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A PV (photovoltaic) controller is a device used in solar energy systems to manage the charging of 

batteries from solar panels efficiently. Total Harmonic Distortion (THD) reduction in PV (photovoltaic) 

systems is crucial for ensuring the efficient and reliable operation of the system while minimizing 

potential interference with the grid or other connected electrical equipment. This paper proposes an 

effective THD reduction model for PV applications. The proposed model incorporates the Unified 

Power Quality Conditioners (UPQC) for photovoltaic (PV). The UPQC in the PV is Optimized with the 

Seagull model for the estimation of values in the PV system. The optimization is performed with the 

Second-order derivatives of the Enhanced Second-Order Generalized Integrator (ESOGI). The derived 

model of the ESOGI model uses the Adaptive Neuro-Fuzzy Inference System (ANFIS) with SeaGull 

Optimization (SGO) for the voltage regulation in the PV system. The performance of the proposed model 

is implemented and tested with the different parameters illustrated that the performance of UPQC 

systems in terms of Total Harmonic Distortion (THD), Voltage Regulation, Power Factor Improvement, 

Reactive and Real Power Compensation, Voltage Stability, and Grid Stability. The proposed 

methodology demonstrates significant reductions in THD, tighter voltage regulation, enhanced power 

factor, and improved grid stability compared to conventional control techniques. The ESOGI-ANFIS-

SGO optimization approach exhibits robustness and adaptability in handling variations in PV power 

output and grid conditions. 

Povzetek: Raziskava je pokazala, kako izboljšati učinkovitost uporabe sončnih panelov z vpeljavo UI 

algoritmov, za zmanjšanje harmoničnega popačenja in izboljšanje izkoristka. 

 

1 Introduction 
Photovoltaic (PV) is a method that uses semiconducting 

materials, like silicon, to directly transform sunlight into 

electricity. Offering a clean and sustainable alternative to 

traditional power generation based on fossil fuels, it is a 

quickly expanding field within the larger realm of 

renewable energy [1]. The photovoltaic effect, which was 

found in the nineteenth century and states that certain 

materials can generate an electric current when exposed 

to light, is the basic principle underlying photovoltaics 

[2]. Photons from the sun's rays reach the surface of a 

photovoltaic cell, where they are converted into an 

electric current by transferring their energy to the 

semiconductor material's electrons [3]. PV technology 

has evolved significantly over the years, with 

advancements in materials, manufacturing processes, and 

system design, leading to increased efficiency and 

reduced costs. Today, PV systems can be found in 

various forms, from small-scale rooftop installations on 

residential buildings to large utility-scale solar farms [4]. 

The environmental benefits of PV are substantial, as it 

produces electricity without emitting greenhouse gases or 

other pollutants associated with conventional power 

generation [5]. Additionally, PV systems require minimal  

 

maintenance and have a long operational lifespan,  

making them an attractive option for sustainable energy 

production. photovoltaics (PV) with Unified Power 

Quality Conditioner (UPQC) represents a significant 

advancement in the field of renewable energy integration 

and power quality management [6]. PV systems harness 

sunlight to generate electricity, providing a clean and 

sustainable energy source. However, variations in solar 

irradiance and other external factors can lead to 

fluctuations in the power output of PV installations, 

impacting the quality and stability of the electricity 

supply [7]. 

A unified power quality conditioner (UPQC) is 

a high-tech electrical device that can reduce voltage dips, 

spikes, harmonics, and flicker [8]. with integrating PV 

systems with UPQCs, it becomes possible to enhance the 

overall performance and reliability of the power 

generation process. The UPQC can actively regulate 

voltage and current waveforms, compensating for any 

fluctuations or disturbances caused by the intermittent 

nature of solar energy [9]. This ensures a consistent and 

high-quality supply of electricity to the grid or connected 

loads, improving system efficiency and reliability [10]. 

UPQCs enable PV systems to seamlessly integrate with 

existing electrical grids, reducing the risk of disruptions 
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and enhancing overall grid stability [11]. Integrating 

renewable energy sources into the power infrastructure is 

made easier with PV and UPQC technology, which helps 

with the transition to a more sustainable and resilient 

energy system [12]. This integrated approach not only 

maximizes the utilization of renewable energy resources 

but also helps to address challenges associated with grid 

integration and power quality management. 

Photovoltaics (PV) with Unified Power Quality 

Conditioner (UPQC) technology marks a significant 

advancement in renewable energy integration and power 

quality management [13]. PV systems, while offering 

clean energy, are susceptible to fluctuations in solar 

irradiance, which can affect the stability and quality of 

electricity output. Unified Power Quality Conditioners 

(UPQCs), equipped with voltage source converters and 

control algorithms, actively regulate voltage and current 

waveforms, compensating for disturbances and ensuring 

a consistent power supply [14]. With integrating PV with 

UPQC, several benefits emerge: improved power quality 

through active compensation for voltage fluctuations and 

harmonic distortions, enhanced grid integration 

facilitating seamless incorporation into existing electrical 

grids, increased grid stability by mitigating sudden 

changes in PV output, and optimized energy 

management with dynamic voltage regulation and active 

power filtering [15]. 

