 

Author Method Key results 

Wang et al [4] 

Cost prediction model based on PCA, 

particle swarm algorithm and least squares 

SVM 

The mean relative error of the 

prediction results was significantly 

reduced by only 0.79% 

Sharma et al [5] 
Machine learning optimization scheme 

based on auxiliary optimization 

Accurately calculated the project cost 

optimization scheme 

Fan and Sharma 

[6] 

Cost prediction model based on SVM and 

LSSVM 

The prediction relative error was less 

than 7% 

Priti and 

Salunkhe [7] 

Engineering cost prediction model based 

on an artificial neural network 

High accuracy of the cost prediction 

results 

Ashour et al [8] 
Cost control method based on cost value 

correction 

The final cost was lower than the 

predicted cost and actual cost 

Croteau et al [9] 
Mixed toxicity evaluation model based on 

MLRM and stepwise regression 

The evaluation accuracy of element 

nickel toxicity was better than the soil 

MLR model 
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Zi et al [10] 
Conductivity prediction model based on 

multiple linear regression and SVM 

The R-squared test of the model 

(0.99), mean absolute relative 

deviation (7.5%) 

Attanayake et al 

[11] 

Prediction model of dengue incidence, 

based on a MLRM 

The prediction accuracy was better 

than the other models 

Mansor et al 

[12] 

A PM10 prediction model based on the 

MLRM 

Realized the accurate prediction of 

PM10 within 1 hour 

Hashemi et al 

[13] 

Analysis model of influencing factors on 

shear performance of reinforced concrete 

deep beams based on linear regression 

In good agreement with the actual 

results 

 

3 Cost prediction model for road and 

bridge project based on PCA and 

MLRM 
Roads and bridges, as essential basic transportation 

facilities, provide the foundation for the normal operation 

of traffic activities. At the same time, with the rapid 

increase in the number of vehicles, existing roads and 

bridges are under great pressure, so the scale of road and 

bridge construction is expanding by leaps and bounds. 

However, due to the high construction cost, how to 

control cost has become an important issue. This chapter 

explores the factors and control measures that affect the 

cost of road and bridge construction through PCR 

modeling. 

3.1 PCR model based on PCA and MLRM 
In the process of cost prediction, factors such as materials, 

design, construction methods, and quality of work can 

affect the prediction results. As a statistical method to 

reflect whether there is a linear relationship between the 

independent and dependent variables, MLRM can make 

more accurate predictions for problems influenced by 

multiple factors. Therefore, it is widely used in various 

fields. The process of MLRM is shown in Figure 1. 

 

Start

Establishing Multiple Linear 

Regression Equations

Significance test of regression 

coefficients

Calculate the corresponding maximum 

probability of statistical values

Pmax≤0.05

Linear relationship is not significant, accept 

hypothesis experiments

Variable selection

Significant linear relationship, rejecting 

hypothesis experiments

Output equation

End

Yes

No

 

Figure 1: Process of multiple linear regression model 

 

As can be seen from Figure 1, after establishing the 

multiple linear regression equation, the significance of 

the regression coefficient needs to be tested and the 

maximum probability value is calculated. When the 

maximum probability is less than or equal to 0.05, the 

linear relationship is significant. The hypothesis 

experiment is rejected and the equation is output. 

Otherwise, the linear relationship is not significant, the 

hypothesis experiment is accepted, and the regression 

model is re-established after screening the variables 

[14-15]. The MLRM general form is shown in equation 

(1). 

 jkjkjji xbxbxbby +++++= 22110 (1) 

In equation (1), 0b  denotes the intercept of y . 

1 2, , , kb b bL  denote the slope change of y  on the 

independent variable x . jε  denotes the random error of 

the first j  observation for y . Since the relationship 

between the independent variable and the dependent 

variable is often not obvious in practical problems, it 

needs to be tested for significance. The significance 

testing is shown in equation (2). 
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In equation (2), SSE  is the squares regression sum. 
n  is the number of rows of the variable matrix. k  

denotes the number of independent variables. Since there 

are many influencing factors, the study introduces PCA to 

solve the problem. Principal component analysis can 

transform multiple variables into a small number of 

comprehensive indicators, effectively compressing the 

number of variables and reducing the computational 

effort. The schematic diagram of PCA is shown in Figure 

2. 
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Figure 2: PCA schematic diagram 

 

In Figure 2, the PCA transforms the 

component-related random vectors into 

component-unrelated new vectors by orthogonal 

transformation on the basis of the minimum loss of the 

original data. The transformed vectors are the principal 

components. Geometrically, it is represented as the 

original coordinate system being transformed into a new 

one [16-17]. The PCA is shown in equation (3). 
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In equation (3), 1F , 2F  and mF  denote the 

reduced dimensional principal components. ijl  denotes 

the loading of the original vector mapped to the principal 

components. ijzx  denotes the normalized feature factors. 

