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Incomplete data can significantly impact the results and reduce data value for machine learning systems.
Simple imputation methods often fail to capture the intricate patterns and relationships within time series
data, leading to inaccurate analysis. This study proposes a novel approach called ”weighted bi-directional
imputation, WBDI” to address this challenge in univariate time series data. The proposed approach lever-
ages machine learningmodels and utilizes data before and after the missing segment, incorporating weights
to prioritize relevant information. To evaluate its effectiveness, experiments are conducted using eleven ma-
chine learning algorithms on three real-world datasets (Phu Lien humidity, Cua Ong climate, and Ha Noi
water level) with varying sizes and sampling frequencies. We evaluate performance using Similarity, Nor-
malized Mean Absolute Error (NMAE), Root Mean Square Error (RMSE), Fraction of Standard Deviation
(FSD), and Fractional Bias (FB). The results demonstrate that ensemble learning methods generally out-
perform other approaches. Notably, the AdaBoost method consistently performs well across all datasets
and evaluation metrics. Its exceptional performance is highlighted by achieving a Similarity of 0.99 when
completing one-day missing data on the Hanoi water level, illustrating its high reliability and accuracy in
imputing missing values.

Povzetek: Raziskava uvaja metodo tehtane dvosmerne imputacije (WBDI) za izpolnjevanje manjkajočih
vrednosti v univariatnih časovnih vrstah. Metoda združuje strojno učenje in podatke pred ter po manjka-
jočih segmentih, kar omogoča odlične rezultate z uporabo AdaBoosta (npr. 99% o vodostaju v Hanoju).

1 Introduction

Time series data are ubiquitous in many domains in our
life such as health care [29], economics [20], meteorology
[9], finance [4], astronomy [1]. However, a common chal-
lenge in analyzing such data is the presence of missing val-
ues caused by factors like malfunctioning sensors, trans-
mission issues, or inaccurate calculations. Analyzing data
with missing values can lead to biased conclusions and in-
accurate predictions and it is more challenging to find sig-
nificant patterns and relationships in the data. Therefore,
imputation techniques are essential as a standard method of
handling missing [21].
Time series data can be categorized into univariate and

multivariate data, each requiring specific techniques to han-
dle missing values. For univariate time series, various im-
putation techniques have been developed, including clas-
sical statistical methods. Some methods are mean [2], me-
dian, and mode interpolation, which are straightforward but
may not always capture the temporal dynamics of the data
adequately. One notable method that offers an improve-
ment over earlier techniques is the Last Observation Carried
Forward (LOCF). This approach assigns the last observed
value to the missing data points, leveraging the relationship
between a current observation at a point in time, tn and its

predecessor at tn−1 [24]. This technique is particularly use-
ful when the assumption that the most recent observation is
a good estimate for the missing value. Linear and spline
interpolation techniques are also widely employed for their
computational efficiency and ability to handle short, miss-
ing gaps. These methods assume a smooth trend between
the observed data points, making them suitable for datasets
with consistent and regular sampling. However, these tech-
niques often oversimplify the underlying temporal patterns
and struggle with irregularly sampled data or large missing
gaps, limiting their effectiveness in more complex scenar-
ios [24].
The Autoregressive Integrated Moving Average

(ARIMA) model is highly effective for time series data
that exhibit a clear trend and seasonality. It is widely
used for short to medium-term forecasting in univariate
time series data. However, ARIMA can struggle with
complex relationships or irregularly sampled data and
requires the data to be linear to perform optimally [3]. The
Kalman filter is another powerful method for imputing
missing values, particularly useful in contexts with noisy
measurements. For example, in [8], the Kalman filter was
utilized for imputing LTE (Long Term Evolution) spectrum
data, which is characterized by high seasonality and a
univariate nature. The filter’s strength lies in its ability to
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handle noisy data effectively and provide robust estimates.
Another technique, the Dynamic Time Warping-Based
Imputation (DTWBI), was employed to estimate large
missing values in univariate time series, as described in
[27]. DTWBI is particularly useful under the assumption
that missing values exist within the series and can leverage
the alignment of time series to fill in gaps. An extension
of this method, eDTWBI, was introduced in [26]. This
enhanced version considers both the data before and after
the gap to identify similar patterns more accurately, leading
to improved imputation performance.
In addition to applying statistical methods and finding

similar values to replace incomplete values, estimating
missing values based on machine learning has emerged as
an alternative direction. This has become a growing area
of research, with studies demonstrating its effectiveness.
For instance, a study by Han et al. (2023) integrated Sup-
port Vector Regression with decomposition methods to re-
cover data in a wastewater treatment process [19]. Another
study compared Support Vector Machines (SVM) and Ran-
dom Forests (RF) for forecasting missing data in time series
[25]. The authors concluded that machine learningmethods
are noteworthy approaches for imputation tasks. Further-
more, Fang et al. (2020) explored advanced deep learning
techniques like GRU-D, GRUI-GAN, and E2GAN for im-
puting missing values in time series data [15]. Du et al.
introduced a novel deep-learning model to impute missing
values by leveraging a self-attention mechanism and joint-
optimization training approach. This method demonstrates
its potential for addressing missing data challenges in im-
putation accuracy and training speed, particularly for mul-
tivariate time series data [13]. Kazijevs et al. (2023) [22]
conducted a comprehensive survey on the imputation of
missing values in multivariate time series data. Notably, the
authors adeptly addressed the limitations of existing stud-
ies in this field by conducting data-centric experiments on
health datasets, shedding light on effective strategies for
handling missing data in complex temporal contexts. Em-
manuel et al. (2021) carried out an exhaustive examination
of machine learning techniques for handling missing data.
Their survey covered patterns and mechanisms of missing-
ness, evaluation metrics, and various approaches for han-
dling missing data [14]. They assessed the performance of
these techniques on various datasets and identified noise as
a negative factor impacting imputation methods. However,
the study acknowledged limitations: the absence of non-
linear terms in the models and the high computational cost
associated with the most effective methods.
To address the limitations, this study investigates a new

framework for imputing missing values in univariate time
series data. The proposed approach, named weighted
bi-directional imputation (WBDI), utilizes machine learn-
ing models to capture complex patterns and relationships
within the data. WBDI leverages data from both before and
after the missing segment, incorporating weights to priori-
tize relevant information. This combined approach aims to
improve the learning process and enhance the accuracy of

imputation.
The structure of the paper is organized as follows: In Sec-

tion 2, we provide a detailed description of the methods ap-
plied in this study. Section 3 outlines the experiments con-
ducted. The presentation of results and subsequent discus-
sion are presented in Section 4. Some concluding remarks
are given in Section 5

2 Methodology
In this section, we present our proposed approach for imput-
ing missing values in univariate time series by combining
the forecasting results before and after the studied gap, si-
multaneously considering weights for each part of the data.
We then briefly introduce the machine learning algorithms
used for implementing the proposal.