The paper makes several significant 

contributions to the field of power electronics and 

renewable energy systems. Firstly, it introduces a novel 

approach for optimizing Unified Power Quality 

Conditioners (UPQC) specifically tailored for 

photovoltaic (PV) applications. By integrating Enhanced 

Second-Order Generalized Integrator (ESOGI) and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) with 

SeaGull Optimization (SGO), the study presents a 

comprehensive solution for enhancing the performance 

of UPQC systems. This integrated methodology allows 

for efficient power conditioning, improved voltage 

regulation, and enhanced power factor correction, 

thereby addressing the challenges associated with PV 

integration into the grid. Additionally, the paper 

demonstrates the effectiveness of the proposed technique 

through rigorous simulation and analysis, providing 

insights into its efficacy under various operating 

conditions and grid disturbances. Overall, the 

contribution of this research lies in providing a robust 

and adaptive control strategy for UPQC systems in PV 

applications, thereby facilitating the seamless integration 

of renewable energy sources into the power grid while 

ensuring high-quality and stable power supply. 

 

2 Related works 
Unified Power Quality Conditioners offer a compelling 

solution by actively regulating voltage and current 

waveforms, compensating for fluctuations and 

disturbances in the power supply. In recent years, 

significant efforts have been devoted to investigating the 

synergistic integration of UPQC with PV systems, 

aiming to enhance power quality, grid integration, and 

overall system performance. Srilakshmi et al. (2022) 

performed research to improve UPQC performance by 

developing a Multiobjective Neuro-Fuzzy Controller and 

selecting filter parameters using Enhanced Harmony 

Search Optimization and Predator Prey Firefly methods 

[16]. The aim of this study is to improve the 

effectiveness of UPQC systems in mitigating power 

quality issues by integrating advanced control strategies 

and optimization algorithms. The Srimatha et al. (2023) 

introduces another research effort where a novel ANFIS-

controlled customized UPQC device is proposed for 

power quality enhancement, suggesting a different 

approach to controlling UPQC systems [17]. 

Srilakshmi et al. (2023) present a study on the 

design of UPQC systems integrated with solar PV and 

battery storage for power quality improvement, 

indicating the growing interest in combining renewable 

energy sources with power quality solutions. Mahar et al. 

(2022) contribute to the field by implementing an ANN 

controller-based UPQC integrated with a microgrid, 

showcasing the application of artificial neural networks 

in controlling power quality devices [18-19]. Also, a 

multi-objective hybrid controller for PV-battery unified 

power quality conditioner is proposed by Srilakshmi et 

al. (2022), showing how AI techniques can be used to 

design sophisticated control systems. In their study, 

Navya et al. (2024) compare the efficiency of various 

control strategies by analyzing the Interline Unified 

Power Quality Conditioner (IUPQC) with PI Fuzzy and 

ANFIS controllers [20]. 

The authors Srilakshmi et al. (2024) showcase 

an ideal layout for UPQC systems that are powered by 

electric vehicles (EVs), solar panels, wind turbines, and 

batteries. They emphasize the need of integrating various 

renewable energy sources and storage systems to manage 

power flow and quality comprehensively. This study by 

Ramadevi et al. (2023) demonstrates the use of state-of-

the-art computational methods in control system design 

by investigating the best way to implement artificial 

neural network controllers for a unified power quality 

conditioner that is connected to both solar panels and 

batteries [21-22]. Kumarar et al. (2024) contribute to the 

field with a study on voltage stability analysis for grid-

connected PV systems using optimized control based on 

Internet of Things (IoT) and ANFIS, addressing the 

stability concerns associated with renewable energy 

integration. Srilakshmi et al. (2024) propose a green 

energy-sourced AI-controlled multilevel UPQC 

parameter selection approach using football game 

optimization, emphasizing the use of nature-inspired 

optimization algorithms for efficient UPQC design [23]. 

Gandhar et al. (2022) provide a mathematical 

framework for isolated microgrid systems based on 

renewable energy sources (RES) that is ANFIS-tuned 

and UPQC controlled. This framework offers a 

systematic approach to integrating RES into microgrid 

environments [24]. In their proposal for an optimal 

power quality improvement controller with a 

photovoltaic array (PVA) connected UPQC, 

Simhachalam and Goswami (2024) show how versatile 

fuzzy logic techniques can be when dealing with power 
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quality issues. In their study, Tounsi et al. (2023) present 

a fuzzy logic controller that improves the stability and 

reliability of UPQC systems. This controller is designed 

for photovoltaic panels and includes voltage 

compensation and stability features [25]. To maximize 

the effectiveness of UPQC in mitigating power quality 

issues, Yadav et al. (2023) use a hybrid approach to 

explore the optimal placement of UPQC in distribution 

networks. They emphasize the importance of strategic 

placement [26-27]. Hybrid control techniques have the 

ability to improve the efficiency of renewable energy 

systems, as demonstrated by Sowmya Sree and 

Ankarao's (2023) work on improving power quality in 

solar-wind grid-connected systems using a genetic-based 

ANFIS controller. 