The feature factor is shown in equation (4). 
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In equation (4), ijx  denotes the original variables. 

iμ  is the mean of the variables in column i . iσ  is the 

variance of that. The principal component loading is 

shown in equation (5). 

 ( ) ( )pjiezxFpl ijijiij ,,2,1,,  ===  (5) 

 

In equation (5), iF  denotes the i  th principal 

component. iλ  denotes the eigenvalue. ije  is the j  th 

component of the i  th eigenvector. Since the correlation 

information between different variables has differences, 

the correlation test of the eigenfactors is necessary, as 

shown in equation (6). 
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In equation (6), ijr  indicates the correlation 

coefficient between the variables. ijP  indicates the 

partial correlation coefficient between the variables. 

When 0.5KOM  , the variables are suitable for factor 

analysis. The correlation coefficient and partial 

correlation coefficient are shown in equation (7). 
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In equation (7), iX  and iY  denote the observed 

values of different random variables at the point i . X  

and Y  denote the mean of different samples, 

respectively. The above algorithm constitutes the PCR 

model. The PCR model flow is shown in Figure 3. 

 

Start

Import assumed independent 

variable data

Principal Component Analysis 

Selection

Characteristic factor test

KMO>0.5

Calculate factor load matrix

Calculate the principal 

component load matrix

Calculate the principal 

component matrix

Multiple linear regression 

selection

Return Predicted Value

Predicted value denormalization

End

Yes

No

 

Figure 3: PCR model process 

 

In Figure 3, PCR first analyzes and reduces the 

dimensionality of the hypothetical independent variable 

data. Then, it tests the significance and independence of 

the characteristic factors, and outputs the correlation 

matrix if it meets the requirements. Otherwise, the 

variable structure is changed until it meets the 

requirements. After obtaining the factor loading matrix, 

the principal component loading matrix is calculated. The 

principal component matrix is calculated. The dependent 

variable and the independent variable are selected to 

calculate the predicted dependent variable. Finally, the 

predicted values are counter-standardized and the results 

are output. 

 

3.2 PCR-SVM-based cost prediction model 

for road and bridge projects 
In addition to linear factors, there are also nonlinear 

factors when predicting project costs. Therefore, it is 

difficult to handle nonlinear factors through the simple 

PCR model. The study introduces SVM to enhance the 

processing capability of nonlinear problems. The SVM 

schematic diagram is shown in Figure 4. 
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Figure 4: Schematic diagram of SVM principle 

 

In Figure 4(a), in the linearly divisible case, the 

SVM can find the correct partition line that is not unique. 

The further the distance between the two nearest partition 

lines from the partition interface, the smaller the 

confidence range of the generalization capability 

boundary. When this distance reaches the maximum, the 

optimal classification surface, i.e., the optimal hyperplane, 

is obtained. In Figure 4(b), in the case of 

indistinguishable linearity, the SVM classifies based on 

soft spacing, i.e., a small number of samples are allowed 

to often appear in the spacing band [18-20]. The 

hyperplane is shown in equation (8). 

 0=+bxwT        (8) 

In equation (8), w  denotes the normal hyperplane 

vector. b  denotes the displacement term. x  denotes 

the sample. The distance from an arbitrary sample to the 

hyperplane is given in equation (9). 

 
w
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r

T +
=            (9) 

In equation (9), r  denotes the distance from any 

sample to the hyperplane. In order to find the divided 

hyperplane with the maximum distance, the constraints 

shown in equation (10) need to be satisfied. 
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In equation (10), ix  and iy  denote different 

samples, respectively. Tw  denotes the transpose vector 

of w . The SVM algorithm flow is shown in Figure 5. 
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Figure 5: SVM algorithm process 

 

