
 Informatica 29 (2005) 461–468 461

From Basic Agent Behavior to Strategic Patterns in a Robotic Soccer

Domain

Andraž Bežek and Matjaž Gams
Department of Intelligent Systems
Jožef Stefan Institute, Ljubljana, Slovenia
Andraz.bezek@ijs.si

Keywords: MAS modeling, strategy learning

Received: June 17, 2005

The paper presents an algorithm for multi-agent strategic modeling (MASM). The method applies

domain knowledge and transforms sequences of basic multi-agent actions into a set of strategic action

descriptions in the form of graph paths, agent actions, roles and corresponding rules. The rules,

constructed by machine learning, enrich the graphical strategic patterns, which are presented in the

form of graph paths. The method was evaluated on the RoboCup Soccer Server Internet League data.

Tests showed that the constructed rules successfully captured some decisive offensive moves and some

major defense flaws, although the description itself was a bit awkward and needed interpretation by a

human expert.

Povzetek: Predstavljen je sistem, ki si uči strateških vzorcev obnašanja iz enostavnega opazovanja

gibanja agentov v domeni robotskega nogometa.

1 Introduction
Multi-agent game modeling is related to the following
task: How can external observation of multi-agent
systems be used to analyze, model, and direct agent
behavior? Analysis of such systems must capture
complex world state representation and asynchronous
agent activities. From pure numerical data researchers
tend to construct complex knowledge-level structures,
typically in the form of rules or decision trees. These
high-level structures are useful when characterizing state
space, but lack the ability to clearly represent temporal
state changes occurred by agent actions. Comprehending
simultaneous agent actions and complex changes of state
space represents another problem. To capture such
qualitative information, most often a graphical
representation performs better in terms of human
understanding.

There were two major goals in the research presented
in this paper. One was designing strategic patterns from
basic agent behavior, and the second one was to present
the constructed knowledge in a graphical and symbolic
form. This paper therefore addresses the problem of
graphical and symbolic representation of strategic
patterns, describes an algorithm capable of discovering
strategic agent behavior, and enabling humans to
understand and study the underlying behavioral
principles.

The presented MASM algorithm translates multi-
agent action sequence and observations of a dynamic,
complex and multivariate world state into a graph-based
and rule-based strategic representation. By using
hierarchically ordered domain knowledge the algorithm
is able to generate strategic descriptions and
corresponding rules at different levels of abstraction. The
MASM scheme is presented in Figure 1.

Our approach is applied on a RoboCup Simulated
League domain (Noda et. al 1997, RoboCup 2004), a
multi-agent domain where two teams of 11 agents play
simulated soccer games. The domain accurately
simulates a physical 2D soccer but introduces uncertainty
by adding noise when calculating forces on objects.
Continuous time is approximated with discrete cycles.
All agents can move and act independently as long as
they comply with soccer rules. Agents communicate with
each other, but their visual and hearing perception is
distance-limited. The domain is quite complex and
represents a challenging multi-agent modeling task for
computers, but its soccer-related content makes it
comprehensible by humans familiar with soccer.

Figure 1: Multiagent System Modeling.

This paper is organized as follows. Section 2
thoroughly presents the MASM algorithm for creating
graphical strategic paths. In Section 3, the learning
algorithm is described for constructing symbolic strategic
descriptions. An evaluation of the described method is
presented in Section 4, and conclusion in Section 5.

462 Informatica 29 (2005) 461–468 A. Bezek et al.

2 Multi-Agent Strategic Modeling –

the Graphical Part
Our multi-agent strategic modeling (MASM) algorithm
transforms raw multi-agent action sequence into a set of
discovered strategic action descriptions with
corresponding rules. A strategic action description is a
description of an agent behavior that exhibits some
strategic activity. A strategic activity is a time-limited
multi-agent activity that exhibits some important or
unique domain-dependent characteristics.
Our approach is based on two basic processes:
1. Construction of graphical sequences of actions.
2. Learning symbolic rules.

The process in terms of creating increased higher-
level structures is presented in Figure 2.

1.

Numerical

data

(~3.000.000)

2.

Symbolic

data

(~140.000)

3.

Hierarchical

concepts

(~6.500)

4.

Graph

(~1.000)

5.

