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The paper presents an algorithm for multi-agent strategic modeling (MASM). The method applies 

domain knowledge and transforms sequences of basic multi-agent actions into a set of strategic action 

descriptions in the form of graph paths, agent actions, roles and corresponding rules. The rules, 

constructed by machine learning, enrich the graphical strategic patterns, which are presented in the 

form of graph paths. The method was evaluated on the RoboCup Soccer Server Internet League data. 

Tests showed that the constructed rules successfully captured some decisive offensive moves and some 

major defense flaws, although the description itself was a bit awkward and needed interpretation by a 

human expert. 

Povzetek: Predstavljen je sistem, ki si uči strateških vzorcev obnašanja iz enostavnega opazovanja 

gibanja agentov v domeni robotskega nogometa. 

1 Introduction 
Multi-agent game modeling is related to the following 
task: How can external observation of multi-agent 
systems be used to analyze, model, and direct agent 
behavior? Analysis of such systems must capture 
complex world state representation and asynchronous 
agent activities. From pure numerical data researchers 
tend to construct complex knowledge-level structures, 
typically in the form of rules or decision trees. These 
high-level structures are useful when characterizing state 
space, but lack the ability to clearly represent temporal 
state changes occurred by agent actions. Comprehending 
simultaneous agent actions and complex changes of state 
space represents another problem. To capture such 
qualitative information, most often a graphical 
representation performs better in terms of human 
understanding. 

There were two major goals in the research presented 
in this paper. One was designing strategic patterns from 
basic agent behavior, and the second one was to present 
the constructed knowledge in a graphical and symbolic 
form. This paper therefore addresses the problem of 
graphical and symbolic representation of strategic 
patterns, describes an algorithm capable of discovering 
strategic agent behavior, and enabling humans to 
understand and study the underlying behavioral 
principles.  

The presented MASM algorithm translates multi-
agent action sequence and observations of a dynamic, 
complex and multivariate world state into a graph-based 
and rule-based strategic representation. By using 
hierarchically ordered domain knowledge the algorithm 
is able to generate strategic descriptions and 
corresponding rules at different levels of abstraction. The 
MASM scheme is presented in Figure 1. 

Our approach is applied on a RoboCup Simulated 
League domain (Noda et. al 1997,  RoboCup 2004), a 
multi-agent domain where two teams of 11 agents play 
simulated soccer games. The domain accurately 
simulates a physical 2D soccer but introduces uncertainty 
by adding noise when calculating forces on objects. 
Continuous time is approximated with discrete cycles. 
All agents can move and act independently as long as 
they comply with soccer rules. Agents communicate with 
each other, but their visual and hearing perception is 
distance-limited.  The domain is quite complex and 
represents a challenging multi-agent modeling task for 
computers, but its soccer-related content makes it 
comprehensible by humans familiar with soccer. 
 

 
 

Figure 1: Multiagent System Modeling. 
 

This paper is organized as follows. Section 2 
thoroughly presents the MASM algorithm for creating 
graphical strategic paths. In Section 3, the learning 
algorithm is described for constructing symbolic strategic 
descriptions. An evaluation of the described method is 
presented in Section 4, and conclusion in Section 5. 
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2 Multi-Agent Strategic Modeling – 

the Graphical Part 
Our multi-agent strategic modeling (MASM) algorithm 
transforms raw multi-agent action sequence into a set of 
discovered strategic action descriptions with 
corresponding rules. A strategic action description is a 
description of an agent behavior that exhibits some 
strategic activity. A strategic activity is a time-limited 
multi-agent activity that exhibits some important or 
unique domain-dependent characteristics.  
Our approach is based on two basic processes: 
1. Construction of graphical sequences of actions. 
2. Learning symbolic rules. 

The process in terms of creating increased higher-
level structures is presented in Figure 2. 
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Figure 2: Construction of strategic patterns.  

 
First 5 steps, presented in Figure 2, are going to be 

described in detail in this section and rule construction in 
the next section.  

At the lowest level, RoboCup games are presented as 
time frames of agent and ball movements. For further 
information see (Cheny at al. 2003, RoboCup 2004).  

 

 
 

Figure 3: Raw data in numbers.  
 

In a RoboCup game there are approximately 6000 
equidistant time frames and 512 attributes (together 
around 3,000,000 values of types integer, Boolean, and 
real). An example of data is presented in Figure 3. 

 

 
 

Figure 4: Visualization of raw data.  
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In Figure 4 there is a graphical presentation, i.e.  
visualization of the same data as presented in Figure 3. 
All game data was obtained from the Soccer Server 
Internet League (Robocup 2004). 