In Figure 5, the first step is data pre-processing, and 

then the optimization function is constructed. After the 

optimization function is constructed, the parameters are 

solved by SMO to obtain the hyperplane parameters. In 

the linear regression model, the distance between the 

optimal hyperplane and all samples is minimized by 
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satisfying the condition shown in equation (11).  
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In equation (11), both iξ  and 
iξ

)
 denote the relaxation 

variables. C  denotes the penalty coefficients. ( )if x  

denotes the linear regression function. To solve the 

optimization problem of SVM, Lagrangian duality is 

introduced, as shown in equation (12). 
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In equation (12), n  denotes the number of variables. α  

denotes the scale factor, which is  

greater than 0. The SVM after Lagrangian duality 

transformation is shown in equation (13). 
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In equation (13), ε  denotes the random error. 

( ),i jk x x  denotes the kernel function. The normal vector 

and bias term of the hyperplane are given in equation 

(14). 
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In the SVM algorithm, the kernel function is 

significant in the prediction results of the model. To 

ensure the superior prediction performance, Gaussian 

function is chosen for the study, as shown in equation 

(15). 
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In equation (15), 0δ  . The function has a good 

anti-interference ability for the noise in the data. The flow 

of the engineering cost prediction model combining SVM 

and PCR algorithm is shown in Figure 6. 
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Figure 6: PCR-SVM model process 

 

In Figure 6, PCR-SVM first normalizes the data, 

then performs dimensionality reduction and analysis. The 

optimal parameters are determined through the kernel 

function. Then the feature factors are calculated and 

evaluated, and the correlation matrix is output if it meets 

the requirements. Otherwise, the variable structure is 

changed until it meets the requirements. Next, the 

principal component loading matrix and principal 

component matrix are calculated, and the independent 

and dependent variables are selected. Finally, the 

prediction is simulated by SVM, and the prediction 

results are back-normalized to output the results. 

 

4 Road and bridge project cost 

prediction results analysis and 

influence factors control 
To verify the prediction accuracy of PCR-SVM and the 

degree of influence of different influencing factors on the 

prediction results, the study selects a bridge as a research 

sample and evaluates the reliability by calculating the 

error level between the predicted and actual values. The 

PCR-SVM is compared with PCR and SVR-RBF models. 

The magnitude of each influencing factor is also reflected 

by the importance of the variable coefficients. Before 

making prediction, the influencing factors is screened and 

the principal components is determined. The 

characteristic values and sum of squared loads of various 

influencing factors on engineering cost are shown in 

Table 2. 

 

 
Table 2: Eigenvalues and sum of load squares of various influencing factors on engineering cost 

Assembly 

Initial eigenvalue Extract the sum of squares of the load 

Total 
Variance 

percentage 

Accumulate 

(%) 
Total 

Variance 

percentage 

Accumulate 

(%) 

1 8.73 45.9 45.9 8.73 45.9 45.9 

2 3.56 18.7 64.6 3.56 18.7 64.6 

3 1.85 10.8 75.4 1.85 10.8 75.4 

4 1.75 10.3 85.7 1.75 10.3 85.7 

5 1.37 8.1 93.8 1.37 8.1 93.8 

6 0.31 1.8 95.6    

7 0.25 1.5 97.1    

8 0.19 1.2 98.3    

9 0.17 1.1 99.4    

10 0.09 0.4 99.8    

11 0.04 0.2 100    

 

As shown in Table 2, the eigenvalues numbered 

1-11 were all greater than 0, satisfying PCA requirements. 

Among the 11 principal components, principal 

component 1 carried the largest amount of original 
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information, about 45.9%. The original information 

carried by the subsequent individual principal 

components gradually decreases. The cumulative 

contribution rate of the information carried by the first 5 

principal components was about 93.8, which was much 

greater than 85% and satisfied the set reliability interval, 

so the first 5 principal components were selected as input 

indicators for the study. The convergence of PCR-SVM, 

PCR and SVM-PBF is shown in Figure 7. 