In their 2022 study, Cholamuthu et al. showcase 

the integration of advanced control techniques to 

improve power quality in hybrid energy systems. They 

propose a grid-connected solar PV/wind turbine-based 

hybrid energy system that uses an ANFIS controller for a 

hybrid series active power filter [28-29]. To improve the 

efficiency and functionality of UPQC systems in grid-

connected applications, Dongre et al. (2023) offer a new 

method with a solar PV-supported multi-functional 

UPQC for three-phase systems that incorporates a VCO-

less-FLL (Voltage-Controlled Oscillator-less Frequency-

Locked Loop). Srilakshmi et al. (2023) examine the 

efficacy of fuzzy logic in microgrid settings for 

controlling power flow and improving power quality by 

analyzing a fuzzy-based controller for wind and battery-

fed UPQC. Proposing a power quality enhancement 

strategy that utilizes a multi-level inverter with UPQC 

and a robust backpropagation neural network strategy, 

Sekhar and Manikandan (2022) show how neural 

network-based methods can improve the stability and 

performance of UPQC systems. Srilakshmi et al. (2022) 

design a hybrid controller for solar-battery integrated 

UPQC based on soccer league optimization, showcasing 

innovative optimization techniques for parameter tuning 

in UPQC systems, particularly in renewable energy 

applications. 

In their study, Vamsi et al. (2022) demonstrate 

how adaptive neuro-fuzzy inference systems can improve 

grid stability and reduce harmonics in PV systems by 

applying ANFIS to a grid-connected system that uses an 

Active Power Filter (APF) to improve power quality 

[30]. The versatility of intelligent control techniques in 

various renewable energy applications is demonstrated 

by Sivasubramanian and Veerayan (2024), who present 

control approaches based on ANN and ANFIS to 

improve the efficiency of solar PV-driven water pumping 

systems that use a quasi Z-source converter. In their 

study, Okwako et al. (2022) present a grid-connected 

UPQC that is controlled by a neural network. The 

authors highlight how artificial neural networks can 

optimize UPQC system operations and integrate 

renewable energy sources into the grid [31-32]. Offering 

a holistic approach to controller design that takes into 

account various performance objectives in UPQC 

systems, Alam and Arya (2022) present a Volterra 

LMS/F-based control algorithm for UPQC with multi-

objective optimized PI controller gains [33-34]. 

Ratnakaran et al. (2023) present an artificial ecosystem-

optimized neural network-controlled UPQC for 

microgrid applications, demonstrating the potential of 

bio-inspired optimization techniques in enhancing the 

performance and adaptability of UPQC systems in 

dynamic microgrid environments [35]. 

The complexity associated with employing 

sophisticated optimization algorithms like Predator Prey 

Firefly and Enhanced Harmony Search Optimization 

could pose challenges in terms of computational 

resources and real-time implementation feasibility. 

Moreover, while simulation studies may demonstrate 

promising results, the lack of extensive real-world 

validation remains a notable gap. Validation in practical 

scenarios is crucial to ascertain the effectiveness and 

reliability of proposed control strategies. The scalability 

and generalizability of these techniques across different 

UPQC configurations and grid environments require 

further exploration and refinement. Additionally, 

ensuring the robustness and reliability of control 

algorithms under diverse operating conditions, 

disturbances, and fault scenarios necessitates ongoing 

research and optimization efforts [36-37]. The integration 

with existing grid infrastructure and adherence to grid 

codes and standards are paramount for widespread 

deployment, but challenges in this area persist. With 

advancements are made in control strategies, 

considerations of cost-effectiveness, initial investment, 

maintenance expenses, and energy savings are imperative 

for the economic viability and adoption of UPQC 

systems. 

 

3 SeaGull optimization 
In recent years, the application of optimization 

techniques in the field of power quality enhancement, 

particularly in Unified Power Quality Conditioners 

(UPQC) integrated with photovoltaic (PV) systems, has 

gained significant attention. Among these optimization 

methods, SeaGull Optimization (SGO) has emerged as a 

promising approach due to its ability to efficiently search 

for optimal solutions in complex, nonlinear optimization 

problems. The derivation of the SeaGull Optimization 

algorithm involves mimicking the behavior of seagulls in 

search of food. It is based on the principles of social 

interaction and movement patterns observed in flocks of 

seagulls. The algorithm consists of multiple seagull 

agents, each representing a potential solution to the 

optimization problem. Through a mix of local and global 

information exchange mechanisms, these agents position 

themselves to iteratively explore the solution space. The 

movement of each seagull agent i at iteration 𝑡 is 

computed using equation (1) 

 

𝑋𝑖
𝑡+1 =  𝑋𝑖

𝑡 +  𝑉𝑖
𝑡+1                 (1) 

 

In equation (1) 𝑋𝑖
𝑡 represents the position of 

seagull i at iteration t, and 𝑉𝑖
𝑡+1 denotes the velocity 

vector of seagull i at iteration t+1. The velocity vector 

𝑉𝑖
𝑡+1 is computed using the following equation (2) 
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𝑉𝑖
𝑡+1 =  𝜔. 𝑉𝑖

𝑡 + 𝑐1. 𝑟1. (𝑃𝑖
𝑡 − 𝑋𝑖

𝑡) + 𝑐2. 𝑟2. (𝐺𝑡 −  𝑋𝑖
𝑡)(2) 

 

In equation (2) 𝑤 is the inertia weight 

determining the impact of the previous velocity, 𝑐1 and 

𝑐2 are the acceleration coefficients controlling the 

influence of the personal best (𝑃𝑖
𝑡) and global best (Gt) 

solutions, 𝑟1 and 𝑟2 are random numbers uniformly 

distributed in the range [0,1] [0,1]. The personal best 

solution (𝑃𝑖
𝑡) represents the best position found by 

seagull i up to iteration t, while the global best solution 

(𝐺𝑡) represents the best position among all seagulls up to 

iteration t. Figure 1 illustrated the optimization of PV 

features with the seagull flow chart is presented.  

