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In public spaces, monitoring pedestrian flow can effectively avoid the occurrence of crowding and 

stampede incidents, and can effectively improve public safety. To improve the accuracy and efficiency 

of small target tracking in pedestrian flow detection from a top-down perspective, this study integrates 

the Vision Transformer architecture and the Deep SORT tracking algorithm to improve the YOLOv5 

model. This method aims to achieve efficient detection in complex pedestrian flow scenarios by 

enhancing the recognition ability and tracking accuracy of small targets. In the experiment, the 

improved YOLOv5-V-D model quickly converged after 61 iterations, achieving excellent operational 

efficiency with an average delay of only 7.2ms. Compared to CenterNet and RetinaNet, it has 

increased by 3.9ms and 6.4ms, respectively. Furthermore, the model demonstrated an exceptional 

capacity for accurately predicting pedestrian flow, with a prediction accuracy of 98.72%, which is 

significantly higher than the comparison model's range of 20.59% to 28.61%. In summary, the 

improved YOLOv5 model not only provided faster detection speed, but also significantly improved the 

accuracy of pedestrian flow detection. This advancement offers an efficacious solution for the 

monitoring of high-density crowds, establishing a robust foundation for the advancement of future 

real-time monitoring systems and significantly enhancing public safety. 

Povzetek: Predlagana je metoda za zaznavanje pešcev z vidika od zgoraj, ki temelji na sledenju 

majhnih tarč. Izboljšuje zaznavanja pešcev s pomočjo izboljšanega modela YOLOv5, Vision 

Transformer in algoritma Deep SORT.

1 Introduction 

The rapid development of Artificial Intelligence (AI) 

technology has led to the increasing application of 

real-time video surveillance systems in many fields. It is 

of great significance for maintaining public order, 

optimizing traffic management, and formulating 

emergency evacuation plans [1-2]. However, traditional 

monitoring systems are often limited by resolution and 

the influence of complex backgrounds when detecting 

pedestrian flow at a top view angle, making it difficult to 

accurately identify and track [3]. In response to this 

challenge, this study fully utilizes the advantages of 

YOLOv5 network and Vision Transformer (ViT) to 

construct a more adaptive Small Target Detection (STD) 

method to improve the accuracy of Pedestrian Flow 

Detection (PFD) from a Top-down Perspective (TP-PFD). 

This method is based on YOLOv5 and relies on its 

lightweight and efficient characteristics to ensure the 

speed and sensitivity of the model when processing 

real-time video streams [4]. To further improve the 

recognition ability of small targets, ViT has been 

introduced. This technology effectively captures global 

information in images through a Self Attention 

Mechanism (SAM), which helps to distinguish between 

pedestrian flow and background in complex scenes [5]. 

By integrating the fine-grained feature recognition 

advantages of ViT, the accuracy of STD can be enhanced. 

In addition, the enhanced data preprocessing module 

further enriches the model's adaptability to small target 

shapes. The innovation of this study lies in the 

combination of YOLOv5 and ViT, which enhances 

YOLOv5's shortcomings in STD and improves feature 

utilization. The proposal of this method aims to improve 

the robustness and accuracy of TP-PFD, thereby better 

serving application scenarios such as public safety 

monitoring, crowd management, and business analysis. It 

is hoped that through this paper, a new technological path 

can be provided for relevant fields, which will have a 

positive driving effect on PFD and analysis from a 

top-down perspective. As as result, while ensuring public 

safety, it can promote the development of smart city 

construction. The study is divided into four parts. The 

first part is a summary of the fields of Small Target 

Tracking (STT) and PFD. Part 2 is the implementation of 

the proposed improvement method. Part 3 is the 

validation and testing of the research method. Part 4 is a 
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summary of the entire text. 