Strategic

sequences

(~100)

6.

In
cr

ea
si

n
g

 a
b

st
ra

ct
io

n

Strategic

rules

(~10)

Figure 2: Construction of strategic patterns.

First 5 steps, presented in Figure 2, are going to be

described in detail in this section and rule construction in
the next section.

At the lowest level, RoboCup games are presented as
time frames of agent and ball movements. For further
information see (Cheny at al. 2003, RoboCup 2004).

Figure 3: Raw data in numbers.

In a RoboCup game there are approximately 6000
equidistant time frames and 512 attributes (together
around 3,000,000 values of types integer, Boolean, and
real). An example of data is presented in Figure 3.

Figure 4: Visualization of raw data.

FROM BASIC AGENT BEHAVIOR TO … Informatica 29 (2005) 461–468 463

In Figure 4 there is a graphical presentation, i.e.
visualization of the same data as presented in Figure 3.
All game data was obtained from the Soccer Server
Internet League (Robocup 2004).

 In the next step, basic agent movement is
transformed into basic agent actions using simple
heuristic rules (Nair at al. 2002) such as: “An agent
performs action “dash” if it increases speed.” Each action
lasts one time cycle. From a typical game, around
140.000 basic agent actions are obtained such as:

time player → action

3192 LPlayer1 → catch
4012 LPlayer3 → kick
5400 RPlayer6 → dash
5900 RPlayer11 → turn

Figure 5: Basic agent actions.

In the next step, basic agent actions are transformed

into higher-level actions using domain knowledge
(Kaminka at al. 2002, Nair et al. 2003). The MASM
algorithm exploits taxonomies, i.e. hierarchical
representations of domain concepts. A concept x in a
taxonomy is an ancestor of a concept y, x ← y, if it
exhibits more general concept than the concept y. The
rationale behind using hierarchically ordered domain
knowledge is that this allows the MASM algorithm to
travel up and down in the hierarchy to produce more or
less abstract descriptions. Specifically, the MASM
algorithm makes use of:

� a taxonomy of agent roles
� a taxonomy of agent actions
� taxonomies of binary domain features.

Taxonomies were created from the Internet, using
Dictionary Of Soccer Terms, Concepts & Rules. Parts of

these taxonomies are presented in Figure 6, determining
agent roles and actions.

As agents in MAS can change roles and thus change
their behavior (Nair et al. 2003), agent roles are assigned
dynamically during agent activity. Each agent action is
assigned with its corresponding hierarchical
representation. Domain features are used to identify the
truth of some particular domain feature but only with an
association with another agent. For example, in a
RoboCup domain the feature HasBall is true only for
agent which controls the ball, and is false for all other
agents. Agent's roles and actions are used to describe the
activity of agents, while domain features are used to
describe the domain state space. An example assignment
of soccer role and action concepts is presented in Figure
6, some examples are presented below:

time player_role → action, action_duration

3192 LTeam.Goalkeeper → catch, 1
4012 LTeam. LeftForward → pass_to_player, 10
5400 RTeamRightFullback → speed_dribble, 12
5900 RTeam.LeftMidfielder → intercept, 8

Around 1000 such high-level agent actions are

constructed for a typical game.

Figure 6: High-level agent actions.

After agent-role assignment, an action graph (AG) is

constructed with the goal to create action patterns in a
graphical form of paths. An action graph is a directed
graph, where nodes represent state space at the start of
agent action and connections correspond to agent actions.

Nodes a and b are connected, a → b, if an action,
represented by node a, is followed by an action,
represented by node b. Terminal actions (i.e. the last
action in an action sequence) are connected to a terminal
node. For example, an action sequence {a,b,c} is

represented as an AG: a → b → c → cend. Node positions
are calculated from agent positions in a domain space.
An appropriate hierarchical action and role concepts are
assigned to each node (Bezek 2005). This enables the
MASM algorithm to generate more abstract descriptions
of agent role and actions. Each node also keeps an

464 Informatica 29 (2005) 461–468 A. Bezek et al.

original action instance (i.e. time cycle of an action in a
soccer game) of the represented action. A more detailed
description of action graphs and the construction process
is given in (Bezek 2004). An example action graph,
obtained from actions in a RoboCup game, is presented
in Figure 7.