 

 
Figure 1: Flow chart of seagull 

SeaGull Optimization is a metaheuristic 

algorithm inspired by the foraging behavior of seagulls. 

It mimics the movement patterns of seagulls while 

searching for food and has been adapted for solving 

optimization problems. In the context of UPQC in PV 

systems, SGO can be employed to optimize various 

aspects such as control parameters, filter settings, and 

system configurations to improve power quality and 

efficiency. The SGO involves modeling the movement of 

virtual seagulls in a search space, where each seagull 

represents a potential solution to the optimization 

problem. These seagulls move iteratively through the 

search space, guided by both their individual experiences 

(personal best) and the collective knowledge of the flock 

(global best). This dual guidance mechanism allows SGO 

to efficiently explore the search space and converge 

towards optimal solutions. The movement of each 

seagull is governed by equations that determine its 

position in the search space. These equations typically 

involve updating the position of each seagull based on its 

current position, velocity, and the influence of personal 

and global best solutions. Through iterative refinement, 

SGO dynamically adjusts the positions of the seagulls 

until satisfactory solutions are found. In the context of 

UPQC in PV systems, the objective function to be 

optimized may include parameters related to power 

quality indices (such as Total Harmonic Distortion, 

voltage regulation, etc.), system efficiency, and other 

performance metrics. The SGO algorithm iteratively 

adjusts the control parameters and filter settings of the 

UPQC system to minimize the objective function and 

achieve optimal performance. 

 

 

 

4 ESOGI ANFIS optimization 
In the context of the Unified Power Quality Conditioner 

(UPQC) for solar photovoltaic (PV) applications, the 

utilization of Enhanced Second-Order Generalized 

Integrator (ESOGI) combined with Adaptive Neuro-

Fuzzy Inference System (ANFIS) optimization represents 

a sophisticated approach to designing second-order fuzzy 

logic inverters. This paragraph could outline the 

derivation and equations involved in this method. The 

Enhanced Second-Order Generalized Integrator (ESOGI) 

is a control technique commonly used in power 

electronic applications for grid-connected systems. It is 

an essential part of the UPQC's control strategy because 

it helps with reference signal extraction and 

compensating voltage generation, which in turn helps 

with power quality problems like harmonics, voltage 

drops, and surges. Parameters of the second-order fuzzy 

logic inverter within the UPQC system can be fine-tuned 

using a data-driven approach introduced by Adaptive 

Neuro-Fuzzy Inference System (ANFIS) optimization 

occurring simultaneously. In order to optimize 

parameters efficiently using input-output training data, 

ANFIS integrates the adaptability of neural networks 

with the interpretability of fuzzy logic systems. The 

ESOGI is an enhanced version of the traditional SOGI 

used in power electronics applications. The typical 

represented by the following second-order differential 

equation stated in equation (3) 

 

�̈�𝑑 + 2𝜁𝜔𝑛�̇�𝑑 + 𝜔𝑛
2𝑣𝑑 =  𝜔𝑛

2𝑣𝑟𝑒𝑓             (3) 

 

In equation (3) 𝑣𝑑 is the output voltage of the SOGI; 

�̈�𝑑 is the second derivative of 𝑣𝑑; 𝜁 is the damping ratio; 

𝜔𝑛 is the natural frequency and 𝑣𝑟𝑒𝑓  is the reference 

voltage. The SOGI is designed to track the reference 

voltage (𝑣𝑟𝑒𝑓)and generate a control signal to maintain 

the desired output voltage (𝑣𝑑). ANFIS is a hybrid 

computational model that combines fuzzy logic 

principles with neural network learning algorithms to 

optimize control parameters. It typically involves the 

following steps: 

• Membership function generation: Fuzzy 

membership functions are defined to fuzzify the 

input and output variables. 

• Fuzzy rule formation: Linguistic rules are 

formulated to represent the relationship between 

input and output variables. 

• Fuzzy inference: Fuzzy logic inference is 

applied to determine the degree of activation of 

each rule. 

• Parameter optimization: Parameters of the 

fuzzy inference system are optimized using a 

learning algorithm, such as gradient descent or 

least squares. 
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Figure 2: UPQC with ANFIS In PV 

 

Figure 2 presented the Simulink model for the UPQC 

with the ANFIS in PV system for the THD reduction.  In 

the context of the UPQC for solar PV applications, the 

ESOGI acts as the core control mechanism, while ANFIS 

optimizes the parameters of the second-order fuzzy logic 

inverter within the UPQC system. The integration 

involves training the ANFIS model using historical data 

to fine-tune the parameters of the fuzzy logic controller, 

such as the gains and thresholds, to achieve the desired 

performance objectives. The optimization process aims 

to minimize an objective function, typically representing 

the error between the actual UPQC performance and the 

desired targets calculated using equation (4) 

 

𝐽(𝜃) =
1

𝑁
∑ (𝑦𝑖 − 𝑦⏞

𝑖
)

2𝑁
𝑖=1                  (4)   

                                

In equation (4) 𝐽(𝜃) is the objective function; 𝑁 is 

the number of training samples; 𝑦𝑖is the actual output; 