2 Related works 

STT detection is an important research direction in the 

field of computer vision that focuses on detecting and 

tracking smaller objects in images. In application 

scenarios such as surveillance videos, drone images, and 

satellite images, small targets become very challenging to 

detect and track due to their small pixel size, lack of 

detailed information, and susceptibility to environmental 

noise and occlusion. With the improvement of computing 

power and the advancement of deep learning technology, 

STT detection algorithms are moving towards more 

accurate, real-time, and robust directions. Shi et al. 

proposed a sea surface small target-feature detector based 

on dispersion relative entropy. This method was superior 

to existing single-feature detectors in suppressing clutter 

and improving detection performance, and could be 

comparable to three-feature detectors [6]. Yang et al. 

proposed an improved helmet detection algorithm based 

on YOLO V4 to address the issue of existing helmet 

detection algorithms being susceptible to occlusion. This 

algorithm significantly improved the detection accuracy 

of small and occluded targets, and optimized the 

convergence speed and regression accuracy of model 

training [7]. Zhi et al. proposed a framework called 

attention context region detection for precise recognition 

of small and medium-sized traffic signs in intelligent 

transportation systems. This framework utilized attention 

contextual features and combined target and 

environmental information through dot convolutional 

layers, achieving advanced levels in small traffic sign 

detection [8]. Bommes et al. proposed a ResNet-34 

Convolutional Neural Network (CNN) based on 

unsupervised domain adaptation problem for the 

automatic detection of module faults in photovoltaic (PV) 

systems. It combined supervised comparison loss and 

K-means cluster classifier for anomaly detection of small 

target images. In nine combinations of four source and 

target datasets containing 2.92 million infrared images, its 

classification accuracy for normal and abnormal images 

reached 79.4% and 77.1%, and it could reliably detect 

unknown types of anomalies [9]. Qin et al. proposed a 

dense sampling and detail enhancement network to 

address the issue of insufficient performance of existing 

object detection algorithms in STD. It improved feature 

map resolution and expanded receptive fields through 

dense sampling modules. On the Minico2021 and 

VisDrone datasets, this method improved by 

approximately 4.6% and 4.2% compared to the advanced 

DetectoRS algorithm, respectively [10]. 

PFD refers to the use of various sensors or video 

devices to estimate the number of people in a specific 

area. This field focuses on how to accurately count each 

individual in a population, and is a key sub-field in 

computer vision and image processing. PFD technology 

has extensive applications in various fields such as 

business analysis, public safety, urban planning, and 

traffic management. The advancement of machine 

learning technology and the increase in computing 

resources are continuously improving the accuracy and 

efficiency of PFD. Minegishi et al. proposed a pedestrian 

flow simulator based on actual physical parameters to 

address the challenge of corridor fire evacuation. When 

the density exceeded 2.35 people/square meter, 

pedestrians exhibited stagnant behavior, with a direct 

increase in speed and spacing, while a specific flow rate 

increased linearly with density, and density was inversely 

proportional to speed [11]. Yang et al. proposed a deep 

learning detection method based on a single multi-frame 

detector for precise target recognition and localization in 

smart city applications. This algorithm optimized the 

network structure through VGG16, achieving a maximum 

mAP of 77% and an accuracy of 96.31% [12]. Song et al. 

proposed a progressive refinement network for pedestrian 

detection in complex occlusion situations. The proposed 

method effectively improved the accuracy and domain 

adaptability of occluded pedestrian detection [13]. Yang 

et al. proposed a deep learning detection method based on 

SSD to address the impact of crowded subway stations on 

large pedestrian traffic. This method had higher 

performance compared to other mainstream detection 

methods [14]. Zhang S et al. proposed an asymmetric 

multi-stage network to address the challenge of 

small-scale pedestrian detection. It utilized rectangular 

anchor frames and asymmetric convolutional kernels to 

address pedestrian body asymmetry, improved detection 

performance through three-stage gradual feature selection, 

and demonstrated excellent performance in benchmark 

testing [15]. The summary table of the related works is 

shown in Table 1. 