2.1 The proposed approach, WBDI
The central concept explored in this article involves ap-
plying machine learning techniques to address the issue of
missing data. The proposed approach, termed weighted bi-
directional imputation (WBDI), encompasses utilizing the
available data before and after the missing segments to im-
pute the missing values considering weights for each part
of the available data. This makes it possible to enhance the
learning database and the size of learning data so it can im-
prove the performance of the imputation process.
The methodology comprises four sequential steps, as il-

lustrated in Fig. 2. Firstly, for each gap, the data preced-
ing and succeeding this gap are considered two learning
datasets. Then these univariate data are transformed into
multivariate data by choosing an appropriate window size.
Subsequently, each machine learning model is trained on
the forward and backward data corresponding to the miss-
ing position. Many ML methods are employed to predict
the absent values. Finally, the outcome is derived by amal-
gamating the predictions from both models based on the
weights assigned to each part of the results. The details are
presented as follows:
Step 1 - Transforming data: The univariate data are

split into two datasets: the available data before the gap, de-
notedDbefore, and the available data after the gap, namely
Dafter. At this step, by determining the suitable win-
dow size N , the univariate datasets are converted into N-
dimensional data. This indicates that the next value in the
time series is predicted using the N previous values, and
the preceding value is estimated using the N subsequent
values. In particular, the training set and output vector with
the Xbefore database are forward direction from x1 (see
Fig. 1). As illustrated in Fig. 1, the training set and out-
put vector for the Xbefore data are backwards set up from
xd.
Step 2 - Training model: At this stage, the machine

learning algorithms are trained on the dataset (Xbefore),
called fbefore, and on the dataset (Xafter), called fafter.
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Table 1: Method overview

Paper Dataset Model Metric Key finding

Moritz
et al.
(2015)

Airpass
Beersales
Google
SP dataset

LOCF
Linear and
Spline inter-
polation

RMSE
MAPE

LOCF imputes missing values in stable
time series but fails with seasonality or
trends. Linear and spline interpolation per-
forms better, with spline handling complex
non-linear patterns.

Chaudhry
et al.
(2019)

LTE spectrum Kalman filter MAPE, Stan-
dard Error of
Mean

Converting highly seasonal univariate data
to a multivariate form and using MICE
significantly improves imputation and pre-
diction accuracy, outperforming traditional
methods like Kalman filtering.

Phan
et al.
(2020)

CO2 concentrations,
Phu Lien humid-
ity/temperature, Cua
Ong air temperature

DTWBI,
eDTWBI

Similarity,
NMAE,
RMSE, FSD,
FB

Both methods outperform traditional im-
putation techniques; eDTWBI particu-
larly enhances accuracy and preserves fre-
quency components in seasonal data with
extensive missing periods

Phan
et al.
(2020)

CO2 concentrations,
Phu Lien air temper-
ature, NNGC, Ba Tri
temperature

SVM, RF Similarity,
NMAE,
RMSE, FSD,
FB

Both SVM and RF-based imputation meth-
ods show significant improvements in ac-
curacy for imputing missing values in uni-
variate time series data, outperforming
other techniques

Fang,
Wang
C.
(2020)

PhysioNet datasets
(MIMIC-III, KDD)

GRU-D,
GRUI-GAN,
E2GAN

MSE, MAE,
RMSE, AUC

Each model offers unique approaches to
handle missing data in time series, with
E2GAN achieving state-of-the-art perfor-
mance in imputation tasks

Wenjie
Du
(2022)

PhysioNet-2012 Air-
Quality Electricity

Self-attention MAE RMSE
MRE

The SAITS model outperformed existing
imputation methods, showing lower error
rates in filling missing values in time-series
data

Han
et al.
(2023)

WWTP SVR RMSE SIM UIM surpasses seven methods for imput-
ing WWTP missing values, yielding better
RMSE, similarity, and efficiency. Suitable
for nonlinear, nonstationary data.

Figure 1: Data transformation

In this paper, we conduct eleven well-known machine
learning models to estimate missing values.
Step 3 - Forecasting missing data: To predict T ab-

sent values, the proposed model involves applying T times
the process of one-step-ahead prediction. The final one in-
dicates that an output value will be forecasted based on a
given set of observed data. The predicted value at each step
appending to the original data will be used to estimate the

next outcome.
Predicting the T values for the (Xbefore) data is ex-

plained in detail as follows:

– i) Using ML models to predict the missing value at
time t based on N previously real data points.

– ii) Using MLmodels to forecast the value at time t+1
based on N historical values in which N − 1 are real
values of the original series from t −N + 1 to t − 1,
and the predicted value at time point t

– ...

– T) UsingMLmodels to forecast the value at time t+T
based on N past values in which N − T are actual
values of the real series from t−N+T to t−1, and T
previously predicted values. Finally, we get Ybefore.
For data Xafter, we repeat from step 1 to step T to
obtain the estimated values Yafter.
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Figure 2: Process of imputing on univariate time series

Step 4 - Combining results: After both forecasting pro-
cesses are finished, the two predicted values will be com-
bined taking into account the contribution of the learning
dataset size, namely (α) ratio. The α coefficient represents
the proportion of the size of the data. It is determined by
the relative sizes of the datasets from before and after the
missing gap. The rationale behind using dataset length as
a weighting factor is that longer datasets generally provide
more reliable information for prediction. If one dataset is
larger than the other, it will have a greater contribution to
the final result. This alpha coefficient represents the ratio
between preceding and following data shown in Formula 1.
This coefficient takes values between 0 and 1, the larger the
value, the more it affects the final result.