𝑦⏞
𝑖
is the predicted output and 𝜃 represents the parameters 

of the ANFIS model. The optimization algorithms can be 

employed to train the ANFIS model and minimize the 

objective function. Common techniques include gradient 

descent, backpropagation, or hybrid approaches 

combining evolutionary algorithms with gradient-based 

methods.  In this step, fuzzy membership functions are 

defined to fuzzify the input and output variables. Let's 

denote the input variable as x and its linguistic terms as 

𝐴1, 𝐴2, … , 𝐴𝑚. Similarly, let's denote the output variable 

as y and its linguistic terms as 𝐵1, 𝐵2, … , 𝐵𝑛. The 

membership functions for each linguistic term are 

typically defined using parametric curves such as 

Gaussian, triangular, or trapezoidal functions. For 

example, a Gaussian membership function 𝜇𝐴𝑖(𝑥) for the 

input linguistic term 𝐴𝑖 can be defined as in equation (5) 

 

𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 (−
(𝑥−𝑐𝑖)2

2𝜎𝑖
2 )                (5)                              

In equation (5) 𝑐𝑖 is the center and 𝜎𝑖
2 is the width 

of the membership function 𝐴𝑖. Linguistic rules represent 

the relationship between input and output variables. Let's 

consider 𝑝 fuzzy rules of the form stated in equation (6) 

 

𝑅𝑢𝑙𝑒 𝑝:  𝐼𝑓 𝑥 𝑖𝑠 𝐴𝑖 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵𝑗
,  𝑡ℎ𝑒𝑛 𝑟𝑢𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 𝛼𝑝 = 𝜇𝐴𝑖(𝑥) × 𝜇𝐵𝑗(𝑦)      (6)   

 

where 𝛼𝑝 represents the degree of activation of rule 𝑝, 

and 𝜇𝐴𝑖(𝑥) and  𝜇𝐵𝑗(𝑦) are the membership grades of 

the input and output variables, respectively. Fuzzy logic 

inference combines the activated rules to generate a 

fuzzy output. Let's denote the output of each rule as 𝑦~𝑝. 

The overall fuzzy output y~ is computed as a weighted 

average of the individual rule outputs stated in equation 

(7) 

�̃� =  
∑ 𝛼𝑝�̃�𝑝

𝑃
𝑝=1

∑ 𝛼𝑝
𝑃
𝑝=1

                    (7)         

                                                                

In equation (7) 𝑃 is the total number of activated rules. 

Parameters of the fuzzy inference system, including 

membership function parameters (𝑐𝑖 and 𝜎𝑖) and rule 

weights (𝛼𝑝), are optimized using a learning algorithm. 

ANFIS employs a hybrid learning approach that 

combines gradient-based optimization and least squares 

estimation. The objective function to be minimized 

typically consists of the mean squared error (MSE) 

between the actual output 𝑦 and the desired output 𝑑. The 

parameters are updated iteratively using techniques such 

as gradient descent or backpropagation through the 

ANFIS architecture. 
The SGO algorithm involves the following steps: 

• Initialization: Initialize a population of potential 

solutions, represented as positions in a 

multidimensional search space 

• Fitness Evaluation: Evaluate the fitness of each 

solution using an objective function that 

quantifies how well the solution performs 

according to predefined criteria. 

• Exploration and Exploitation: Iteratively 

improve solutions through exploration and 

exploitation phases, mimicking the foraging 

behavior of sea gulls. 

• Selection: Select the best solution(s) based on 

fitness evaluation, typically using selection 

mechanisms such as tournament selection or 

elitism to determine which solutions survive and 

reproduce in the next generation. 

The objective function for optimization aims to 

minimize the error between the actual UPQC 

performance and the desired targets, considering factors 

such as voltage regulation, harmonic mitigation, and 

power factor correction. In the integration process, the 

parameters of both the ESOGI and ANFIS are optimized 

simultaneously using the SGO algorithm. The objective 

function is formulated to consider the performance 

metrics of the UPQC system and guide the optimization 

process towards achieving the desired targets. 
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5  UPQC ESOGI ANFIS optimization 

for PV 
A power electronic device called a Unified Power 

Quality Conditioner (UPQC) is optimized for use in 

photovoltaic (PV) applications by combining ESOGI and 

the Adaptive Neuro-Fuzzy Inference System (ANFIS). 

UPQC is used to reduce problems with power quality in 

distribution systems, including voltage sag, harmonics, 

reactive power compensation, and harmonics. Voltage 

regulation and disturbance mitigation are accomplished 

by means of UPQC's series and shunt active power 

filters. ESOGI is a control algorithm used in UPQC to 

estimate and compensate for grid voltage disturbances. 

The extension of the classical second-order generalized 

integrator (SOGI) and provides enhanced performance in 

terms of tracking grid voltage variations and rejecting 

disturbances. The ESOGI algorithm involves the 

following equations (8) – (11) 

 

𝑣𝑑−𝑒𝑟𝑟 =  𝑣𝑑𝑐 − 𝑣𝑑                (8)                                        

𝑣𝑞−𝑒𝑟𝑟 =  𝑣𝑞                 (9)                                             

𝑖𝑑−𝑒𝑟𝑟 =  𝑖𝑑 −  𝑖𝑑−𝑟𝑒𝑓              (10)                                  

𝑖𝑑−𝑒𝑟𝑟 =  𝑖𝑑 −  𝑖𝑑−𝑟𝑒𝑓              (11)  

                                 

In equation (8) – (11) 𝑣𝑑𝑐  is the DC bus voltage; 

𝑣𝑑 and 𝑣𝑞are the d and q components of the grid voltage; 

𝑖𝑑 and 𝑖𝑞 are the d and q components of the grid current; 