 

 
Table 1: Related works summary table 

Research Major technology Application scenario The state-of-the-art gap 

Shi et al Feature detector of sea surface 

small target based on dispersion 

relative entropy 

Marine surveillance video Insufficient capture of 

small target details 

Yang and Wang Improved helmet detection 

algorithm based on YOLO V4 

Security monitoring The detection accuracy of 

occluded target is limited 

Zhi et al Attention context area detection 

framework 

Intelligent transportation 

system 

Small traffic sign detection 

Bommes and ResNet-34 network based on Photovoltaic system Accuracy of anomaly 
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Hoffmann unsupervised domain adaptation 

problem 

module fault detection detection 

Qin et al Intensive sampling and detail 

enhancement network 

Drone image STD performance 

Minegishi et al Flow simulator based on physical 

parameters 

Fire evacuation Dynamic flow simulation 

Yang et al Deep learning detection method 

based on single frame detector 

Smart city Target recognition and 

location 

Song et al Progressive refinement network Complex occlusion 

condition 

Blocked pedestrian 

detection 

Zhang et al Asymmetric multistage network Small scale pedestrian 

detection 

The pedestrian is 

asymmetrical 

Research method YOLOv5 and ViT Public space monitoring Small target recognition 

and tracking 

 

In summary, the current literature on STT and PFD 

methods has demonstrated significant advantages based 

on deep learning models. Nevertheless, research on PFD 

under overhead angles is still lacking. There are still 

challenges in dealing with extremely dense crowd 

scenarios, especially in improving the recognition rate of 

small targets while maintaining high detection speed. 

Therefore, this study proposes a TP-PFD method based 

on STT. It employs an enhanced YOLOv5 architecture, 

integrating the strengths of ViT. This integration 

leverages the lightweight nature of ViT to enhance the 

STD capabilities of the native network, ultimately aiming 

to achieve accurate TP-PFD. 

 

3 Construction of STT algorithm for 

TP-PFD 
To improve the accuracy of TP-PFD, this study 

constructs an improved algorithm by integrating the 

Token-to-Token ViTs (T2T-ViT) architecture into the 

YOLOv5 framework. This algorithm aims to optimize 

YOLOv5's recognition ability for small targets, and 

enhance the model's resolution and tracking accuracy for 

individuals in crowded scenes. The introduction of 

T2T-ViT aims to enhance the richness of feature 

expression through its SAM, thereby enhancing the 

robustness of the model to small targets in complex 

backgrounds. It is expected that through this algorithm 

improvement, the accuracy and stability of TP-PFD can 

be improved while maintaining real-time performance. 

 

3.1 Construction of YOLOv5 Algorithm for 

PFD 
In fields such as surveillance video analysis, intelligent 

transportation systems, and public safety, PFD is a key 

technology used to estimate the number of people in 

specific areas, monitor pedestrian density, and track 

individual movements [16]. Observing the crowd from 

top to bottom with a top-down angle reduces occlusion 

issues and helps with more accurate flow counting and 

behavior analysis. However, from a top-down perspective, 

the size of the human body in the image is usually small, 

and the interaction and occlusion between individuals can 

lead to a decrease in detection accuracy. Monitoring the 

dynamic lighting changes in the scene can also pose 

challenges for PFD. YOLOv5 is an extremely fast object 

detection model that can meet the needs of real-time 

monitoring, and it has good performance on STD [17]. 

Meanwhile, due to the excellent customization 

performance of YOLOv5, it can be targeted for expansion 

and optimization according to actual needs. Its relatively 

small number of parameters is also the reason for its 

excellent deployment difficulty [18]. Therefore, this 

study chooses YOLOv5 as a strong candidate model for 

TP-PFD. This model can combine speed and accuracy to 

provide reliable detection performance in challenging 

scenarios. Figure 1 shows the process of applying 

YOLOv5 model to TP-PFD in this study. 
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Figure 1: Flow framework of YOLOv5 model under 

TP-PFD 

 

The Transformer architecture is a deep learning 

model proposed in 2017. It was originally designed to 

solve sequence problems in natural language processing. 