α =
len(Dbefore)

len(Dbefore) + len(Dafter)
(1)

Finally, the result is calculated as follows:

FinalResult = α× Ybefore + (1− α)× Yafter (2)

2.2 Machine learning methods
This paper investigates the performance of machine learn-
ing methods for predicting missing data in the time series.
A variety of machine learning algorithms are employed,
ranging from simple linear models like Linear Regression
to complex ensemble methods. Linear Regression serves as
a baseline for comparison, while algorithms such as KNN,
SVM, and Decision Trees were selected due to their abil-
ity to model non-linear patterns within the data. Ensem-
ble methods, including Random Forest, Extra Trees, Gra-
dient Boosting, AdaBoost, and XGBoost, are incorporated
to potentially enhance predictive performance through the
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combination of multiple models. A summary of these algo-
rithms is presented in this section.

2.2.1 Linear Regression (LR)

LR is a statistical method used for modeling the relationship
between a dependent variable and one or more independent
variables. The fundamental idea behind linear regression
is to find the best-fitting linear relationship (a straight line)
that minimizes the sum of the squared differences between
observed and predicted values. This method is widely used
for prediction, understanding relationships between vari-
ables, and identifying the strength and direction of those
relationships [28].
The model assumes that the relationship between the

variables can be represented by a linear equation of the
form:

y = β0 + β1 × x1 + β2 × x2 + ...+ βn × xn + ϵ (3)

where y is the dependent variable, x1, x2, ..., xn are the
independent variables, β0 is the intercept, β1, β2, ..., βn are
the coefficients representing the relationship’s slope, ϵ is the
error term, representing the unobserved factors affecting the
dependent variable.
The coefficients (β values) are estimated using ordinary

least squares, which minimizes the sum of squared differ-
ences between the observed and predicted values.

2.2.2 K-Nearest Neighbor (KNN)

KNN is a supervised machine learning algorithm used
for classification and regression tasks. KNN is a non-
parametric and lazy learning algorithm, meaning it doesn’t
make assumptions about the underlying data distribution
and it postpones the actual learning until a prediction is
needed. The performance of KNN can be influenced by the
choice of distance metric, the value ofK, and the nature of
the data.
For classification tasks, to predict the class of a new

data point, the algorithm identifies K nearest data points
in the training set based on a distance metric (commonly
Euclidean distance). As illustrated in Fig.3, the predicted
class is then determined by the majority class among these
K neighbors.
For regression tasks, to predict the target value for a new

data point, the algorithm determines K nearest data points
in the training set. After that, the predicted value is com-
puted as the average (or weighted average) of the target val-
ues of theseK neighbors [23].

2.2.3 Support Vector Machine (SVM)

SVM is a popular supervised machine learning algorithm
used for both classification and regression tasks. In the
context of classification, as shown in Fig. 4, SVM aims
to find a hyperplane that best separates the data into differ-
ent classes while maximizing the margin between classes.

Figure 3: K-Nearest Neighbor algorithm

The margin is the distance between the hyperplane and the
nearest data points of each class.
For the regression task, the goal is to predict a continuous

output variable, SVM shares the basic principles of SVM
for prediction of real-valued quantities. It aims to find a
hyperplane to capture the underlying trend in the data rather
than separating classes.
To address scenarios where the relationship between in-

put features and the target variable is non-linear, SVM em-
ploys kernel functions. These functions facilitate the map-
ping of input data into a higher-dimensional space, enabling
the algorithm to capture intricate non-linear relationships
that may exist in the underlying data. SVM proves par-
ticularly advantageous in situations characterized by non-
linearities or when dealing with noisy data, showcasing its
versatility in handling complex real-world regression prob-
lems [11].

Figure 4: Support Vector Machine

2.2.4 Decision Tree (DT)

DT is known for its interpretability and ease of visualiza-
tion. This method is capable of handling both numerical
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and categorical data and can automatically handle feature
selection. It works by recursively partitioning the dataset
into subsets based on the values of input features. The goal
is to create a tree-like structure where each internal node
represents a decision based on a particular feature, each
branch represents the outcome of that decision, and each
leaf node represents the final prediction or decision (Fig. 5).
However, it is vulnerable to overfit, especially when the tree
is deep and captures noise in the training data. Techniques
like pruning and setting a minimum number of samples per
leaf are often used to mitigate overfitting [5].
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Figure 5: Decision Tree algorithm

2.2.5 Bagging

Bagging which stands for Bootstrap Aggregating, is an en-
semble learning technique designed to improve the stabil-
ity and accuracy of machine learning algorithms. It in-
volves training multiple instances of a base learning algo-
rithm on different subsets of the training data and then com-
bining their predictions. The process of creating these sub-
sets involves random sampling with replacement, a method
known as bootstrap sampling.
The key idea behind Bagging is that by training multiple

models on diverse subsets of the data and combining their
predictions, the ensemble model tends to generalize better
and be more robust to variations in the training data. One
of the most well-known implementations of Bagging is the
Random Forest algorithm, which employs bagging with de-
cision trees as the base models.
The benefits of Bagging include reducing overfitting,

improving model stability, and enhancing predictive per-
formance, especially when dealing with complex or noisy
datasets [6].

2.2.6 Random Forest (RF)

RF is an ensemble learning method that builds multiple de-
cision trees using bootstrapped samples of the training data
and a random subset of features at each split [7]. The al-
gorithm combines the predictions of these trees through a

voting mechanism (for classification) or averaging (for re-
gression) to improve overall predictive accuracy and gener-
alization to new, unseen data. The randomness introduced
in the tree-building process helps reduce overfitting and en-
hances the robustness and effectiveness of the model. Fig.
6 explains the main point of RF.
The key features of the Random Forest algorithm encom-

pass its capability to handle high-dimensional datasets, pro-
vide assessments of feature significance, andmaintain good
performance without extensive hyperparameter tuning. It is
a powerful and widely used algorithm in machine learning,
known for its versatility and effectiveness in various appli-
cations.