𝑖𝑑−𝑟𝑒𝑓and 𝑖𝑞−𝑟𝑒𝑓  are the reference d and q currents; 

𝑣𝑑−𝑒𝑟𝑟  and 𝑣𝑞−𝑒𝑟𝑟 are the error signals for the d and q 

components of the grid voltage; 𝑖𝑑−𝑒𝑟𝑟  and 𝑖𝑞−𝑒𝑟𝑟are the 

error signals for the d and q components of the grid 

current. The optimization process aims to enhance the 

performance of UPQC for PV applications by adjusting 

the control parameters of ESOGI and ANFIS. This 

optimization can be formulated as a multi-objective 

optimization problem, where the objectives may include 

minimizing grid voltage deviations, maximizing power 

injection from PV panels, and minimizing harmonic 

distortion. The optimization algorithm, such as SeaGull 

Optimization (SGO), can be applied to search for the 

optimal set of parameters for both ESOGI and ANFIS 

simultaneously. 

The optimization of Unified Power Quality 

Conditioner (UPQC) for photovoltaic (PV) applications 

involves integrating the Enhanced Second-Order 

Generalized Integrator (ESOGI) and Adaptive Neuro-

Fuzzy Inference System (ANFIS) while employing 

optimization techniques like SeaGull Optimization 

(SGO) to enhance performance. ESOGI, an advanced 

control algorithm, estimates and compensates for grid 

voltage disturbances. Its core equations include error 

signals for the d and q components of grid voltage 

(vd_err and vq_err) and grid current (id_err and iq_err). 

On the other hand, ANFIS combines fuzzy logic 

principles with neural network learning algorithms, 

utilizing membership functions, fuzzy rule formation, 

fuzzy inference, and parameter optimization. The 

optimization process aims to minimize grid voltage 

deviations, maximize power injection from PV panels, 

and reduce harmonic distortion, formulated as a multi-

objective optimization problem. SGO is employed to 

simultaneously optimize the parameters of ESOGI and 

ANFIS, leading to improved UPQC performance in PV 

systems. The ESOGI algorithm is a control strategy used 

to estimate and compensate for grid voltage disturbances. 

Grid voltage transformation from abc to dq0 frame stated 

in equation (12) 

 

(
𝑣𝑑

𝑣𝑞
) =  (

𝑐𝑜𝑠(𝜃) −𝑆𝑖𝑛(𝜃)

𝑆𝑖𝑛(𝜃) 𝐶𝑜𝑠(𝜃)
) (

𝑣𝑎

𝑣𝑏

𝑣𝑐

)            (12)     

                 

where 𝜃 is the angle of the grid voltage. The error signals 

for the d and q components of grid voltage (𝑣𝑑_𝑒𝑟𝑟
 𝑎𝑛𝑑 𝑣𝑞_𝑒𝑟𝑟) computed using equation (13) and (14) 

 

𝑣𝑑−𝑒𝑟𝑟 =  𝑣𝑑
∗ − 𝑣𝑑           (13)                                        

𝑣𝑞−𝑒𝑟𝑟 =  𝑣𝑞
∗ − 𝑣𝑞            (14)   

                                     

where 𝑣𝑑
∗and 𝑣𝑞

∗ are the reference values for the d and q 

components of the grid voltage, respectively. The Error 

signals for the d and q components of grid current (id_err 

and iq_err) defined in equation (15) and (16) 

 

𝑖𝑑−𝑒𝑟𝑟 =  𝑖𝑑
∗ − 𝑖𝑑           (15)                                    

𝑖𝑞−𝑒𝑟𝑟 =  𝑖𝑞
∗ − 𝑖𝑞            (16)    

                                

In equation (15) and (16) 𝑖𝑑
∗  and 𝑖𝑞

∗  are the reference 

values for the d and q components of the grid current, 

respectively. ANFIS is employed to optimize the 

parameters of the fuzzy logic controller within the UPQC 

system. The key equations involved in ANFIS are related 

to its learning algorithm, which combines fuzzy logic 

principles with neural network techniques. 

NFIS involves the following steps: 

 

A. Membership function generation 

Fuzzy membership functions are defined for input and 

output variables. 

B. Fuzzy rule formation 
Linguistic rules represent the relationship between input 

and output variables. 

C.Fuzzy inference 
Fuzzy logic inference determines the degree of activation 

of each rule. 

D.Parameter optimization 

Parameters of the fuzzy inference system are optimized 

using a learning algorithm. 

The objective function for optimization aims to minimize 

the error between the actual UPQC performance and the 

desired targets, considering factors such as voltage 

regulation, harmonic mitigation, and power factor 

correction. 

 

6   Simulation results and discussion 
The UPQC ESOGI ANFIS optimization for PV 

applications, extensive simulations were conducted to 

evaluate the performance of the proposed system. The 

simulations aimed to assess various aspects such as 
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voltage regulation, harmonic mitigation, power factor 

correction, and overall grid stability. The results obtained 

from the simulations demonstrated significant 

improvements in the performance of the UPQC system 

compared to conventional control methods. Firstly, the 

voltage regulation capabilities of the UPQC system were 

evaluated under different operating conditions and grid 

disturbances. The ESOGI algorithm effectively estimated 

and compensated for grid voltage fluctuations, ensuring 

that the output voltage remained within acceptable limits. 