Afterwards, Transformer quickly became the mainstream 

model in the field of natural language processing due to 

its efficiency and powerful performance, and gradually 

expanded to computer vision and other fields. One of the 

key innovations of Transformer is that it is entirely based 

on the "SAM". This mechanism allows the model to 
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dynamically focus on other elements in the sequence 

while processing each element, thereby capturing their 

relationships. Its unique SAM allows the model to 

calculate attention scores at different positions in the 

sequence, allowing the model to focus on the relevant 

parts of the input sequence. This is very useful for 

understanding long-distance dependencies in sequences. 

The Transformer model can parallelize multiple SAMs, 

with each focusing on different sub-spaces of input, 

which improves the model's ability to capture different 

types of information [19]. ViT is the first attempt to 

directly apply Transformer to image classification, which 

divides images into multiple small pieces (tokens) and 

then processes them using a standard Transformer model. 

Although ViT performs well on large-scale datasets, its 

performance is weaker on small-scale images or datasets. 

This is partly because it generates significant information 

loss when dealing with these situations, especially in 

terms of its ability to capture fine-grained features. Figure 

2 shows the network structure of ViT. 

 

Image 

input

Linear projection

Transformer encoder

Multilayer 

perceptron
Forecast

 

Figure 2: ViT network structure diagram 

 

To overcome the limitations of ViT on small-scale 

images or datasets, an innovative T2T-ViT mechanism is 

introduced. This mechanism can effectively aggregate 

locally relevant feature information together. Specifically, 

T2T-ViT recursively merges adjacent image blocks 

(tokens) into higher-level tokens to construct a 

hierarchical representation. This method not only 

improves the model's ability to express small targets and 

complex textures, but also reduces the complexity and 

computational cost of the model. In traditional ViT 

design, an image is divided into a series of fixed size 

blocks, each of which is flattened and linearly projected 

into a token. Then these tokens are fed into the 

Transformer structure for processing. However, this 

method usually ignores local structural information 

between blocks, especially when the image details are 

relatively fine. To address this issue, T2T-ViT proposes a 

token-to-token conversion mechanism. In this conversion 

process, the model first performs Soft Split (SS) on the 

image, which means that the segmented blocks are 

allowed to have overlapping parts to retain more local 

information. Next, the model recursively merges adjacent 

tokens into new tokens, similar to the way features are 

gathered layer by layer in a neural network. After each 

merge, the model is able to obtain a more global and 

abstract image representation, while reducing the number 

of tokens required for processing. Through this approach, 

T2T-ViT can maintain and refine the image 

representation at each step, allowing the model to capture 

global information while also paying attention to local 

details of the image. This makes T2T-ViT more effective 

in processing delicate image features, especially in small 

target recognition and fine-grained classification tasks, 

showing better performance than ViT. Figure 3 shows the 

T2T module. 
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Figure 3: Diagram of the T2T module 

 

The reconstruction process in Figure 3 can be 

specifically represented as shown in formula (1). 

( )( )'

i iA MLP MSA A=        (1) 

In formula (1), 
'

iA  represents the reconstructed 

output. MLP  represents a multi-layer perception 
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module. MSA  represents the multi-head attention 

mechanism. iA  represents the initial input. The SS 

process can be described as formula (2). 

( )'i iC Reshape A=          (2) 

In formula (2), iC  represents the conversion 

output, and Reshape  represents the total conversion 

operation of the module. The final output representation 

is formula (3). 

( )1i iA SS a+ =           (3) 

In formula (3), 1iA +  represents the output after SS 

and SS  represents the SS operation. T2T-ViT also 

reduces the burden of self-attention computation in the 

Transformer model through this structured merging 

approach. Due to the number of merged tokens has 

decreased, the computational complexity of self-attention 

has also decreased. This design not only improves the 

model's expressive power, but also makes it more suitable 

for use in environments with limited computing resources. 