 In the next step, basic agent movement is 
transformed into basic agent actions using simple 
heuristic rules (Nair at al. 2002) such as: “An agent 
performs action “dash” if it increases speed.” Each action 
lasts one time cycle. From a typical game, around 
140.000 basic agent actions are obtained such as: 

 
time player → action 
-------------------- 
3192 LPlayer1 → catch 
4012 LPlayer3 → kick 
5400 RPlayer6 → dash 
5900 RPlayer11 → turn 

 

 
 

Figure 5: Basic agent actions.   
 
In the next step, basic agent actions are transformed 

into higher-level actions using domain knowledge 
(Kaminka at al. 2002, Nair et al. 2003). The MASM 
algorithm exploits taxonomies, i.e. hierarchical 
representations of domain concepts. A concept x in a 
taxonomy is an ancestor of a concept y, x ← y, if it 
exhibits more general concept than the concept y.  The 
rationale behind using hierarchically ordered domain 
knowledge is that this allows the MASM algorithm to 
travel up and down in the hierarchy to produce more or 
less abstract descriptions. Specifically, the MASM 
algorithm makes use of: 

� a taxonomy of agent roles 
� a taxonomy of agent actions 
� taxonomies of binary domain features. 
 

Taxonomies were created from the Internet, using 
Dictionary Of Soccer Terms, Concepts & Rules. Parts of 

these taxonomies are presented in Figure 6, determining 
agent roles and actions.  

As agents in MAS can change roles and thus change 
their behavior (Nair et al. 2003), agent roles are assigned 
dynamically during agent activity. Each agent action is 
assigned with its corresponding hierarchical 
representation. Domain features are used to identify the 
truth of some particular domain feature but only with an 
association with another agent. For example, in a 
RoboCup domain the feature HasBall is true only for 
agent which controls the ball, and is false for all other 
agents. Agent's roles and actions are used to describe the 
activity of agents, while domain features are used to 
describe the domain state space. An example assignment 
of soccer role and action concepts is presented in Figure 
6, some examples are presented below: 
 
time player_role → action, action_duration 
--------------------------------------------- 
3192 LTeam.Goalkeeper → catch, 1  
4012 LTeam. LeftForward → pass_to_player, 10 
5400 RTeamRightFullback → speed_dribble, 12 
5900 RTeam.LeftMidfielder → intercept, 8 

 
Around 1000 such high-level agent actions are 

constructed for a typical game. 
 

 
 

Figure 6: High-level agent actions.   
 
After agent-role assignment, an action graph (AG) is 

constructed with the goal to create action patterns in a 
graphical form of paths. An action graph is a directed 
graph, where nodes represent state space at the start of 
agent action and connections correspond to agent actions. 

Nodes a and b are connected, a → b, if an action, 
represented by node a, is followed by an action, 
represented by node b. Terminal actions (i.e. the last 
action in an action sequence) are connected to a terminal 
node. For example, an action sequence {a,b,c} is 

represented as an AG: a → b → c → cend. Node positions 
are calculated from agent positions in a domain space. 
An appropriate hierarchical action and role concepts are 
assigned to each node (Bezek 2005). This enables the 
MASM algorithm to generate more abstract descriptions 
of agent role and actions. Each node also keeps an 
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original action instance (i.e. time cycle of an action in a 
soccer game) of the represented action. A more detailed 
description of action graphs and the construction process 
is given in (Bezek 2004). An example action graph, 
obtained from actions in a RoboCup game, is presented 
in Figure 7. 
 

 

 

Figure 7: An action graph. 
 

Complex action graphs with many nodes (see Figure 
7) are difficult to present in a transparent manner and are 
thus difficult to comprehend by humans. A reasonable 
approach to overcome this problem is to reduce the 
number of nodes while at the same time preserving 
attained action concepts. This can be accomplished with 
hierarchical clustering of graph nodes. By merging the 
nearest two graph nodes, we generate a new node that 
represents common role and action concepts (i.e. first 
hierarchically common parent of both concepts). The 
rationale behind the merge process is that actions, 
frequently occurring near in a domain space, define 
strategic concepts. The distance between graph nodes is 
defined as a weighted sum of distances between node 
positions and conceptual distances between role and 
action concepts. The merging process is then iterated. A 
more in-depth description of the distance function and 
the whole abstraction process is described in (Bezek, 
Gams 2005).  