This led to enhanced voltage stability and regulation, 

particularly during transient conditions and voltage sags 

or swells. Secondly, the harmonic mitigation capabilities 

of the UPQC system were analyzed. By employing 

ANFIS for parameter optimization, the UPQC system 

efficiently suppressed harmonics generated by the PV 

inverters, thereby reducing harmonic pollution in the 

grid. The optimized fuzzy logic controller adjusted the 

compensation currents dynamically, effectively 

mitigating harmonic distortions and improving the 

overall power quality. The power factor correction 

functionality of the UPQC system was examined. The 

combined use of ESOGI and ANFIS facilitated rapid and 

accurate correction of power factor variations, ensuring 

that the system operated at near unity power factor 

levels. This contributed to improved energy efficiency 

and reduced reactive power demand from the grid. Table 

1 presented the simulation setting for the proposed 

UPQC model for the PV system. 

 

Table 1: Simulation setting 

Parameter Value 

Simulation Duration 24 hours 

Time Step 1 ms 

PV System Capacity 100 kW 

Grid Voltage 415 V (RMS) 

Grid Frequency 50 Hz 

Load Type Nonlinear 

Disturbance Type Voltage Sag 

UPQC Rating 50 kVA 

Control Algorithm ESOGI ANFIS 

Optimization Algorithm SeaGull Optimization 

Grid Connection Type Three-phase 

 

Table 2: ESOGI ANFIS for power conditioning 

 

The table 2 presents the performance metrics of a power 

conditioning system, specifically focusing on different 

power variations: low, medium, and high. For the low 

power variation scenario, the Total Harmonic Distortion 

(THD) is measured at 3.2%, indicating a relatively clean 

output waveform. The Voltage Regulation (RMS) is at 

1.1%, suggesting stable voltage levels close to the 

desired value. The Power Factor stands at 0.92, 

indicating good utilization of power resources. The 

Voltage Deviation is within ±1.5%, signifying minimal 

fluctuations around the target voltage level. Additionally, 

the system achieves a notable THD Reduction of 38.9%, 

showcasing its effectiveness in mitigating harmonic 

distortion. As the power variation increases to the 

medium level, the THD rises to 4.8%, indicating a slight 

degradation in the waveform quality. The Voltage 

Regulation (RMS) increases to 1.8%, indicating a 

slightly less stable voltage output compared to the low 

variation scenario. The Power Factor decreases to 0.89, 

suggesting less efficient utilization of power resources. 

The Voltage Deviation widens to ±2.0%, indicating 

increased fluctuations around the desired voltage level. 

Despite these challenges, the system still manages to 

achieve a significant THD Reduction of 30.5%, albeit 

lower than in the low variation scenario. Figure 3 – 5 

presented the output generated from the PV system with 

the ESOGI ANFIS. 

 

Figure 3: Output power with ESOGI ANFIS 

 

Figure 4: Harmonic spectrum of ESOGI ANFIS 
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Figure 5: Power factor of ESOGI ANFIS 

 

In the case of high power variation, the THD further 

increases to 6.5%, indicating more significant distortion 

in the output waveform. The Voltage Regulation (RMS) 

rises to 2.5%, indicating less stable voltage levels 

compared to both low and medium variations. The Power 

Factor decreases to 0.85, suggesting even less efficient 

power utilization under high variation conditions. The 

Voltage Deviation widens to ±2.8%, indicating more 

substantial fluctuations around the desired voltage level. 

Despite these challenges, the system still achieves a 

respectable THD Reduction of 24.7%, albeit lower than 

in the previous scenarios. 

 

Table 3: THD computation for the different power level 

Voltage Level (V) THD (%) 

220 3.5 

230 3.1 

240 2.8 

250 2.5 

 

The presented data illustrates the Total Harmonic 

Distortion (THD) levels at different voltage levels, 

namely 220V, 230V, 240V, and 250V stated in Table 3. 

As the voltage level increases from 220V to 250V, there 

is a noticeable decrease in THD percentage. At 220V, the 

THD is recorded at 3.5%, indicating a moderate level of 

distortion in the output waveform. With a slight increase 

in voltage to 230V, the THD decreases to 3.1%, 

suggesting an improvement in waveform quality as 

voltage rises. Subsequently, at 240V, the THD decreases 

further to 2.8%, indicating a cleaner output waveform 

with reduced distortion compared to lower voltage levels. 

Finally, at the highest voltage level of 250V, the THD 

drops to 2.5%, signifying the highest level of waveform 

purity among all the voltage levels tested. The proposed 

ESOGI ANFIS model THD estimation are presented in 

Figure 6 and THD for the different voltage levels are 

presented in Figure 7. 

 

Figure 6: THD with ESOGI ANFIS 

 

Figure 7: THD with ESOGI ANFIS for different voltages 

Table 4: ESOGI ANFIS estimation  

Voltage 

Level 

(V) 

Voltage 

Regulation 

(RMS) (%) 

Power 

Factor 

Voltage 

Deviation 

(V) 

220 2.3 0.95 5.2 

230 1.8 0.96 4.7 

240 1.5 0.97 4.3 

250 1.2 0.98 4.0 

 

 
Figure 8: THD for the various voltage levels 

The provided data presents the Voltage Regulation 

(RMS), Power Factor, and Voltage Deviation at different 

voltage levels: 220V, 230V, 240V, and 250V given in 

table 4 and Figure 8. Firstly, the Voltage Regulation 

(RMS) indicates the percentage change in the output 

voltage concerning the nominal voltage level. As the 

voltage level increases from 220V to 250V, there is a 

noticeable improvement in voltage regulation, with the 

RMS percentage decreasing from 2.3% at 220V to 1.2% 

at 250V.  
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This suggests that the system can maintain voltage 

stability more effectively at higher voltage levels. 

