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Feature extraction is a critical process in image processing, directly influencing the accuracy of 

classification tasks. Traditional feature extraction methods often fall short by capturing only a limited set 

of features, which can result in suboptimal classification, particularly in complex biometric systems. In 

the domain of iris recognition, the extraction of minute and intricate features is paramount for achieving 

high accuracy and reliability. This paper presents a comprehensive review of advanced deep learning-

based feature extraction techniques tailored for iris images. These techniques are designed to capture and 

process fine details such as lacunae, Wolfflin nodules, contraction furrows, and pigment spots—features 

that are essential for both recognition and diagnostic purposes. We compare state-of-the-art methods 

including convolutional neural networks (CNNs), U-Net, Link-Net and other custom architectures, 

highlighting their advantages in terms of segmentation precision, feature extraction efficiency, and 

computational requirements. Our review also addresses the challenges posed by variations in iris texture, 

illumination, and occlusions, which can affect the accuracy of feature extraction. Experimental 

evaluations of these methods show that deep learning algorithms significantly improve the detection of 

subtle features, offering promising results for both recognition accuracy and disease diagnosis 

applications. Finally, we outline future directions in the field, including the potential for integrating multi-

resolution and attention-based models to further enhance the extraction of fine details from iris images. 

We also discuss the opportunities for real-time deployment of these techniques in mobile and resource-

constrained environments, opening new avenues for iris recognition and diagnostic systems. 

Povzetek: Pregledno so opisane so tehnike za ekstrakcijo lastnosti irisnih slik z uporabo globokega 

učenja, pri čemer so kombinirana konvolucijska nevronska omrežja (CNN) za obdelavo natančnih in 

subtilnih značilnosti, kot so lacune in pigmentne pike. 

 

1 Introduction 

Feature extraction is a fundamental step in data 

processing [1], designed to transform raw data into a 

manageable set of relevant features that capture the 

most significant information for a particular task. This 

process simplifies data by reducing its dimensionality, 

making it more efficient for analyzing machine learning 

models. In traditional methods, feature extraction relies 

on predefined techniques like edge detection [2], 

texture analysis, or frequency-domain transformations 

(e.g., Fourier or wavelet transforms), commonly used in 

areas such as image processing, audio analysis, and 

signal processing. These techniques highlight important 

characteristics of the data, such as edges or textures in 

images, which help in the classification or recognition 

tasks. Feature extraction is essential for improving 

computational efficiency, particularly when dealing 

with large datasets, as it reduces redundant information 

and helps models generalize better by focusing on the 

most critical aspects of the data [3]. 

Deep learning is a subset of machine learning that 

automates feature extraction through multi-layered 

neural networks. It is particularly effective for handling 

complex, high-dimensional datasets like images, 

videos, and text, where manually extracting features 

may be inefficient or impractical. The primary model in 

deep learning for feature extraction is the Convolutional 

Neural Network (CNN), which excels in image and 

video recognition tasks by learning hierarchical 

features from pixel-level data. CNNs automatically 

identify low-level features like edges and gradually 

learn more abstract features such as shapes and objects 

as data moves through deeper layers of the network. 

Recurrent Neural Networks (RNNs) are another type of 

deep learning model used for sequential data, like time 

series or language processing, where context over time 

is crucial. The advantage of deep learning models is that 
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they can discover patterns without manual intervention, 

leading to state-of-the-art performance in fields such as 

computer vision, natural language processing, and 

medical image analysis [4]. 

In contrast to deep learning, traditional 

machine learning models, such as Support Vector 

Machines (SVM), decision trees, and k-nearest 

neighbors (KNN), rely on manually engineered 

features. These models work well when datasets are 

smaller and structured, with clear feature 

representations. While not as powerful as deep learning 

for unstructured data like images or text, traditional 

models are highly effective for simpler tasks and 

require less computational power. For example, 

decision trees and random forests can model decisions 

in structured environments, while SVMs are often used 

for classification tasks with well-defined input features 

[5]. These models are also more interpretable than deep 

learning networks, making them preferable when 

understanding model decisions is important. Feature 

extraction techniques in machine learning, such as 

Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA), help reduce 

dimensionality and ensure that models focus on the 

most informative aspects of the data. 

Ultimately, deep learning emerges as the 

superior approach for feature extraction and analysis, 

especially in complex and high-dimensional datasets. 