The clustering process results in an abstract action 

graph (AAG), which is an action graph where graph 
nodes represent more than one agent action. It is 
expected that abstract action graph describes agent 
behavior in a more abstract way than the original action 
graph. An abstract action graph, where minimal distance 
between nodes is greater than dist, is labeled AAGdist. 
Such graph can be achieved with repeated merging of 
nearest nodes until the minimal distance between nodes 
is grater than dist. An action description of a node in 
AAGdist is a combination of a node position, 
corresponding action and role concepts, and a parameter 
dist. AAGs with greater value dist represent actions in a 
more abstract way that AAGs with a lower dist value. 
Therefore, the value of a dist parameter can be regarded 

as a value of abstraction of an AAG. An example of an 
abstract action graph A10 is presented in Figure 8. 

In Figure 8 there are several connected arrows of 
different length, positions and thickness. One example of 
transformation from single actions into an aggregated 
one is shown in Figure 9. It represents a common and 
successful attack on the right side of the field, resulting 
in a successful shoot on a goal. It is an example of a 
desired graphical representation of a strategic pattern. 
 

 

 

Figure 8: An abstract action graph (AAG10). 
 

 

Figure 9: Transformation of agent actions into abstract 
action sequence as part of action graph (AAG).  
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This strategic abstraction of agent actions is based on 
clustering (Hirano et al. 2004, Riley at al. 2001), and on 
conceptual distance, based on the domain taxonomies. As 
a result, around 1000 of such structures are generated 
from a typical game:  

 
role → action: {(action_start, duration)+ }  
------------------------------------- 
LTeam.Goalkeeper → catch:  
{(412, 1), (501, 1), (3192,1)} 
LTeam.Forward → pass:  
{(1412, 5), (3401,12), (4012,10) , (5573,7)} 
RTeam.Defender → speed_dribble: 
{(1607,16), (2372,9), (5400,12), (5521,22)} 
RTeam.Midfielder → intercept: 
{(392, 4), (4509, 9), (5900, 8)} 

 
A list of subsequent actions with corresponding 

symbolic description represents a strategy, i.e. a similar 
and frequent multi-agent activity that leads to a strategic 
situation. In an abstract action graph it is represented as a 
path. Path nodes thus represent a sequence of strategic 
actions.  

What remains is construction of rules, as indicated 
by step 6 in Figure 2. 

3 Construction of Rules 
 
First it should be noticed that strategies vary in several 
parameters, such as number of actions (typical 2 to 4), 
abstractness of actions (corresponding to the number of 
single actions aggregated into one abstracted action), 
location, direction etc. In general, a strategy generated 
from AAG with a greater dist value is more abstract that 
the one generated from AAG with lower dist value. The 
strategy in Figure 9 was created using level of 
abstractness 8 (=dist). The strategic action sequence is 
presented in Table 1.  From Table 1 and Figure 9 the 
strategic action sequence can be described as (no. of 
positive examples in parentheses):  
 
Forward player passes a ball to a teammate (21 +),  
who successfully dribbles (10 +), and  
shoots towards a goal (23 +).  
As a result, the ball ends in a goal (23 +)." 
 

LTeam.FW:  
 

Pass-to-player 

LTeam.FW:  
 

Control-dribble

LTeam.FW:  
 

Successful-

shoot 

LTeam.Field-
player: 

Successful-

shoot-(end) 

 

Table 1: A strategic action sequence. 
  

The action sequence in Table 1 is graphically 
presented as the path consisting of three connected 
arrows in Figures 9 and 10. Each action (an arrow) 
graphically starts from a circle (Figure 10) which 
corresponds to the neighborhood including aggregated 
actions. All circles in Figure 10 correspond to all 
aggregating neighborhoods.    

As each node/circle defines a unique action concept 
it can be used to generate rules that describe this specific 

agent action. In particular, we generate data for rule 
inducing algorithms as follows: Positive examples are 
action instances in a target node and negative examples 
as instances in nearby nodes (i.e. near misses). For each 
instance we generate all pairs of agent role-domain 
feature and store the true ones.  

We tested several approaches with association rules 
(Agrawal et al. 1994, Srikant et al. 1995), but due to 
complex representations we found the standard feature-
value approach as not suitable. Namely, agents 
dynamically change roles and thus it is very difficult to 
generate feature values for all roles. Therefore, instead of 
feature-values we applied set-valued attributes that are 
attributes whose domains are sets instead of single 
values.  In this way, each feature corresponds to one set-
valued attribute where the value is a set of agent roles, 
whose corresponding agent-feature pair is true. 

 

 

 

Figure 10: Strategy as a path in the abstract action graph, 
and all potential learning examples as circles. 