 

 

Figure 7: Convergence of PCR-SVM, PCR, and SVM-PBF 

 

In Figure 7, the PCR converged after about 120 

iterations, and the loss value was about 0.3. The 

SVM-RBF model converged after about 100 iterations, 

and the loss value was about 0.25. The PCR-SVM model 

converged after about 70 iterations, and the loss value at 

this time was about 0.16. The convergence of PCR-SVM 

was better. The prediction results of the three models for 

the bridge construction cost and the absolute error with 

the actual total cost are shown in Figure 8. 
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Figure 8: Prediction results and errors of bridge construction cost 
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From Figure 8(a), the prediction results of PCR for 

the infrastructure cost, material cost, labor cost, 

equipment cost and management cost of the bridge were 

7.54 million, 74.28 million, 15.89 million, 14.06 million 

and 7.92 million, respectively, with absolute errors of 

280,000, 1.95 million, 160,000, 750,000 and 550,000 

from the actual values. The prediction results of 

SVM-RBF for the five types of costs were 7.67 million, 

74.28 million, 15.89 million, 14.06 million and 7.92 

million, respectively. The prediction results of SVM-RBF 

for the five types of costs were 7.67 million, 7.853 

million, 16.25 million, 13.97 million, and 8.33 million, 

with absolute errors of 0.41 million, 2.30 million, 0.52 

million, 0.66 million, and 0.14 million from the actual 

values. PCR-SVM predicted 7.23 million, 75.63 million, 

15.64 million, 13.21 million, and 8.47 million for the five 

costs, with absolute errors of 0.03 million, 0.6 million, 

0.09 million, 0.10 million, and 0.07 million from the 

actual values. In Figure 8(b), the average absolute errors 

between the prediction results of the three models and the 

actual total cost were about 2.56 million, 3.32 million and 

0.78 million. The prediction results of PCR-SVM had 

smaller errors with the actual results. The error rates and 

RMSEs of the three models are shown in Figure 9. 
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Figure 9: Prediction result error rate and RMSE 

 

From Figure 9(a), the error rates of PCR for the 

prediction results of infrastructure cost, material cost, 

labor cost, equipment cost, management cost and total 

cost were about 3.86%, 2.56%, 1.02%, 5.63%, 6.49% and 

1.08%, respectively. The error rates of SVM-RBF for the 

prediction results of the six costs were about 5.65%, 

3.02%, 3.31%, 4.96%, 1.65% and about 2.95%, 

respectively. The error rates of the prediction results of 

PCR-SVM were about 0.41%, 0.79%, 0.57%, 0.01%, 

0.08% and 0.74%, respectively. The PCR-SVM had the 

lowest error rate. From Figure 9(b), the RMSE values of 

the PCR prediction results for the five costs were about 

21.6, 188.5, 14.2, 71.3, and 54.4, respectively. The 

RMSE values of the SVM-RBF were about 38.9, 215.7, 

49.4, 63.7, and 12.5, respectively. The RMSE values of 

the PCR-SVM were about 3.3, 57.2, 8.5, 1.1, and 6.8. 

The prediction results of PCR-SVM had the least 

dispersion. The SMAPE and nMSE of the prediction 

results are shown in Figure 10. 
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Figure 10: SMAPE and nMSE of predicted results 

 

In Figure 10(a), SMAPE values of PCR for 

infrastructure cost, material cost, labor cost, equipment 

cost and management cost were about 4.67%, 3.28%, 

1.66%, 6.54% and 7.28%, respectively. The SMAPE 

values of the SVM-RBF predicted results for the five 

costs were about 6.32%, 3.74%, 4.21%, 5.56% and 

2.33% respectively. The SMAPE values of the 

PCR-SVM prediction results were about 1.12%, 1.75%, 

1.43%, 0.78% and 0.96%, respectively. The SMAPE 

values of the PCR-SVM were the smallest. From Figure 

10(b), the nMSE values of the PCR for the five costs 

were approximately 0.71, 0.64, 0.43, 0.78, and 0.82, 

respectively. The nMSE values of the SVM-RBF were 

approximately 0.87, 0.67, 0.73, 0.85, and 0.57, 

respectively. The nMSE values of the prediction results 

of PCR-SVM were approximately 0.38, 0.47, 0.43, 0.31 

and 0.33, respectively. The PCR-SVM had the smallest 

nMSE value. The R-squared, and ROC curves of the 

three models are shown in Figure 11. 
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Figure 11: R-squared and ROC curves of predicted results 

 

From Figure 11(a), the R-squared of PCR 

predictions for the five costs was about 0.78, 0.83, 0.86, 

0.79 and 0.88, respectively. The R-squared of the 

SVM-RBF for the five costs was approximately 0.75, 

0.82, 0.79, 0.81 and 0.86, respectively. The R-squared of 

the improved BPNN prediction results for the five costs 

was 0.82,0.84,0.87,0.85 and 0.88, respectively. The 

R-squared of the PCR-SVM was approximately 0.87, 

0.89, 0.91, 0.95 and 0.93. The prediction results of 

PCR-SVM have a better fit with the actual results. From 

Figure 11(b), the area under the RCO curve of PCR was 

approximately 0.78, and the SVM-RBF was about 0.83. 