Figure 7: An action graph.

Complex action graphs with many nodes (see Figure
7) are difficult to present in a transparent manner and are
thus difficult to comprehend by humans. A reasonable
approach to overcome this problem is to reduce the
number of nodes while at the same time preserving
attained action concepts. This can be accomplished with
hierarchical clustering of graph nodes. By merging the
nearest two graph nodes, we generate a new node that
represents common role and action concepts (i.e. first
hierarchically common parent of both concepts). The
rationale behind the merge process is that actions,
frequently occurring near in a domain space, define
strategic concepts. The distance between graph nodes is
defined as a weighted sum of distances between node
positions and conceptual distances between role and
action concepts. The merging process is then iterated. A
more in-depth description of the distance function and
the whole abstraction process is described in (Bezek,
Gams 2005).

The clustering process results in an abstract action

graph (AAG), which is an action graph where graph
nodes represent more than one agent action. It is
expected that abstract action graph describes agent
behavior in a more abstract way than the original action
graph. An abstract action graph, where minimal distance
between nodes is greater than dist, is labeled AAGdist.
Such graph can be achieved with repeated merging of
nearest nodes until the minimal distance between nodes
is grater than dist. An action description of a node in
AAGdist is a combination of a node position,
corresponding action and role concepts, and a parameter
dist. AAGs with greater value dist represent actions in a
more abstract way that AAGs with a lower dist value.
Therefore, the value of a dist parameter can be regarded

as a value of abstraction of an AAG. An example of an
abstract action graph A10 is presented in Figure 8.

In Figure 8 there are several connected arrows of
different length, positions and thickness. One example of
transformation from single actions into an aggregated
one is shown in Figure 9. It represents a common and
successful attack on the right side of the field, resulting
in a successful shoot on a goal. It is an example of a
desired graphical representation of a strategic pattern.

Figure 8: An abstract action graph (AAG10).

Figure 9: Transformation of agent actions into abstract
action sequence as part of action graph (AAG).

FROM BASIC AGENT BEHAVIOR TO … Informatica 29 (2005) 461–468 465

This strategic abstraction of agent actions is based on
clustering (Hirano et al. 2004, Riley at al. 2001), and on
conceptual distance, based on the domain taxonomies. As
a result, around 1000 of such structures are generated
from a typical game:

role → action: {(action_start, duration)+ }

LTeam.Goalkeeper → catch:
{(412, 1), (501, 1), (3192,1)}
LTeam.Forward → pass:
{(1412, 5), (3401,12), (4012,10) , (5573,7)}
RTeam.Defender → speed_dribble:
{(1607,16), (2372,9), (5400,12), (5521,22)}
RTeam.Midfielder → intercept:
{(392, 4), (4509, 9), (5900, 8)}

A list of subsequent actions with corresponding

symbolic description represents a strategy, i.e. a similar
and frequent multi-agent activity that leads to a strategic
situation. In an abstract action graph it is represented as a
path. Path nodes thus represent a sequence of strategic
actions.

What remains is construction of rules, as indicated
by step 6 in Figure 2.

3 Construction of Rules

First it should be noticed that strategies vary in several
parameters, such as number of actions (typical 2 to 4),
abstractness of actions (corresponding to the number of
single actions aggregated into one abstracted action),
location, direction etc. In general, a strategy generated
from AAG with a greater dist value is more abstract that
the one generated from AAG with lower dist value. The
strategy in Figure 9 was created using level of
abstractness 8 (=dist). The strategic action sequence is
presented in Table 1. From Table 1 and Figure 9 the
strategic action sequence can be described as (no. of
positive examples in parentheses):

Forward player passes a ball to a teammate (21 +),
who successfully dribbles (10 +), and
shoots towards a goal (23 +).
As a result, the ball ends in a goal (23 +)."

LTeam.FW:

Pass-to-player

LTeam.FW:

Control-dribble

LTeam.FW:

Successful-

shoot

LTeam.Field-
player:

Successful-

shoot-(end)

Table 1: A strategic action sequence.

The action sequence in Table 1 is graphically
presented as the path consisting of three connected
arrows in Figures 9 and 10. Each action (an arrow)
graphically starts from a circle (Figure 10) which
corresponds to the neighborhood including aggregated
actions. All circles in Figure 10 correspond to all
aggregating neighborhoods.