 
By using set-valued rule inducer, such as SLIPPER 

(Cohen et al. 1999), the MASM algorithm is able to 
generate rules that describe actions in a strategy. In a 
typical experiment, 10 games of the same team were 
taken as input, and SLIPPER was applied on each node 
in a strategic path.  

For example, a rule describing a node, which 
represents an action concept “Successful-shoot” 
performed by an agent with a role “left team center 
midfielder”, is presented in Table 2. 
 
ball:Penalty-box ∧ ball:Right-half ∧ ball:Fast ∧ LTeam.C-MF:Has-

ball ∧ LTeam.R-FW:Moving-away ∧ LTeam.R-FW:Medium-dist ∧ 

RTeam.R-FB:Back ∧ RTeam.C-FB:Back ∧ RTeam.L-FB:Back. 

 

Table 2: Symbolic description of a successful shoot by a 
left team's center midfielder. 

 
There are several parameters that influence the 

learning algorithm, and the influence of distance is 
indicated in the following examples. The distance 
parameter corresponds to the number of learning 
examples. Since it seems reasonable to include all 
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positive examples, because there are typically only 
around 10 or 20 of them (note that these are strategic 
patterns that actually occur in a game), the parameter 
varies the number of negative examples.   

 
 

� All negative examples:  
LTeam.FW:Pass-to-player (#+21 #-6987) <=  
(LTeam.R-FW:Has-ball = 1) AND (LTeam.L-FB:Incoming-slow = 1) AND 
(RTeam.GK:Incoming = 1)  
(*there are 21 positive examples and 6987 negative*) 
LTeam.FW:Control-dribble (#+10 #-6998) <= 
(LTeam.R-MF:Near = 1) AND (LTeam.L-MF:Attacking-third = 1) AND 
(LTeam.C-FW:Center-of-the-field = 1) 
LTeam.FW:Successful-shoot (#+23 #-6985) <= 
(LTeam.LC-FB:Moving-away-slow = 1) AND (RTeam.R-MF:Attacking-third = 1) 
AND (LTeam.R-MF:Fast = 1) AND (RTeam.R-FB:Far = 1) AND 
(RTeam.GK:Faster = 1) AND (RTeam.L-FW:Moving-away = 1) AND (LTeam.C-
FW:Medium-distance = 1) AND (RTeam.C-MF:Fast = 1) 
LTeam.Field-player:Successful-shoot-END (#+23 #-6787) <= 
(Ball:Opponent-goal = 1) 
 
� Only negative examples with distance <= 16 
LTeam.FW: Pass-to-player (#+21 #-854) <=  
(LTeam.C-FW:Incoming-fast = 1) (* no. of negative examples here is 845*) 
LTeam.FW:Control-dribble (#+10 #-1425) <=   
(LTeam.R-MF:Near = 1) 
LTeam.FW:Successful-shoot (#+23 #-1447) <=   
(LTeam.R-FB:Moving-away = 1) AND (LTeam.R-FW:Moving-away = 1) AND 
(RTeam.R-FB:Far = 1) AND (LTeam.R-MF:Attacking-third = 1) AND 
(RTeam.GK:Incoming = 1) 
LTeam.Field-player:Successful-shoot-END (#+23 #-213) <= 
(RTeam.GK:Right-half = 1) AND (RTeam.GK:Back = 1) AND (LTeam.L-
MF:Center-of-the-field = 1) AND (LTeam.L-FW:Medium-distance = 1) 
 
� Only negative examples with distance <= 8 
LTeam.FW: Pass-to-player (#+21 #-265) <= 
(LTeam.C-FW:Incoming-fast = 1) (* no. of negative examples here is 845*) 
LTeam.FW:Control-dribble (#+10 #-513) <= 
(LTeam.RC-FB:Fast = 1) 
LTeam.FW:Successful-shoot (#+23 #-573) <= 
(RTeam.L-FW:Moving-away = 1) 
LTeam.Field-player:Successful-shoot-END (#+23 #-113) <= 
(RTeam.GK:Right-half = 1) AND (LTeam.LC-FB:Right = 1) 
 
� Only negative examples with distance <= 4 
LTeam.FW: Pass-to-player (#+21 #-105) <= 
(RTeam.R-FB:Incoming-fast = 1) (* no. of negative examples here is 105*) 
LTeam.FW:Control-dribble (#+10 #-239) <= 
(RTeam.GK:Right = 1) 
LTeam.FW:Successful-shoot (#+23 #-200) <= 
(LTeam.R-FB:Moving-away-slow = 1) AND (LTeam.R-FW:Moving-away = 1) 
LTeam.Field-player:Successful-shoot-END (#+23 #-112) <= 
(LTeam.R-MF:Right-wing = 1) AND (RTeam.GK:Right = 1) AND (LTeam.L-
MF:Left-half = 1) AND (RTeam.GK:Short-distance = 1) 