Its ability to learn hierarchical representations directly 

from raw data without the need for manual feature 

engineering sets it apart from traditional machine 

learning techniques. Deep learning models, particularly 

CNNs, excel in extracting intricate patterns and 

features, making them highly effective for tasks like 

medical image analysis, where subtle details in data, 

such as those in iris images, can be critical for accurate 

diagnosis [6] and prediction. As computational 

resources continue to improve and large datasets 

become more accessible, the advantages of deep 

learning will likely expand further, solidifying its 

position as the best method for extracting meaningful 

insights from complex data. The below Fig. 1 represents 

the different features to be extracted from the enhanced 

iris image: 

 

       Figure 1: Iris features 

2 Related works 

2.1 Gradient-based feature extraction 

 After examining the impact of demosaicing on 

gradient extraction, Wei Zhou et al. [7] suggested a 

gradient-based feature extraction pipeline based on raw 

Bayer pattern images. In addition to consuming 

computing time, the traditional demosaicing method 

uses three times as much storage space in order to 

achieve almost identical results. However, by utilizing 

the color difference constancy assumption, the 

suggested method directly extracts gradients from the 

Bayer pattern images while lowering computing 

complexity. Five steps are involved in the SIFT-based 

algorithm's computation: 

1) Constructing areas of scale. The difference-of-

Gaussian (DoG) pyramid approximates the scale space. 

2) The highest level of judgment. The local maxima and 

minima can be identified by comparing each pixel with 

its neighbors in a 3*3 neighborhood between the 

current scale, scale above, and scale below. 

3) Locating the primary idea. to further hone the key 

point contenders discovered in the previous action. We 

discard unstable key points, such as places along edges 

with poor localization and low contrast. 

4) Figuring out orientation. to offer one or more 

orientations for every significant point. A histogram is 

created for a region centered on the key point, with a 

radius 1.5 times the scale of the key point. The direction 

with the highest bar in the histogram is referred to as 

the dominating direction, whereas auxiliary directions 

are those with heights more than 80% of the top bar. 

2.2 Feature fusion-net using deep spatial 

context encoder 

 A unique end-to-end Fusion-Net classification 

model for HR SAR images was proposed by Wenkai 

Liang [8]. Its goal is to fuse statistical characteristics 

into deep spatial feature objects in the end-to-end 

representation learning process. In a supervised feature 

learning framework, the physical characteristics of 

terrain objects can be revealed by the integration of 

distinct statistical distributions of SAR pictures into 

CNNs. In order to tackle this problem, a new end-to-

end supervised classification technique is put forth for 

HR SAR images that takes statistical information and 

spatial context into account. Utilizing Fusion-Net has 

the benefit of enhancing the classification model's 

overall accuracy significantly through the 

complimentary knowledge of statistical and 

geographical variables. The definition of the Fusion-

Net scheme is: 
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Compared to existing related systems, the suggested 

Fusion-Net produces substantially greater accuracies 

and a more pleasing visual look.  This strategy yielded 

an overall accuracy of 89.00%. In the future, self-

supervised learning techniques like contrastive learning 

or data augmentation like Mixup will be taken into 

consideration to improve DSCEN's feature 

representation capabilities. 

2.3 Unsupervised deep image stitching 
 A two-stage unsupervised deep image 

stitching framework—unsupervised coarse image 

alignment and unsupervised image reconstruction—

was presented by Lang Nie et al. [9]. Conventional 

feature-based picture stitching techniques frequently 

struggle to stitch images with low resolution or few 

features since they mostly rely on feature detection 

quality. 

          The suggested approach receives ratings of 27.83 

and 0.902 for PSNR and SSIM, respectively. In terms 

of visual quality, people still prefer the outcomes of the 

suggested unsupervised approach over supervised deep 

image stitching alternatives. Furthermore, the 

reconstruction capacity is limited, indicating that the 

suggested approach could not work in situations with a 

very high parallax. Extending the linear deep 

homography to a non-linear homography model can 

help handle big parallax. 

 

2.4 SpaSSA: Superpixelwise adaptive SSA 
 To utilize the local spatial information of HSI 

(Hyperspectral pictures), Genyun Sun et al. [10] 

presented SpaSSA (Superpixelwise adaptive Singular 

Spectral Analysis). While ignoring the local spatial 

context of the pixels, 2D-SSA primarily concentrates on 

global spatial information.  