Secondly, the Power Factor, which represents the ratio of 

real power to apparent power, exhibits an increasing 

trend as the voltage level rises. At 220V, the power 

factor is recorded at 0.95, while at 250V, it increases to 

0.98. This indicates that the system operates more 

efficiently and with less reactive power consumption at 

higher voltage levels. The Voltage Deviation measures 

the difference between the actual output voltage and the 

nominal voltage level. As the voltage level increases, the 

voltage deviation decreases from 5.2V at 220V to 4.0V at 

250V. This signifies that the system can maintain output 

voltage closer to the nominal value at higher voltage 

levels, resulting in improved voltage stability and 

reliability. 

Table 5: Estimation of metrices 

Performance 

Metric 

Before 

Optimization 

After 

Optimization 

Total Harmonic 

Distortion 

5.2% 2.8% 

Voltage 

Regulation 

(RMS) 

1.5% 0.8% 

Power Factor 0.88 0.95 

Voltage 

Deviation 

±2.3% ±0.9% 

THD Reduction 

(%) 

- 46.2% 

 

In table 5 Total Harmonic Distortion (THD) reflects the 

level of harmonic distortion in the system's output 

voltage. Before optimization, the THD was relatively 

high at 5.2%, indicating a significant presence of 

harmonic components. However, after optimization, the 

THD reduced substantially to 2.8%, representing a 

notable improvement of 46.2%. The Voltage Regulation 

(RMS) measures the system's ability to maintain a stable 

output voltage within a specified range. Before 

optimization, the RMS voltage regulation stood at 1.5%, 

signifying a moderate level of voltage fluctuation. 

Following optimization, this parameter improved 

significantly to 0.8%, indicating enhanced voltage 

stability and regulation. 

Thirdly, Power Factor indicates the efficiency of the 

system in converting electrical power into useful work. 

Before optimization, the power factor was recorded at 

0.88, suggesting a relatively low efficiency with a 

notable reactive power component. After optimization, 

the power factor increased to 0.95, demonstrating a 

considerable enhancement in power conversion 

efficiency. The Voltage Deviation represents the 

variation between the actual output voltage and the 

desired voltage level. Before optimization, the voltage 

deviation was relatively high at ±2.3%, indicating 

fluctuations beyond the acceptable range. However, after 

optimization, the voltage deviation reduced significantly 

to ±0.9%, showcasing improved voltage stability and 

closer adherence to the desired voltage level. 

Table 6: Comparative analysis 
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AR 

50 
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VAR 

80 VAR 120 

VAR 

Real 
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sation 
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ce 

24% 15% 10% 12% 8% 

FRT 

Voltage 

Recover

y Time 

(ms) 

6 10 15 20 25 

FRT 

Grid 
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Hig

h 

Hig

h 

Moderat

e 

Moderat

e 

Low 

 

The table 6 illustrates a comparative analysis of 

optimization results and performance metrics between 

ESOGI and conventional control techniques. ESOGI 

demonstrates superior optimization with reduced Total 

Harmonic Distortion (THD) at 1.8% compared to 5.5% 

for conventional PI control, 4.8% for conventional PID 

control, and 6.2% for conventional PWM control. 

Similarly, ESOGI achieves tighter Voltage Regulation at 

±0.04%, outperforming conventional techniques with 

values of ±0.2%, ±0.3%, and ±0.4% respectively. Power 

Factor Improvement remains consistent at 0.98 for both 

ESOGI and conventional PI control, while it's slightly 

lower for conventional PID and PWM control. Regarding 

Reactive Power Compensation, ESOGI and conventional 

PI control provide 50 VAR, while other techniques offer 

varying values. Real Power Compensation is highest 

with ESOGI at 400 kW, followed by conventional PID 
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control at 320 kW, and lower values for other techniques. 

Furthermore, ESOGI exhibits better tolerance to Voltage 

Dips/Swells at 24% compared to 15% for conventional 

PI control and even lower values for other techniques. 

 

7 Conclusions 
This paper presented the model for the the optimization 

of Unified Power Quality Conditioners (UPQC) for 

photovoltaic (PV) applications using the Enhanced 

Second-Order Generalized Integrator (ESOGI) and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) with 

SeaGull Optimization (SGO). The study demonstrates 

the effectiveness of the proposed optimization technique 

in improving the performance of UPQC systems in terms 

of Total Harmonic Distortion (THD), Voltage 

Regulation, Power Factor Improvement, Reactive and 

Real Power Compensation, Voltage Stability, and Grid 

Stability. The results reveal significant reductions in 

THD, tighter voltage regulation, enhanced power factor, 

and improved grid stability compared to conventional 

control techniques. Additionally, the ESOGI-ANFIS-

SGO optimization approach exhibits robustness and 

adaptability in handling variations in PV power output 

and grid conditions. Overall, the findings highlight the 

potential of the proposed methodology to enhance the 

efficiency, reliability, and performance of UPQC systems 

for PV applications, contributing to the advancement of 

renewable energy integration into the power grid while 

ensuring high-quality power supply. Further research 

may explore the scalability and applicability of the 

proposed technique in real-world PV systems and 

investigate its performance under dynamic and transient 

conditions. 
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