Figure 6: Random Forest algorithm

2.2.7 Extra Tree (ET)

ET is an ensemble learning algorithm that builds multiple
decision trees during training, and for each split in the trees,
it randomly selects the feature to split on and chooses the
splitting threshold without searching for the optimal values.
This introduces extra randomness compared to Random
Forests, leading to a diverse set of trees that collectively
make predictions for classification or regression tasks. The
final prediction is typically determined by averaging (for re-
gression) or voting (for classification) over the predictions
of individual trees in the ensemble.
The extra randomness in ET can lead to a reduction in

variance, making it less prone to overfitting on the training
data. ETs can be particularly useful in scenarios where a
diverse set of weak learners (trees) is desired to create a
robust and accurate ensemble model [18].

2.2.8 AdaBoost

AdaBoost is an ensemble learning method that focuses
on improving the performance of weak learners by giv-
ing more weight to misclassified instances. It iteratively
combines weak models, emphasizing the areas where they
struggle. In the context of time series imputation, AdaBoost
can be effective in capturing and improving imputation ac-
curacy for specific temporal patterns that may be challeng-
ing for other algorithms. Its adaptive nature makes it partic-
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ularly useful when dealing with complex and dynamic time
series data [16].
In various problem domains, AdaBoost emerges as a ver-

satile tool. By adeptly capturing and improving imputa-
tion accuracy for specific temporal patterns, AdaBoost con-
tributes to enhancing the overall accuracy of the final pre-
dictions.

2.2.9 Gradient Boosting (GB)

GB is a method employed in the development of predictive
models, predominantly applied in regression and classifica-
tion tasks. This technique often represents prediction mod-
els through decision trees to determine the most accurate
predictions. Similar to other boosting methods, Gradient
Boosting builds multiple weak learners sequentially, with
each one correcting the errors of its predecessor. It uses a
gradient descent optimization process to minimize the loss
function.
In time series imputation, Gradient Boosting can learn

and adapt to the temporal patterns, iteratively improving
the imputation accuracy. The sequential nature of boosting
allows the model to focus on challenging instances, mak-
ing it robust in handling missing values across various time
points [17].
Furthermore, the iterative nature of Gradient Boosting

facilitates nuanced learning from the sequential nature of
time series data, enabling themodel to capture evolving pat-
terns over time. This adaptability enhances its performance
in scenarios where temporal dependencies play a crucial
role in the imputation process. The gradient descent opti-
mization ensures a systematic refinement of the model, op-
timizing its predictive capabilities across varying temporal
contexts.

2.2.10 XGBoost(XGB)

XGB is an optimized and efficient implementation of gra-
dient boosting that includes regularization and parallel pro-
cessing, making it highly effective for various machine
learning tasks. In time series imputation, XGBoost ex-
tends the principles of gradient boosting to handle miss-
ing data points efficiently. Its regularization techniques
contribute to preventing overfitting, while parallel process-
ing enhances computational efficiency, making XGBoost
a powerful choice for accurate and scalable imputations in
time series data [10].
The robustness of XGBoost in handling time series data

is underscored by its ability to capture intricate temporal de-
pendencies, enabling themodel to discern evolving patterns
over consecutive time points.

2.2.11 Voting

Voting is an ensemblemethod that combines the predictions
of multiple models (e.g., classifiers or regressors) and se-
lects the most common prediction for classification or av-
erages the predictions for regression. In time series imputa-

tion, a voting ensemble can provide a robust and balanced
approach by aggregating the predictions of different algo-
rithms. This approach leverages the diversity of models to
handle various temporal patterns, contributing to a more re-
liable and accurate imputation process [12].
The versatility of a voting ensemble extends to its adapt-

ability in handling dynamic time series data, where the tem-
poral evolution of patterns requires a nuanced approach. By
leveraging the collective insights frommultiple algorithms,
the ensemble method provides a comprehensive perspec-
tive, capturing the nuances of temporal dependencies. In
this study, we use all of the mentioned methods including
LR, KNN, SVM, DT, Bagging, RF, ET, AdaBoost, GB, and
XGB to develop Voting approach.

3 Experiments

3.1 Data description
To assess the effectiveness of machine learning methods
in imputing missing data, experiments are conducted using
three real-world univariate time series. These datasets are
selected from different fields, with different data collection
frequencies. This ensures the generalizability of the impu-
tation strategy. Details about each data set are presented in
the table 2.

3.2 Experiments setting
To conduct experiments, we utilized Google Colaboratory
for parallel training with 12GB RAM allocated per training
session. We implemented ten machine learning algorithms
from the Scikit-learn library for the imputation task: Lin-
ear Regression, K-Nearest Neighbors Regression, Support
Vector Regression, Decision Tree and Extra Tree Regres-
sion, AdaBoost Regression, Bagging Regression, Gradient
Boosting Regression, and Random Forest Regression), and
Voting Regression. Additionally, we employed the XG-
BRegressor model from the XGBoost library to further en-
hance the imputation capabilities.

3.3 Experiment protocol
Indeed, we are unable to assess the performance of impu-
tation algorithms on actual missing data. Consequently, to
compare the effectiveness of imputation methods, we must
generate simulated missing values on complete data. We
employ a three-step method for evaluating the outcomes as
follows: i) Step 1 creates simulated missing data. ii) and iii)
the final step is to evaluate the performance of these meth-
ods.