Improved classification accuracy can be 

achieved by using the suggested SpaSSA technique, 

which can successfully lower the intra-class variation 

within superpixels and improve the discriminating 

between various superpixels. This approach yields an 

overall accuracy of 98.34%. Principal component 

analysis and SpaSSA together can increase accuracy 

even more. 

2.5 Symmetric all CNN (SACNN) 
 A symmetric all CNN (SACNN), an end-to-

end network made up of encoder and decoder 

subnetworks, was proposed by Mingyang Zhang et al. 

[11]. Large numbers of labeled samples are always 

needed for deep learning network training, although 

HSI image data are rarely available. A unique 

unsupervised deep-learning based FE approach is 

developed to address this difficulty. The following is the 

definition of the cost function that the Adam algorithm 

optimizes: 

 

 

 

 

This approach yields an overall accuracy of 97.07%. 

The outcomes of the experiments indicated that 

learning effective spatial spectral features in HSI 

images was more suited for 3-D convolutional 

operation. Additional research will be conducted on 

adaptively optimizing hyperparameters based on data. 

2.6 Spatial revising variational 

autoencoder-based feature extraction 
 Wenbo Yu et al. [12] introduced a novel 

unsupervised hyperspectral feature extraction 

architecture based on the spatial revising variational 

autoencoder (UHfeSRVAE). There are still several 

challenges in fully extracting rich spectrum 

information, such as the coupling of spectral and spatial 

information. To solve this issue, this approach makes 

use of designed networks to extract spatial 

characteristics from many perspectives in order to 

revise the spectral features that are subsequently 

obtained.  

         Compared to other methods, the suggested 

method yields a more accurate categorization map. The 

excellent clusterability and discernibility of 

UHfeSRVAE is further demonstrated by its 

performance in three-view drawings. This strategy 

yielded an overall accuracy of 91.39%. Additional 

research will concentrate on generative models for 

feature extraction. 

2.7 Feature extraction via 3-D block 

characteristics sharing (3-D-BCS) 
 For high-strength images (HSI), Bing Tu et al. 

[13] suggested a unique feature extraction method using 

3-D block characteristics sharing (3-D-BCS). The low 

sensitivity of sensors to spatial information and 

different environmental factors, such as weather, cause 

the neighboring spectral-spatial information of a pixel 

to become mixed in with other ground coverings. The 

following Fig. 2 is the suggested 3-D-BCS algorithm: 
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Figure 2: 3-D-BCS algorithm 

This strategy yielded an overall accuracy of 96.69%. 

Tests conducted on many genuine hyperspectral data 

sets with a small number of training samples 

demonstrate that the suggested 3-D-BCS approach 

works better than alternative classification methods. 

The inability of single-scale over segmentation and 

single feature representation to fully mine the structural 

information of materials is one of the suggested 

method's limitations. Future research will focus on 

collaborative learning of multiscale strategies and 

numerous features for feature extraction.  

2.8 Cloud-guided feature extraction 

approach 
                A cloud-guided feature extraction method 

was presented by Shangguang Wang et al. [14] for 

mobile image retrieval. Two main issues plague the 

current works: low retrieval accuracy and high network 

bandwidth costs.  

Since the edge servers only upload the collected 

discriminative features to cloud servers, the suggested 

strategy can lower network traffic. This approach 

produced a retrieval accuracy of 88.33%. To 

dynamically update the projection matrix in the future, 

the model can be trained to extract the number of 

eigenvalues, accuracy, and reaction time. 

 

 

2.9 Unsupervised structural feature-

guided convolutional neural network 

(SFG) 
 Lin Ge et al. suggested an unsupervised 

structural feature-guided convolutional neural network 

(SFG) [15]. Gathering ground-truth data with known 

correspondences requires significant work and time 

when utilizing supervised algorithms. For this reason, 

unsupervised approaches are used. The two structural 

feature components of the proposed technique are 

sparse and dense structural components. The suggested 

method's pipeline looks like in the Fig.3:   

 

Figure 3: Unsupervised structural feature guided 

convolutional neural network Architecture 

The network performs better when the two halves work 

together to fully utilize the global and local information 

in the histology picture. Additionally, it resolves the 

three issues with histology picture registration: section 

missing, repeating texture, and multiple staining. This 

technique, regardless of the entire scale or the expanded 

region of interest, satisfies several requirements for 

histological image registration. Furthermore, due of the 

severe damage to the structural feature, SFG is unable 

to conduct picture registration with significantly torn 

regions. 