As each node/circle defines a unique action concept
it can be used to generate rules that describe this specific

agent action. In particular, we generate data for rule
inducing algorithms as follows: Positive examples are
action instances in a target node and negative examples
as instances in nearby nodes (i.e. near misses). For each
instance we generate all pairs of agent role-domain
feature and store the true ones.

We tested several approaches with association rules
(Agrawal et al. 1994, Srikant et al. 1995), but due to
complex representations we found the standard feature-
value approach as not suitable. Namely, agents
dynamically change roles and thus it is very difficult to
generate feature values for all roles. Therefore, instead of
feature-values we applied set-valued attributes that are
attributes whose domains are sets instead of single
values. In this way, each feature corresponds to one set-
valued attribute where the value is a set of agent roles,
whose corresponding agent-feature pair is true.

Figure 10: Strategy as a path in the abstract action graph,
and all potential learning examples as circles.

By using set-valued rule inducer, such as SLIPPER

(Cohen et al. 1999), the MASM algorithm is able to
generate rules that describe actions in a strategy. In a
typical experiment, 10 games of the same team were
taken as input, and SLIPPER was applied on each node
in a strategic path.

For example, a rule describing a node, which
represents an action concept “Successful-shoot”
performed by an agent with a role “left team center
midfielder”, is presented in Table 2.

ball:Penalty-box ∧ ball:Right-half ∧ ball:Fast ∧ LTeam.C-MF:Has-

ball ∧ LTeam.R-FW:Moving-away ∧ LTeam.R-FW:Medium-dist ∧

RTeam.R-FB:Back ∧ RTeam.C-FB:Back ∧ RTeam.L-FB:Back.

Table 2: Symbolic description of a successful shoot by a
left team's center midfielder.

There are several parameters that influence the

learning algorithm, and the influence of distance is
indicated in the following examples. The distance
parameter corresponds to the number of learning
examples. Since it seems reasonable to include all

466 Informatica 29 (2005) 461–468 A. Bezek et al.

positive examples, because there are typically only
around 10 or 20 of them (note that these are strategic
patterns that actually occur in a game), the parameter
varies the number of negative examples.

� All negative examples:
LTeam.FW:Pass-to-player (#+21 #-6987) <=
(LTeam.R-FW:Has-ball = 1) AND (LTeam.L-FB:Incoming-slow = 1) AND
(RTeam.GK:Incoming = 1)
(*there are 21 positive examples and 6987 negative*)
LTeam.FW:Control-dribble (#+10 #-6998) <=
(LTeam.R-MF:Near = 1) AND (LTeam.L-MF:Attacking-third = 1) AND
(LTeam.C-FW:Center-of-the-field = 1)
LTeam.FW:Successful-shoot (#+23 #-6985) <=
(LTeam.LC-FB:Moving-away-slow = 1) AND (RTeam.R-MF:Attacking-third = 1)
AND (LTeam.R-MF:Fast = 1) AND (RTeam.R-FB:Far = 1) AND
(RTeam.GK:Faster = 1) AND (RTeam.L-FW:Moving-away = 1) AND (LTeam.C-
FW:Medium-distance = 1) AND (RTeam.C-MF:Fast = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-6787) <=
(Ball:Opponent-goal = 1)

� Only negative examples with distance <= 16
LTeam.FW: Pass-to-player (#+21 #-854) <=
(LTeam.C-FW:Incoming-fast = 1) (* no. of negative examples here is 845*)
LTeam.FW:Control-dribble (#+10 #-1425) <=
(LTeam.R-MF:Near = 1)
LTeam.FW:Successful-shoot (#+23 #-1447) <=
(LTeam.R-FB:Moving-away = 1) AND (LTeam.R-FW:Moving-away = 1) AND
(RTeam.R-FB:Far = 1) AND (LTeam.R-MF:Attacking-third = 1) AND
(RTeam.GK:Incoming = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-213) <=
(RTeam.GK:Right-half = 1) AND (RTeam.GK:Back = 1) AND (LTeam.L-
MF:Center-of-the-field = 1) AND (LTeam.L-FW:Medium-distance = 1)