– Creating missing data: In this study, for each dataset,
different gaps with various sizes are created at ran-
dom positions. Specifically, for the Phu Lien humidity
dataset with monthly sampling, the gap size is 6, 12,
18, 24, and 36 data points respectively. It corresponds
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Table 2: Datasets summary

Name of Data Number Sample Period

Phu Lien humidity 672 (Monthly) 1959 - 2014
Cua Ong temperature 9,858 (Daily) 1973 - 1999
Ha Noi water level 29,224 (3 hours) 2008 - 2017

to missing data for 6 months, 12 months, 18 months,
24 months, and 36 months. In the case of the Cua
Ong temperature dataset, which features daily sam-
pling, the missing gap sizes will range from 7, 14, 30,
90, and 180 data points. It corresponds to missing data
for 1 week, 2 weeks, 1 month, 3 months, and 6months.
Meanwhile, for the Ha Noi water level dataset, with a
sampling frequency of every 3 hours, the missing gap
sizes to be addressed including 8, 16, 24, 40, and 56
data points. It corresponds to missing data for 1 day,
2 days, 3 days, 5 days, and 7 days.

– Filling missing data: the imputation algorithms are
employed to fill in the missing values within the
dataset.

– Evaluating the performance of ML methods: in this
step, the performance of the imputation methods is as-
sessed using different indicators as defined below.

3.4 Evaluation metric
To evaluate the performance of ML methods based on the
proposal for the time series imputation task, we use the fol-
lowing metrics: Similarity (Sim), Normalized Mean Ab-
solute Error (NMAE), Root Mean Square Error (RMSE),
Fraction of Standard Deviation (FSD), Fractional Bias (FB)
[25]. All metrics denote y as actual values and ŷ as im-
puted values. we will split the actual part and then separate
and remove it from the original data to simulate the missing
scenario. For the forecasting data, the input of the model is
considered as follows:

y = f(tT−n, tT−n+1, . . . tT )

where tT−n, tT−n+1, . . . tT is the last n observation val-
ues in original data, T is the length of original data. After
prediction, the result is concatenated into the previous input
and removed from the first value of the set of inputs for the
next forecasting value.

1. Similarity (Sim) - refers to the proportion that is sim-
ilar between the real values (y) and the imputed value
ŷ. It is computed as:

Sim(y, ŷ) =
1

T

T∑
t=1

1

1 + |yi−ŷi|
max(ŷ)−min(ŷ)

where T is the number of missing values. A greater
similarity (Sim value ∈ [0, 1]) indicates a superior

capacity to fill in the missing variables. In the case of
constant (ŷ = constant), we set max(ŷ)−min(ŷ) = 1.

2. Normalized Mean Absolute Error, NMAE is the aver-
age of the absolute difference between real values (y)
and the imputed value ŷ:

NMAE(y, ŷ) =
1

T

T∑
t=1

|yi − ŷi|
Vmax − Vmin

Where Vmax and Vmin are the maximum and the min-
imum values of the input time series (time series has
missing data) by ignoring the missing values. The
range of NMAE value is from 0 to∞. A better perfor-
mance for the imputation task is indicated by a lower
NMAE value.

3. Root Mean Square Error, RMSE is determined by cal-
culating the mean of the squared differences between
y and ŷ. This metric proves highly valuable in assess-
ing overall precision or accuracy. Generally, a more
effective method would exhibit a lower RMSE.

RMSE(y, ŷ) =

√√√√ T∑
t=1

(yi − ŷi)2

4. Fraction of Standard Deviation, FSD is determined by
dividing the fraction of standard deviation (SD) be-
tween y and ŷ. This index indicates Whether a method
is acceptable or not

FSD(y, ŷ) = 2 ∗ |SD(y)− SD(ŷ)|
SD(y) + SD(ŷ)

For the imputation task, the imputation values are
more relative to the actual values if FSD is closer to 0.

5. Fractional Bias, FB determines whether the imputa-
tion values are overestimated or underestimated rela-
tive to those observed.

FB(y, ŷ) = 2 ∗ Mean(y)−Mean(ŷ)

Mean(y) +Mean(ŷ)

A model is considered perfect when its FB tends to 0
and acceptable when −0.3 ≤ FB ≤ 0.3.
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4 Results and discussion
In this study, we focus on handling missing data in mono-
dimensional time series data. Therefore, to be able to apply
supervised ML methods, we first need to convert data from
1-dimensional to multi-dimensional data. We set up differ-
ent schemes with the aim of finding out which dimension
gives the best results.

– In the first scheme, the window size (i.e. the number
of previous values used to predict the next one) is cho-
sen exactly equal to the gap size. With the Phu Lien
humidity dataset, the window sizes are 6, 12, 18, 24,
and 36, respectively, equivalent to 6, 12, 18, 24, and
36 months. For Cua Ong temperature time series, the
gap sizes are 7, 14, 30, 90, and 180 s equivalent to 1
week, 2 weeks, 1 month, 3 months, and 6 months. For
the Hanoi water level data set, the gap sizes are 8, 24,
40, 56, and 112 corresponding to missing data for 1
day, 3 days, 5 days, 1 week, and 2 weeks.

– In the second scheme, we choose thewindow size to be
equal to the missing data in 1 quarter. Specifically, for
the data sets of Phu Lien humidity, Cua Ong temper-
ature, and Hanoi water level, the number of previous
data points used to predict the next value are 3, 90, and
720 points, respectively.

– In the third scheme, the window size is set to match
the missing data in a year. In particular, the number of
preceding data points utilized to forecast the next value
for the datasets of Phu Lien humidity, Cua Ong tem-
perature, and Hanoi water level is 12, 365, and 2920
data points, correspondingly.