2.10  AFEM-Genetic algorithm 

 An ASC (Attribute Scattering center) feature 

extraction approach using genetic algorithm (AFEM-

GA) was presented by Maoqiang Jing et al. [16]. This 

model is useful for inverse scattering problems and 

gives clear and physically meaningful features for 

complicated targets. The following is the suggested 
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method's flowchart in Fig. 4:                                   

 

Figure 4: AFEM- Genetic algorithm flowchart 

Compared to other methods, the suggested method is 

more computationally efficient since AFEM-GA does 

not require a large sparse dictionary. Improved AFEM-

GA convergence speed and parallel estimate of all 

ASCs can be studied in more detail. 

2.11   Gated stacked target-related 

autoencoder (GSTAE) 
 A gated stacked target-related autoencoder 

(GSTAE) was first presented by Qingqiang Sun et al. 

[17]. One of the most challenging problems in the world 

of image processing is still obtaining an appropriate 

feature representation from complex process data. In 

order to fairly take target-related information into 

account, the suggested STAE conducted a layer-wise 

pretraining process and incorporated the anticipated 

loss item of the target value into the original loss 

function of a common autoencoder. 

The suggested method's drawbacks are that it 

becomes more computationally demanding and is 

susceptible to samples with low-quality labels. 

Therefore, it is crucial to remove low-value gate 

connections as soon as possible in order to minimize 

needless computational load. 

2.12   Superpixel-based multiple statistical 

feature extraction (SPMSFE) 
 A unique multiple statistical feature extraction 

method based on superpixels was proposed by Dan Li 

et al. [18] (SPMSFE). This method was presented to 

increase the classification accuracies of hyperspectral 

images (HSIs), particularly when employing a small 

number of training samples. The suggested SPMSFE 

approach consisted of three steps: multiple statistical 

FE, multitask kernel sparse representation model for 

classification, and identification of superpixel-based 

neighbors. The suggested method's algorithm is as in 

Fig. 5: 

 

Figure 5: Superpixel-based multiple statistical feature 

extraction Algorithm 

This strategy yielded an overall accuracy of 

79.08%. The experimental results show that the 

suggested approach outperforms the most advanced 

classification techniques, especially in situations with a 

very small number of training examples. In order to 

handle the heterogeneous fusion of numerous statistical 

features and enhance performance, it will be necessary 

to examine the specific effects of each statistical feature 

for HSI images in depth in the future. 

2.13   Superpixelwise PCA (S3-PCA) 
 A unique spectral-spatial and superpixelwise 

PCA (S3-PCA) was proposed by Xin Zhang et al. [19]. 

This method effectively utilizes spatial information to 

extract the global-local and spectral spatial features for 

HSIs images and to remove noise via local 

reconstruction based on superpixels. The following  is 

the suggested method's flowchart: 

    This technique is particularly useful for extracting 

useful features when working with noisy pixels in tiny, 

homogeneous regions. This strategy yielded an overall 

accuracy of 95.63%. Future work may integrate 

additional techniques like SVM and deep learning 

models, as superpixel-based local reconstruction has 

shown to be a successful filter for denoising high-

spatiality images. 

2.14   Layout feature extraction using CNN 

classification 
 Convolutional neural networks (CNNs) were 

used by Yoshikazu Nagamura [20] to categorize LSI 

layout photos in order to carry out the RCA of layout-

induced errors. While predicting unknown flaws is a 

difficult task in the current study, analyzing layout-

induced faults is essential to optimizing design rules. In 

order to extend the number of training datasets, this 

method addressed the limitation by chopping image 
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clips at any place, including true defect positions. CNN 

models will eventually be trained on a tiny dataset of 

faulty layouts in order to forecast problems that are not 

yet known. 

2.15   Fusion of deep learning-based 

features and empirical features 
                   A fusion approach of merging adaptive 

characteristics generated by a deep neural network with 

empirical features was proposed by Jingsong Xie [21]. 

When dealing with objects that have low-quality 

training data, intelligent feature extraction and 

classification approaches cannot ensure that the model 

has learned the general characteristics needed for 

classification. Moreover, the model's robustness and 

generalization may be weak. This is a novel bearing 

fault classification technique built on top of XGBoost.  