� Only negative examples with distance <= 8
LTeam.FW: Pass-to-player (#+21 #-265) <=
(LTeam.C-FW:Incoming-fast = 1) (* no. of negative examples here is 845*)
LTeam.FW:Control-dribble (#+10 #-513) <=
(LTeam.RC-FB:Fast = 1)
LTeam.FW:Successful-shoot (#+23 #-573) <=
(RTeam.L-FW:Moving-away = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-113) <=
(RTeam.GK:Right-half = 1) AND (LTeam.LC-FB:Right = 1)

� Only negative examples with distance <= 4
LTeam.FW: Pass-to-player (#+21 #-105) <=
(RTeam.R-FB:Incoming-fast = 1) (* no. of negative examples here is 105*)
LTeam.FW:Control-dribble (#+10 #-239) <=
(RTeam.GK:Right = 1)
LTeam.FW:Successful-shoot (#+23 #-200) <=
(LTeam.R-FB:Moving-away-slow = 1) AND (LTeam.R-FW:Moving-away = 1)
LTeam.Field-player:Successful-shoot-END (#+23 #-112) <=
(LTeam.R-MF:Right-wing = 1) AND (RTeam.GK:Right = 1) AND (LTeam.L-
MF:Left-half = 1) AND (RTeam.GK:Short-distance = 1)

4 Measurements

We evaluated the MASM approach on 10 RoboCup
games played during SSIL (Robocup 2004). A leave-
one-out strategy was used to generate 10 learning tasks.
A pre-determined strategy, shown in Table 1 and in
Figure 10, was used as a reference and was generated on
all 10 games, for AAG1 to AAG20. For each learning
task, a strategy was generated on 9 games and tested on
the remaining game, again for AAG1 to AAG20. Tests
measured the quality of action descriptions, the quality of
an average rule and the quality of joint use of rules and
action descriptions. Figure 11 presents averaged results
obtained during 10 tests where x-axis presents the value

of a parameter dist. These results indicate that a) the
accuracy of action descriptions is approximately constant
regarding abstraction. However, the accuracy of rules
increases until it peaks at dist=10 and then slowly
decreases. This is expected because for lower
abstractions, nodes represent only a few action instances
consequently prohibiting rule inducer to generate good
rules.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Description

Rules

Both

a) Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Description

Rules

Both

b) TP rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Description

Rules

Both

c) Precision

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d) Abstractness

Figure 11: Accuracy a), true-positive rate b) and

precision c) measured in relation to the abstractness level
presented on x-axis. Abstractness of attributes is in d).

FROM BASIC AGENT BEHAVIOR TO … Informatica 29 (2005) 461–468 467

With high dist values, nodes represent different

action concepts, thus producing more abstract and less
accurate rules. But using rules and action descriptions
together gives the best results with higher dist values.

When measuring true-positive rate, i.e. the
percentage of correctly classified true cases, all test
scenarios give similar results as shown in Figure 11 b):
the quality of classifying true cases increases until about
dist=12, and then quickly drops. The similar
phenomenon is observed when measuring precision, that
is the rate of correctly classifying the true cases, shown
in Figure 11, c). This can be explained by generating too
abstract strategies that represent the agent behavior in a
too abstract way.

The last test was performed to verify if the
abstraction process generates more abstract descriptions.
For this test we measured the abstraction of generated
rules, defined as an average feature depth in the feature
taxonomy for features used in rules. The results,
presented in Figure 11 d), clearly show that the average
feature depth is negatively correlated with the parameter
dist. This proves that as dist value increases, the rules
contain more abstract features.

The constructed strategic patterns were also
examined by the research team and a human expert. We
studied the games on the screen in real time and the
constructed strategic patterns. Firstly, we realized that the
direct computer output was unintelligible for a non-
computer specialist. Second, the constructed computer
output had to be studied also by the research team since
quite often the meaning of constructed features had to be
figured out. For example, instead of a meaningful “fast
ball” the actually constructed feature was “distance
between a ball and a player is growing fast”. Another
annoying property of the learning algorithm was that
sometimes quite irrelevant features were constructed, at
least from the point of human understanding. But in our
joint overall opinion, the algorithm finds some
significant features (moves), which is quite a success
since the algorithm has no knowledge whatsoever about
rules of soccer or any predefined knowledge about
strategies, i.e. a list of potential soccer strategies.