For each gap, all the ML algorithms are conducted 10
times by randomly selecting the missing positions on the
data. We then run 50 times for each data set and each win-
dow size.
Performance of WBDI.
Table 3, 4 and 5 demonstrate the average performance of

eleven machine learning methods on three univariate time
series datasets for the imputation task using various indices.
The best results for each gap are highlighted in bold.
As depicted in Table 3, on the Phu Lien humidity time se-

ries with monthly frequency sampling, among the machine
learning approaches, ensemble learning methods perform
better than other ones. Especially, the AdaBoost and Bag-
ging methods consistently indicate superior performance
across all gap size configurations. These methods achieve
the lowest NMAE, RMSE, and highest Similarity metrics
on every missing rate. However, when considering FSD
and FB indices, AdaBoost andBagging do not achieve good
results compared to quantitative indicators such as NMAE,
RMSE, and Similarity. Following AdaBoost and Bagging
is another ensemble learning ET method. This method
gives the same performance as AdaBoost when the data is
missing 1, 2, and 3 years, corresponding to 12, 24, and 36

missing points. Next, we can mention RF and GB meth-
ods. Although the two methods do not give good results
at all missing levels like AdaBoost and Bagging, they do
well at incomplete ratios of 12 months, and at other miss-
ing levels, it is always behind AdaBoost. KNN, LR, and
SVMmethods generate the least accurate results compared
to ensemble learning methods for the Phu Lien humidity
dataset.
For the Cua Ong temperature time series, data collected

daily from 1973 to 1999, we see that the AdaBoost method
once again demonstrates the ability to predict missing val-
ues in time series data (table 4). Considering quantitative
metrics, AdaBoost always produces the highest Similarity
results and the lowest NMAE and RMSE errors at all levels
of missing data. Following AdaBoost is Bagging at missing
data levels of 2 weeks, and 1 month, and this method gives
the same performance as AdaBoost at missing rates of 1
week, 3 months, and 6 months, respectively, when consid-
ering quantitative indicators. Tree-based ensemble meth-
ods such as RF, ET, or GB are methods with performance
right after the Bagging method. Especially for the Cuong
temperature data set, the LR method does not show well
the possibility of estimating missing data For the two in-
dexes FSD and FB, the ML methods produce unstable re-
sults: sometimes it’s RF, SVM, and sometimes AdaBoost.
Table 5 demonstrates the performance of eleven ML

methods at five different gap sizes on the Hanoi water level
dataset, with a sampling frequency of 3 hours. The results
show that AdaBoost once again proves its ability to esti-
mate incomplete data. This method gives good results of a
3/5 missing rate when paying attention to quantitative in-
dicators. Specifically, This model holds the most elevated
position in 3 gaps: 8, 56, and 80 missing points correspond
to 1 day, 3 days, and 1 week. In this table, we can see that
when predicting missing results within 1 day (8 consecu-
tive missing points), all ML methods produce better results
when estimating larger missing values. For the other gaps,
the performance of machine learning methods varies, but
AdaBoost still stands at the top 3 executed models regard-
ing Similarity, NMAE, and RMSE indices. Following Ad-
aBoost are other ensemble learning methods such as ET or
Bagging. The result indicates, another time, the strength of
the ensemble machine-learning method for imputating in-
complete values in time series data. The results generated
from LR and SVM are similar to the previous two data sets,
Cua Ong temperature and Phu Lien humidity. These two
methods indicate poorer performance compared to other
methods when performing the predicting task of missing
data.
In addition to comparing the performance of algorithms

using evaluation metrics, in this study, we also conduct
comparisons of how well different imputation techniques
perform in terms of visualization. The prediction data gen-
erated by AdaBoost, RF, LR, and SVM algorithms on the
Hanoi water level dataset is depicted in figure 7 with 5 days
missing. We can see from this figure that AdaBoost accu-
rately represents the shape and dynamics of real data. On
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Table 3: Performance of different ML models on Phu Lien dataset for imputing missing data.

Gap Size Model Name Similarity NMAE RMSE FSD FB

6

DT 0.91 0.10 0.11 0.65 0.18
ET 0.91 0.10 0.11 0.65 0.18
AdaBoost 0.92 0.10 0.11 0.74 0.19
GB 0.91 0.10 0.11 0.65 0.18
XGB 0.87 0.15 0.18 0.45 0.16
RF 0.91 0.11 0.13 0.45 0.23
Bagging 0.92 0.10 0.11 0.74 0.19
Voting 0.91 0.10 0.11 0.65 0.18
LR 0.87 0.15 0.18 0.45 0.16
KNN 0.91 0.11 0.13 0.45 0.23
SVM 0.88 0.15 0.18 0.29 0.09

12

DT 0.91 0.11 0.13 0.58 -0.01
ET 0.91 0.11 0.13 0.58 -0.01
AdaBoost 0.91 0.11 0.13 0.58 -0.01
GB 0.91 0.11 0.13 0.58 -0.01
XGB 0.87 0.15 0.18 0.44 0.00
RF 0.91 0.11 0.13 0.58 -0.01
Bagging 0.91 0.11 0.13 0.58 -0.01
Voting 0.91 0.11 0.13 0.58 -0.01
LR 0.87 0.15 0.18 0.44 0.00
KNN 0.91 0.11 0.13 0.58 -0.01
SVM 0.87 0.15 0.18 0.44 0.00

18

DT 0.91 0.10 0.12 0.50 -0.01
ET 0.91 0.10 0.13 0.57 0.00
AdaBoost 0.92 0.09 0.11 0.40 0.08
GB 0.91 0.10 0.13 0.57 0.00
XGB 0.88 0.14 0.18 0.24 0.15
RF 0.91 0.11 0.14 0.36 0.02
Bagging 0.92 0.09 0.11 0.40 0.08
Voting 0.91 0.11 0.14 0.36 0.02
LR 0.91 0.11 0.14 0.36 0.02
KNN 0.91 0.11 0.14 0.36 0.02
SVM 0.91 0.11 0.14 0.36 0.02

24

DT 0.92 0.09 0.12 0.49 -0.05
ET 0.92 0.09 0.12 0.49 -0.05
AdaBoost 0.92 0.09 0.12 0.49 -0.05
GB 0.92 0.09 0.12 0.49 -0.05
XGB 0.87 0.16 0.21 0.42 0.06
RF 0.91 0.11 0.15 0.52 -0.04
Bagging 0.92 0.09 0.12 0.49 -0.05
Voting 0.92 0.09 0.12 0.49 -0.05
LR 0.87 0.16 0.21 0.42 0.06
KNN 0.92 0.09 0.12 0.49 -0.05
SVM 0.87 0.16 0.21 0.42 0.06