In summary, T2T-ViT enhances the model's ability to 

capture image details through its innovative token to 

token conversion process, and improves computational 

efficiency by reducing the number of tokens. Therefore, 

the application of the Transformer architecture in image 

related tasks becomes more powerful and efficient. 

 

3.2 Improvement of PFD YOLOv5 algorithm 
When applying the YOLOv5 algorithm to PFD, its 

performance optimization has become the focus of 

research attention. The limitations of YOLOv5 in 

detection accuracy and speed have been thoroughly 

analyzed to explore targeted improvement measures. 

These improvements aim to enhance YOLOv5's detection 

ability in complex pedestrian flow scenarios through 

structural adjustments and algorithm optimization. Due to 

the high similarity of pedestrian targets in TP-PFD, to 

further improve the accuracy of the model, this study 

chooses to introduce prior knowledge to make targeted 

improvements to the network. This study introduces an 

attention mechanism for the T2T module, which performs 

another conversion after the image is converted. The 

specific module architecture is Figure 4. 
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Figure 4: Improved T2T module for TP-PFD 

 

Figure 4 shows the T2T module improvement 

mechanism that takes into account the similarity of 

TP-PFD. The process of taking the average value can be 

expressed as formula (4). 

( )mean iA Mean A=         (4) 

In formula (4), Mean  represents averaging. meanA  

represents the output value processed by Mean . iA  

represents the input value. The process of taking the 

maximum value is formula (5). 

( )max iA Max A=         (5) 

In formula (5), maxA  represents the maximum 

output value, and Max  represents taking the maximum 

value. The attention mechanism is represented by formula 

(6). 

( )( )1 1 max,meanAttention Conv Cat A A=  (6) 

In formula (6), Attention  represents the output 

result of the attention mechanism. 1 1Conv   represents 

the convolution operation of 1 1 , which is mainly aimed 

at dimensionality reduction. Cat  represents Concate, 

with the aim of connecting meanA  with maxA . 
a

iI  

represents the output result after introducing attention 

mechanism recombination. The purpose of 
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sub-optimization in the study is to further enhance the 

feature learning performance of the model in TP-PFD. 

The improved T2T module is Figure 5. 
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Figure 5: Improved T2T module for PFD at overhead angles 

 

By combining the T2T-ViT module, this study 

constructs a backbone network with a structure similar to 

CNN, as shown in Figure 6. It has a similar deep narrow 

shaped structure as CNN, where S represents the number 

of stacked modules. The objective of this study is to 

enhance the learning and recognition performance of the 

model for pedestrian features under overhead angles. This 

will be achieved by optimizing the token representation 

of the images, thus overcoming the problem of similarity 

in pedestrian targets under this perspective. 
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Figure 6: The backbone network structure of overlooking human traffic detection network 

 

In the study, the Deep SORT tracking algorithm is 

further adopted to achieve accurate tracking of human 

flow. This algorithm combines Kalman Filtering (KF) 

[20]. KF essentially achieves optimal prediction of future 

states through the current historical state. The system 

state equation of KF is formula (7). 

1kk X k kX a bU W
−

= + +        (7) 

In formula (7), kX  and 1kX −  represent the system 

state matrices at times k  and 1k − . a  and b  

represent the corresponding system transition matrix. kU  

represents the system control matrix at time k . kW  

represents the noise impact during the process. The 

system observation equation is formula (8). 

k k kZ hX V= +          (8) 

In formula (8), kZ  represents the observation 

matrix at time k . h  represents the system observation 

matrix. kV  represents the observed noise. For the 

convenience of calculation, it is assumed that the noise 

that occurs in the usual process is white noise, which does 

not change with changes in the system state. Its condition 

can be expressed as formula (9). 
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  (9) 

In formula (9), the additional conditions that need to 

be met are shown in formula (10). 

 , 0k kCov W V =          (10) 

In formulas (10) and (9), Q  and R  represent the 

covariance matrices of the corresponding noise, 

respectively. The state prediction equation of KF is 

formula (11). 