    A few basic EFs and the adaptive features that 

LiftingNet extracted are combined to create the features 

that are utilized to train the XGBoost model[22] 

classifier. The suggested method's overall accuracy is 

95.0%. The findings indicate that by combining a few 

EFs with the hidden features that the modified 

LiftingNet extracted, it is possible to enhance the 

model's accuracy and antinoise effect. Future research 

will concentrate on implementing the suggested 

approach in a variety of working environments [23]. 
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3 Discussion 
This paper has reviewed various feature 

extraction techniques for iris analysis, focusing on both 

traditional and deep learning-based approaches. A key 

observation from the related works is that deep learning 

methods, particularly Convolutional Neural Networks 

(CNNs), consistently outperform traditional 

approaches like Gabor filters and Histogram of 

Oriented Gradients (HOG) in terms of accuracy and 

robustness. CNN-based approaches excel in capturing 

intricate details such as lacunae, Wolfflin nodules, and 

contraction furrows, which are vital for effective iris 

recognition. 

The reviewed works demonstrate that CNN 

architectures tailored for iris recognition achieve higher 

performance metrics, with accuracy rates typically 

exceeding 95% in controlled environments. These 

methods can adaptively learn relevant features directly 

from raw iris images, allowing them to detect minute 

details that might be overlooked by hand-crafted feature 

extraction techniques. For instance, studies employing 

variations of CNNs, such as U-Net and MobileNetV2, 

have shown significant improvements in segmentation 

accuracy, which is crucial for reliable iris feature 

extraction. 

In contrast, traditional methods often struggle 

with the inherent variability in iris images caused by 

factors such as occlusions, illumination changes, and 

pupil dilation. Although techniques like Gabor filters 

are adept at capturing texture information, they are less 

effective in handling these variations, leading to 

reduced robustness in real-world scenarios. 

In the context of evaluating image feature 

extraction methods, particularly in iris analysis, it is 

crucial to discuss the evaluation metrics used across the 

surveyed methods. Common evaluation metrics include 

accuracy, precision, recall, F1-score, and computational 

efficiency. Accuracy measures the proportion of correct 

predictions among the total predictions made, providing 

a straightforward assessment of a model's performance. 

Precision indicates the proportion of true positive 

results about the total predicted positives, while recall 

measures the model's ability to identify all relevant 

instances within the dataset. The F1-score is the 

harmonic mean of precision and recall, offering a 

balanced measure when dealing with class imbalances. 

Additionally, computational efficiency encompasses 

metrics such as training time, inference time, and 

resource utilization, which are essential for 

understanding the practical feasibility of deploying 

these models in real-world scenarios. Including a 

dedicated section on these evaluation metrics will 

provide a clearer framework for comparing the 

effectiveness of different methods and will help readers 

assess the strengths and weaknesses of each approach 

in a standardized manner. 

The superiority of CNN-based approaches lies 

in their ability to automatically learn complex patterns 

and hierarchies from data. This advantage becomes 
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especially important when dealing with the intricate 

structures present in the iris, where minute details play 

a pivotal role in identification. Moreover, deep learning 

methods can be fine-tuned with large-scale datasets, 

improving their generalizability and robustness across 

different environments. Another benefit is their ability 

to integrate multi-scale features, enabling the capture of 

both global and local patterns in iris images. 

 

4 Conclusion 
Most image feature extraction algorithms 

based on deep learning methods have demonstrated 

impressive results in the field of image processing, 

particularly in applications requiring high accuracy, 

such as medical imaging. The effectiveness of these 

algorithms often hinges on their ability to learn and 

extract relevant features directly from raw data, 

reducing the need for manual feature engineering. For 

medical imaging, where precision is critical, the 

performance of these algorithms must be optimized to 

ensure accurate diagnoses and assessments. 
Deep learning-based methods have 

consistently outperformed traditional approaches, 

thanks to their capacity to handle complex and high-

dimensional data. Techniques such as Convolutional 

Neural Networks (CNNs) and variations thereof have 

shown significant advancements in extracting minute 

details from images, such as those found in iris analysis. 

In our summary of deep learning-based methods, we 

highlighted their strengths, including their ability to 

adapt and improve with larger datasets and their 

robustness in various medical applications. 

In the future directions, integrating multiple 

deep learning algorithms could further enhance 

accuracy in medical iris diagnosis and other related 

fields. By combining the strengths of different 

architectures, such as CNNs with Recurrent Neural 

Networks (RNNs), or employing ensemble methods, 

researchers can leverage complementary features and 

improve the overall performance of diagnostic systems. 

This future direction holds great promise for advancing 

medical imaging techniques and ensuring better 

outcomes in patient care and diagnosis. 
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