36

DT 0.92 0.09 0.10 0.31 0.02
ET 0.92 0.09 0.10 0.31 0.02
AdaBoost 0.92 0.09 0.10 0.31 0.02
GB 0.89 0.13 0.16 0.57 0.10
XGB 0.87 0.16 0.20 0.31 0.14
RF 0.87 0.16 0.20 0.31 0.14
Bagging 0.92 0.09 0.10 0.31 0.02
Voting 0.89 0.13 0.16 0.57 0.10
LR 0.87 0.16 0.20 0.31 0.14
KNN 0.87 0.16 0.20 0.31 0.14
SVM 0.87 0.16 0.20 0.31 0.14

the other hand, the other methods show significant discrep-
ancies in capturing the characteristics of the data.
Performance of WBDI and some state-of-the-art

methods.
We also conduct a separate analysis using the PhuLien

dataset to evaluate the performance of WBDI (AdaBoost)
and other state-of-the-art (SOTA) models across various
gap sizes. The results, presented in Table 6, demon-

strate promising outcomes, consistently outperforming tra-
ditionalmethods. The findings indicate that theWBDI (Ad-
aBoost) model outperforms state-of-the-art methods (ML-
BUI_RF, MLBUI_SVM, and SAITS) across different gap
sizes. WBDI consistently achieves higher similarity scores,
reflecting a stronger alignment between predicted and ac-
tual data. As the gap size increases, WBDI exhibits de-
creasing NMAE and RMSE values, which suggest im-
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Table 4: Performance of different ML models on Cua Ong dataset for imputing missing data.

Gap Size Model Name Similarity NMAE RMSE FSD FB

7

DT 0.96 0.04 0.04 1.11 -0.02
ET 0.96 0.04 0.04 1.11 -0.02
AdaBoost 0.96 0.04 0.04 1.11 -0.02
GB 0.96 0.04 0.04 1.11 -0.02
XGB 0.91 0.10 0.10 0.52 -0.12
RF 0.92 0.09 0.11 0.89 0.00
Bagging 0.96 0.04 0.04 1.11 -0.02
Voting 0.92 0.09 0.11 0.89 0.00
LR 0.91 0.10 0.10 0.52 -0.12
KNN 0.92 0.09 0.11 0.89 0.00
SVM 0.91 0.10 0.10 0.52 -0.12

14

DT 0.91 0.10 0.11 1.10 0.15
ET 0.91 0.10 0.11 1.10 0.15
AdaBoost 0.92 0.09 0.10 1.22 0.09
GB 0.91 0.10 0.11 1.10 0.15
XGB 0.90 0.12 0.14 0.55 0.16
RF 0.90 0.12 0.14 0.55 0.16
Bagging 0.91 0.10 0.11 1.10 0.15
Voting 0.91 0.10 0.11 1.10 0.15
LR 0.90 0.12 0.14 0.55 0.16
KNN 0.91 0.10 0.11 1.10 0.15
SVM 0.90 0.12 0.14 0.55 0.16

30

DT 0.91 0.11 0.14 0.84 0.18
ET 0.91 0.11 0.14 0.84 0.18
AdaBoost 0.92 0.09 0.11 1.33 0.06
GB 0.91 0.11 0.14 0.84 0.18
XGB 0.90 0.11 0.13 0.79 0.04
RF 0.90 0.11 0.13 0.79 0.04
Bagging 0.91 0.11 0.14 0.84 0.18
Voting 0.90 0.11 0.13 0.79 0.04
LR 0.90 0.11 0.13 0.79 0.04
KNN 0.90 0.11 0.13 0.79 0.04
SVM 0.90 0.11 0.13 0.79 0.04

90

DT 0.92 0.09 0.11 0.91 0.12
ET 0.92 0.09 0.11 0.91 0.12
AdaBoost 0.93 0.07 0.09 0.37 0.05
GB 0.92 0.09 0.11 0.91 0.12
XGB 0.87 0.17 0.20 0.54 -0.03
RF 0.91 0.11 0.13 0.78 0.12
Bagging 0.93 0.07 0.09 0.37 0.05
Voting 0.92 0.09 0.11 0.35 -0.04
LR 0.88 0.14 0.17 0.34 0.04
KNN 0.91 0.11 0.13 0.78 0.12
SVM 0.91 0.11 0.13 0.78 0.12

180

DT 0.98 0.02 0.02 1.07 0.02
ET 0.98 0.02 0.02 1.07 0.02
AdaBoost 0.99 0.01 0.02 0.83 0.02
GB 0.98 0.02 0.02 1.07 0.02
XGB 0.91 0.11 0.12 0.84 0.24
RF 0.98 0.02 0.02 0.83 -0.02
Bagging 0.99 0.01 0.02 0.83 0.02
Voting 0.98 0.02 0.02 1.07 0.02
LR 0.91 0.11 0.12 0.84 0.24
KNN 0.98 0.02 0.02 0.85 -0.01
SVM 0.98 0.02 0.03 0.59 0.01

proved accuracy in handling larger data gaps. This can be
attributed to the robust nature of AdaBoost, which effec-
tively combines multiple weak learners. In contrast, ML-
BUI_RF and MLBUI_SVM display more fluctuations in
their performance. Although SAITS demonstrates compet-
itive Similarity scores, its performance in terms of NMAE
and RMSE generally lags behindWBDI. This suggests that
while SAITS might capture certain patterns effectively, it

may be less accurate in predicting numerical values. This
further validates WBDI as a highly effective and robust ap-
proach for time series imputation with varying gap sizes.
Overall, the experimental results strongly emphasize

WBDI (AdaBoost)’s consistent and superior performance
across different gap sizes, highlighting its robustness and
effectiveness in handling diverse data scenarios. These
findings underscore the importance of leveraging ensemble
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Table 5: Performance of different ML models on Ha Noi dataset for imputing missing data.