The ROC curve of improved BPNN was close to 

SVM-RBF, about 0.81, and the PCR-SVM was 

approximately 0.92. The prediction performance of 

PCR-SVM is better than that of PCR and SVM-RBF 

models. The percentages of the five costs in the total cost 

are shown in Figure 12. 

 



Cost Prediction and Control Measures for Road and Bridge Projects… Informatica 48 (2024) 47–62 59 

Infrastructure costs

Material cost

Labor costsEquipment cost

Management cost

10%

20%

30%

40%

50%

60%

70%

 

Figure 12: Proportion of various costs in total cost 

 

From Figure 12, the total cost, infrastructure cost, 

material cost, labor cost, equipment cost, and 

management cost accounted for 5%, 63%, 13%, 12%, and 

7%, respectively. In the total cost prediction, material has 

the greatest influence on the prediction result, followed 

by labor cost and equipment. The least influence is the 

infrastructure cost. From this, to control the project cost 

budget, it is necessary to start from the above five aspects. 

In terms of material cost, it is difficult to compress 

material cost, because it is often determined by the 

market price of materials. It is possible to minimize some 

material costs by thoroughly investigating market prices. 

In terms of labor cost, they are often determined by the 

supply and demand in the employment market. It is very 

difficult to compress labor cost. Equipment is often 

recycled, it only needs to consider the depreciation cost. 

It can be compressed part of the cost. Infrastructure cost 

generally includes the cost of geological exploration 

before construction, infrastructure construction, and other 

work. Geological exploration has a significant impact on 

the formulation of later construction plans, while 

infrastructure construction has a significant impact on the 

safety and lifespan of construction sites. Therefore, these 

costs are difficult to compress. Management costs usually 

consist of on-site management costs and salaries of 

management personnel. The proportion of management 

personnel salaries is relatively high, as construction sites 

often have low management efficiency and redundant 

management personnel. Therefore, streamlining the 

management team and improving management efficiency 

can reduce management costs. To further validate the 

performance of the PCR-SVM model, the study is 

subjected to cross testing, and the experimental results are 

shown in Table 3. 

 

 
Table 3: Cross experimental results 

Nth 

experiment 

Training 

Set 

1/Billion 

Training 

Set 

2/Billion 

Training 

Set 

3/Billion 

Training 

Set 

4/Billion 

Test 

set/Billion 

Mean of 

training 

set/Billion 

True 

value/Billion 

1 1.121 1.124 1.183 1.120 1.183 1.188 1.196 

2 1.147 1.152 1.167 1.159 1.164 1.161 1.153 

3 1.099 1.112 1.109 1.111 1.105 1.119 1.124 

4 1.183 1.188 1.179 1.174 1.182 1.176 1.171 

5 1.124 1.131 1.128 1.122 1.129 1.127 1.122 

6 1.195 1.212 1.206 1.213 1.199 1.208 1.211 

7 1.218 1.211 1.221 1.217 1.215 1.222 1.234 

8 1.176 1.169 1.164 1.171 1.172 1.673 1.159 

9 1.249 1.244 1.251 1.249 1.256 1.248 1.243 

10 1.176 1.177 1.182 1.179 1.177 1.181 1.186 

11 1.173 1.175 1.167 1.162 1.168 1.166 1.172 

12 1.215 1.209 1.214 1.213 1.211 1.215 1.201 

 

  



60   Informatica 48 (2024) 47–62                                                                  L. Zhai et al. 

From Table 3, the relative error of the PCR-SVM 

prediction result did not exceed 7%, so the calculated 

result was as high as 0.97. The above results showed that 

the PCR-SVM model had good robustness. In addition, in 

order to explore the influence of each input factor on the 

cost prediction, the study conducted a sensitivity analysis. 