5 Conclusion

We have designed and implemented the MASM

algorithm as a general domain-independent framework
for discovering strategic behavior of multi-agent systems.
The only domain-specific knowledge was introduced in
the form of role, action and domain feature taxonomies.
We assume that changing a domain should be a
straightforward task that would require changing specific
domain-knowledge in a similar form. We believe that
there is a wide range of possible domains that can be
exploited by the MASM since its essence is a stepwise
abstraction in the domain-space.

The tests show that the system with 30.000 source
code lines achieves reasonable results in terms of
accuracy, true-positive rate and precision. Our tests also

confirm that the increased abstraction process generates
more abstract descriptions of agent activities.

However, there are some open questions that need to
be addressed. First, the MASM system was evaluated
only on the RoboCup domain with a limited number of
tests. Although authors believe that no major problem
should emerge when introducing another domain, this
should be verified in practice. Second, while the output
of the MASM system seemed promising to the research
team and the soccer coach performing preliminary
evaluation, this should be systematically verified by a
number of unrelated humans and soccer experts. The
third open question is how to objectively specify relevant
strategic situations.

Overall, the MASM algorithm was able to create
human comprehendible strategic descriptions in the form
of graphical arrows and related strategic rules with
reasonable accuracy from basic agent observations in a
RoboCup games. This seems quite promising since the
system had only limited domain knowledge.

References
[1] R. Agrawal, R. Srikant: Fast Algorithms for Mining

Association Rules. Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, 1994.

[2] A. Bezek: Modeling Multiagent Games Using
Action Graphs. Proceedings of Modeling Other
Agents from Observations (MOO 2004), New
York, 2004.

[3] A. Bezek: Discovering Strategic Multi-Agent
Behavior in a Robotic Soccer Domain, Proceedings
of AAMAS 05, Utrecht, 2005.

[4] A. Bezek, and M. Gams: Discovering strategic
multi-agent behavior in a robotic soccer domain.
Proceedings of Information Society 2005,
Ljubljana, 2005

[5] M. Cheny et al.: Users Manual for RoboCup Soccer
Server, 2003.

[6] W. W. Cohen and Y. Singer: A simple, fast, and
effective rule learner. Proceedings of the sixteenth
national conference on Artificial intelligence, pp.:
335 - 342, Orlando, United States, 1999.

[7] Dictionary Of Soccer Terms, Concepts & Rules,
http://www.soccerhelp.com/Soccer_Tips_Dictionar
y_Terms.shtml.

[8] S. Hirano and S. Tsumoto: Finding Interesting Pass
Patterns from Soccer Game Records. The Eighth
European Conference on Principles and Practice of
Knowledge Discovery in Databases (PKDD-2004).

[9] I. Noda et. al: Overview of RoboCup-97. In Hiroaki
Kitano, editor, RoboCup-97: Robot Soccer World
Cup I, pp. 20-41. Springer Verlag, 1997.

[10] G. Kaminka, M. Fidanboylu, A. Chang, and M.
Veloso: Learning the sequential coordinated
behavior of teams from observations. Proceedings
of the RoboCup-2002 Symposium, June, 2002.

[11] R. Nair, M. Tambe, S. Marsella and R. Raines:
Automated assistants for analyzing team team
behaviors Journal of Autonomous Agents and
Multiagent Systems. JAAMAS, 2002.

468 Informatica 29 (2005) 461–468 A. Bezek et al.

[12] R. Nair, M. Tambe, and S. Marsella: Role
allocation and reallocation in multiagent teams:
Towards a practical analysis. Proceedings of the
second International Joint conference on agents and
multiagent systems (AAMAS), 2003.

[13] P. Riley and M. Veloso: Coaching a Simulated
Soccer Team by Opponent Model Recognition.
Proceedings of the Fifth International Conference
on Autonomous Agents, 2001.

[14] RoboCup 2004: RoboCup Simulation League.
RoboCup04 world cup game repository,
http://carol.science.uva.nl/~jellekok/robocup/rc04/,
2004.

[15] R. Srikant and R. Agrawal: Mining Generalized
Association Rules. Future Generation Computer
Systems, 1995.