Gap Size Model Name Similarity NMAE RMSE FSD FB

8

DT 0.98 0.02 0.02 1.07 0.02
ET 0.98 0.02 0.02 1.07 0.02
AdaBoost 0.99 0.01 0.02 0.83 0.02
GB 0.98 0.02 0.02 1.07 0.02
XGB 0.91 0.11 0.12 0.84 0.24
RF 0.98 0.02 0.02 0.83 -0.02
Bagging 0.99 0.01 0.02 0.83 0.02
Voting 0.98 0.02 0.02 1.07 0.02
LR 0.91 0.11 0.12 0.84 0.24
KNN 0.98 0.02 0.02 0.85 -0.01
SVM 0.98 0.02 0.03 0.59 0.01

16

DT 0.97 0.03 0.03 0.89 -0.03
ET 0.97 0.04 0.04 0.52 -0.03
AdaBoost 0.92 0.12 0.13 1.27 -0.18
GB 0.90 0.14 0.14 0.63 -0.12
XGB 0.90 0.14 0.14 0.83 -0.16
RF 0.91 0.13 0.14 0.96 -0.16
Bagging 0.93 0.08 0.10 0.33 -0.16
Voting 0.91 0.12 0.13 0.57 -0.16
LR 0.97 0.04 0.04 0.83 -0.04
KNN 0.96 0.04 0.05 0.82 0.04
SVM 0.96 0.05 0.05 0.94 -0.09

24

DT 0.95 0.06 0.07 1.17 0.10
ET 0.95 0.06 0.07 1.17 0.10
AdaBoost 0.95 0.05 0.06 0.65 0.09
GB 0.95 0.06 0.07 1.17 0.10
XGB 0.89 0.14 0.15 0.55 0.28
RF 0.94 0.07 0.07 0.65 0.11
Bagging 0.93 0.09 0.10 0.72 0.02
Voting 0.95 0.06 0.07 1.17 0.10
LR 0.89 0.14 0.15 0.55 0.28
KNN 0.94 0.07 0.07 0.65 0.11
SVM 0.89 0.14 0.15 0.55 0.28

40

DT 0.97 0.04 0.05 0.90 0.07
ET 0.97 0.04 0.05 0.90 0.07
AdaBoost 0.96 0.05 0.05 1.02 0.10
GB 0.96 0.04 0.05 0.34 -0.06
XGB 0.90 0.13 0.14 0.91 0.32
RF 0.96 0.04 0.05 0.34 -0.06
Bagging 0.94 0.07 0.08 0.20 -0.22
Voting 0.96 0.04 0.05 0.34 -0.06
LR 0.90 0.13 0.14 0.91 0.32
KNN 0.96 0.04 0.05 0.34 -0.06
SVM 0.90 0.13 0.14 0.91 0.32

56

DT 0.96 0.04 0.05 1.15 0.02
ET 0.96 0.05 0.06 0.79 -0.03
AdaBoost 0.97 0.03 0.04 0.84 -0.05
GB 0.96 0.05 0.06 0.79 -0.03
XGB 0.90 0.13 0.14 0.48 -0.23
RF 0.90 0.13 0.14 0.48 -0.23
Bagging 0.97 0.03 0.04 0.84 -0.05
Voting 0.95 0.05 0.07 0.36 -0.01
LR 0.90 0.13 0.14 0.48 -0.23
KNN 0.95 0.05 0.07 0.36 -0.01
SVM 0.90 0.13 0.14 0.48 -0.23

techniques, particularly WBDI (AdaBoost), for achieving
accurate and reliable predictions in imputation tasks.

5 Conclusion

This study introduces a novel framework called Weighted
Bi-directional Imputation (WBDI) for handling missing

data in univariate time series. WBDI leverages information
from both before and after missing segments, incorporating
weights to prioritize relevant information. This approach
converts the data from univariate to multivariate format, al-
lowing machine learning models to capture richer tempo-
ral dynamics. Experiments using eleven machine learning
algorithms on three real-world datasets with varying sizes
and sampling frequencies employed five evaluation metrics
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Figure 7: Comparison of true values with predicted ones generated from AdaBoost, RF, LR, and SVMmethods on Ha Noi
water level for 5 days missing data

Table 6: Comparing performance of WBDI (AdaBoost) with some SOTA methods on Phu Lien time series

Gap Size Model Name Similarity NMAE RMSE FSD FB

MLBUI_RF [25] 0.84 0.21 0.24 0.90 0.55
MLBUI_SVM [25] 0.85 0.19 0.22 1.22 0.52
SAITS [13] 0.90 0.12 0.16 2.00 0.376

WBDI (AdaBoost) 0.93 0.08 0.09 0.03 0.17
MLBUI_RF [25] 0.91 0.11 0.14 1.03 0.12
MLBUI_SVM [25] 0.89 0.13 0.15 0.96 0.11
SAITS [13] 0.90 0.11 0.14 2.00 0.0912

WBDI (AdaBoost) 0.92 0.09 0.10 0.45 0.04
MLBUI_RF [25] 0.90 0.12 0.14 0.48 0.24
MLBUI_SVM [25] 0.91 0.10 0.12 0.26 0.15
SAITS [13] 0.88 0.14 0.18 2.00 0.2618

WBDI (AdaBoost) 0.94 0.07 0.09 0.29 0.06
MLBUI_RF [25] 0.89 0.13 0.15 0.77 0.02
MLBUI_SVM [25] 0.90 0.12 0.15 0.91 0.01
SAITS [13] 0.90 0.12 0.15 2.00 0.0424

WBDI (AdaBoost) 0.93 0.08 0.10 0.43 0.06
MLBUI_RF [25] 0.91 0.10 0.14 1.04 0.04
MLBUI_SVM [25] 0.91 0.10 0.14 1.00 0.04
SAITS [13] 0.90 0.12 0.14 2.00 0.1236

WBDI (AdaBoost) 0.93 0.08 0.10 0.60 -0.02

to assess performance. The results demonstrate the superi-
ority of ensemble methods, particularly AdaBoost, which

consistently achieved top performance across all configu-
rations. These findings suggest that WBDI is a promising



14 Informatica 48 (2024) 1–16 T.T.H. Phan

approach for handling missing data in univariate time se-
ries. In the future, further exploration of deep learning tech-
niques, such as recurrent neural networks, could potentially
lead to even better imputation results.
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