4 Measurements 
 

We evaluated the MASM approach on 10 RoboCup 
games played during SSIL (Robocup 2004). A leave-
one-out strategy was used to generate 10 learning tasks. 
A pre-determined strategy, shown in Table 1 and in 
Figure 10, was used as a reference and was generated on 
all 10 games, for AAG1 to AAG20. For each learning 
task, a strategy was generated on 9 games and tested on 
the remaining game, again for AAG1 to AAG20. Tests 
measured the quality of action descriptions, the quality of 
an average rule and the quality of joint use of rules and 
action descriptions. Figure 11 presents averaged results 
obtained during 10 tests where x-axis presents the value 

of a parameter dist. These results indicate that a) the 
accuracy of action descriptions is approximately constant 
regarding abstraction. However, the accuracy of rules 
increases until it peaks at dist=10 and then slowly 
decreases. This is expected because for lower 
abstractions, nodes represent only a few action instances 
consequently prohibiting rule inducer to generate good 
rules.  
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c) Precision 
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Figure 11: Accuracy a), true-positive rate b) and 

precision c) measured in relation to the abstractness level 
presented on x-axis. Abstractness of attributes is in d). 
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With high dist values, nodes represent different 

action concepts, thus producing more abstract and less 
accurate rules. But using rules and action descriptions 
together gives the best results with higher dist values.  

When measuring true-positive rate, i.e. the 
percentage of correctly classified true cases, all test 
scenarios give similar results as shown in Figure 11 b): 
the quality of classifying true cases increases until about 
dist=12, and then quickly drops. The similar 
phenomenon is observed when measuring precision, that 
is the rate of correctly classifying the true cases, shown 
in Figure 11, c). This can be explained by generating too 
abstract strategies that represent the agent behavior in a 
too abstract way. 

The last test was performed to verify if the 
abstraction process generates more abstract descriptions. 
For this test we measured the abstraction of generated 
rules, defined as an average feature depth in the feature 
taxonomy for features used in rules. The results, 
presented in Figure 11 d), clearly show that the average 
feature depth is negatively correlated with the parameter 
dist. This proves that as dist value increases, the rules 
contain more abstract features. 

The constructed strategic patterns were also 
examined by the research team and a human expert. We 
studied the games on the screen in real time and the 
constructed strategic patterns. Firstly, we realized that the 
direct computer output was unintelligible for a non-
computer specialist. Second, the constructed computer 
output had to be studied also by the research team since 
quite often the meaning of constructed features had to be 
figured out. For example, instead of a meaningful “fast 
ball” the actually constructed feature was “distance 
between a ball and a player is growing fast”. Another 
annoying property of the learning algorithm was that 
sometimes quite irrelevant features were constructed, at 
least from the point of human understanding. But in our 
joint overall opinion, the algorithm finds some 
significant features (moves), which is quite a success 
since the algorithm has no knowledge whatsoever about 
rules of soccer or any predefined knowledge about 
strategies, i.e. a list of potential soccer strategies. 

5 Conclusion 
 
We have designed and implemented the MASM 

algorithm as a general domain-independent framework 
for discovering strategic behavior of multi-agent systems. 
The only domain-specific knowledge was introduced in 
the form of role, action and domain feature taxonomies. 
We assume that changing a domain should be a 
straightforward task that would require changing specific 
domain-knowledge in a similar form. We believe that 
there is a wide range of possible domains that can be 
exploited by the MASM since its essence is a stepwise 
abstraction in the domain-space.  

The tests show that the system with 30.000 source 
code lines achieves reasonable results in terms of 
accuracy, true-positive rate and precision. Our tests also 

confirm that the increased abstraction process generates 
more abstract descriptions of agent activities.  

However, there are some open questions that need to 
be addressed. First, the MASM system was evaluated 
only on the RoboCup domain with a limited number of 
tests. Although authors believe that no major problem 
should emerge when introducing another domain, this 
should be verified in practice. Second, while the output 
of the MASM system seemed promising to the research 
team and the soccer coach performing preliminary 
evaluation, this should be systematically verified by a 
number of unrelated humans and soccer experts. The 
third open question is how to objectively specify relevant 
strategic situations.  

Overall, the MASM algorithm was able to create 
human comprehendible strategic descriptions in the form 
of graphical arrows and related strategic rules with 
reasonable accuracy from basic agent observations in a 
RoboCup games. This seems quite promising since the 
system had only limited domain knowledge. 
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