The analysis results are shown in Table 4. 

 

 
Table 4: Results of the sensitivity analysis 

Investment factors Weight ratio Predicting sensitivity 

Infrastructure cost 0.06 0.25 

Material cost 0.63 2.41 

Labor costs 0.13 1.02 

Equipment cost 0.11 0.77 

Management cost 0.07 0.21 

 

From Table 4, among the input factors, the 

management cost and infrastructure cost had little impact 

on the total cost, while materials and labor had a 

significant impact on the cost prediction. 

5 Discussion 

In order to achieve accurate cost prediction of roads and 

bridges, a cost prediction model based on PCR-SVM was 

proposed. The prediction error rate of PCR-SVM for total 

cost was only 0.74%, which was lower than other models. 

Compared with the research by Wang X et al. [4], the 

prediction accuracy of the PCR-SVM model was higher. 

This is because the significance and independence of the 

feature factors are tested to meet the requirements, and 

the principal component loading matrix is used to 

calculate the principal component matrix, allowing the 

algorithm to select appropriate dependent and 

independent variables. In addition, PCR-SVM can handle 

both linear and nonlinear factors simultaneously. 

Compared with the research of Fan M and Sharma A [6], 

the computational efficiency of the PCR-SVM model was 

higher. This is because the research combines PCA and 

multiple linear regression to construct the PCR model. 

PCA can convert multiple variables into a small number 

of comprehensive indicators, effectively reducing the 

number of variables and decreasing computational 

complexity. At the same time, the PCR-SVM model can 

effectively manage both linear and nonlinear factors. For 

KOMs greater than 0.5, they are considered linear factors 

and analyzed using PCR. Otherwise, they are considered 

nonlinear factors and analyzed using SVM. According to 

the weight analysis of influencing factors, the proportions 

of infrastructure cost, material cost, labor cost, equipment 

cost, and management cost were 5%, 63%, 13%, 12%, 

and 7%, respectively. The material factor had the greatest 

impact on the total cost. This is because personnel and 

equipment are managed by construction companies, and 

their costs and quantities are generally stable. However, 

the required amount and loss of materials are relatively 

large, and they need to be purchased in the market with 

significant price fluctuations. Therefore, the prediction 

results of road and bridge construction costs are greatly 

affected. 

6 Conclusion 

Before the road and bridge construction, the project cost 

forecast is needed to ensure reasonable budget use. 

However, during the calculation, many factors can affect 

the prediction results. Therefore, a project cost prediction 

model-PCR-SVM model by PCA, multiple linear 

regression, and SVM was established. The PCR-SVM 

model showed that infrastructure cost, material cost, labor 

cost, equipment cost and management cost accounted for 

5%, 63%, 13%, 12% and 7%, respectively, with material 

having the greatest impact. In addition, to test the 

prediction performance of PCR-SVM, the study selected 

PCR and SVM-RBF models as control groups. The test 

results showed that the PCR and SVM-RBF models 

converged after about 120 and 100 iterations, respectively, 

and the loss values were about 0.3 and 0.25 at this time. 

PCR-SVM converged after about 70 iterations, and the 

loss value was about 0.16 at this time. It is evident that 

the convergence of PCR-SVM is better than that of PCR 

and SVM-RBF models. The lowest error rates of the 

three models for the prediction results of infrastructure 

cost, material cost, labor cost, equipment cost, 

management cost and total cost were about 1.02%, 1.65% 

and 0.01%, respectively, among which the PCR-SVM 

model had the smallest error rate. The lowest SMAPE 

values of the prediction results of the three models were 

about 1.66%, 2.33% and 0.78%, respectively. The lowest 

nMSE values were about 0.43, 0.57 and 0.31, 

respectively. The SMAPE and nMSE values of the 

PCR-SVM were the smallest. The minimum RMSE 

values of the prediction results of the three models were 

about 14.2, 12.5 and 1.1. The prediction results of 

PCR-SVM had the least dispersion. The area under the 

RCO curve of PCR, SVM-RBF and PCR-SVM models 

were about 0.78, 0.83 and 0.92. The prediction 

performance of PCR-SVM was better than that of PCR 

and SVM-RBF models. The above results indicate that 

the PCR-SVM model can accurately predict engineering 

costs and accurately reflect the impact of major 

influencing factors on the prediction results. 
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