1 1 1 kk k k k
X aX bU

− − −
= +        (11) 

In formula (11), 1k k
X

−  represents the system state 

at time k  predicted by time 1k − . 1 1k k
X

− −  represents 

the optimal prediction system at time 1k − . The 

covariance analysis is performed on it as shown in 

formula (12). 

1 1 1

T

k k k k
P aP a Q

− − −
= +       (12) 

In formula (12), 1k k
P

−  and 1 1k k
P

− −  are the 

covariance matrices corresponding to 1k k
X

−  and 

1 1k k
X

− − . Ta  represents the transposition of the system 

related state transition matrix. The optimal estimate is 

expressed as formula (13). 

( )1 1k kk k k k k k
X X K Z hX

− −
= + −     (13) 

In formula (13), k k
X  represents the optimal 

estimated system state at time k . kZ  represents the 

system observation state at time k . kK  represents the 

Kalman gain matrix at time k . h  represents the state 

observation matrix. The calculation of kK  is formula 

(14). 

1 1
/T T

k k k k k
K P h hP h R

− −
 = +
      (14) 

In formula (14), R  represents the covariance 

matrix of the noise. The covariance update result of the 

system state is formula (15). 

( ) 1
1 kk k k k

P K h P
−

= −       (15) 

In formula (15), k k
P  represents the covariance 

update result of the system state at time k . This study 

uses YOLOv5 for object detection and combines it with 

the Deep SORT tracking algorithm to achieve object 

detection in TP-PFD. The pseudo-code for the research 

method is shown in Figure 7. 
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```plaintext

Algorithm: YOLOv5-V-D Training and Evaluation

Procedure: Train_YOLOv5_V_D(TrainingData, Hyperparameters)

  Input: TrainingData - Data for training

          Hyperparameters - Parameters for training like learning rate, batch size, etc.

  Begin

    1. Initialize YOLOv5 model.

    2. Integrate T2T-ViT module for small target detection.

    3. For each epoch, do:

        a. Loop over batches in TrainingData.

        b. Perform forward pass, calculate loss, and backward pass.

        c. Update model weights.

    4. Apply learning rate decay.

    5. Save the best model based on validation performance.

  End Procedure

Procedure: Evaluate_YOLOv5_V_D(TestFrames, TrainedModel)

  Input: TestFrames - Data for testing

         TrainedModel - The saved model from training

  Begin

    1. For each frame, do:

        a. Get model predictions.

        b. Apply non-maximum suppression.

        c. Track individuals using Deep-SORT.

    2. Calculate metrics (accuracy, F1 score, recall) for TestFrames.

  End Procedure

Procedure: RealWorld_Tracking(VideoClips, TrainedModel)

  Input: VideoClips - Real-world video data

         TrainedModel - The trained model

  Begin

    1. For each clip, do:

        a. Extract frames.

        b. Apply Evaluate_YOLOv5_V_D.

        c. Aggregate and report flow prediction accuracy.

  End Procedure

 

Figure 7: Method pseudo-code 

 

4 Performance testing of TP-PFD 

model 
To test the practicality and usability of the proposed 

TP-PFD model, this study selects UCF_ CC_ 50 and 

NWPU Crowd datasets are used to validate this method. 

Among them, the UCF_ CC_50 dataset contains 50 

high-resolution images obtained from different scenes. 

Each image contains numbers ranging from 94 to 4,543, 

suitable for population counting studies. NWPU Crowd 

includes 5,109 images and 2,133,238 person annotations, 

including some images taken from a top view angle, 

suitable for crowd counting and positioning. This study 

randomly selects 80% of the two datasets for training, 

while the remaining 20% is used for testing. CenterNet 

(CN) model and RetinaNet (RN) model are selected for 

comparison with research methods 

(YOLOv5-ViT-T2T-Deep-SORT, YOLOv5-V-D). To 

avoid limitations on research due to the device 

performance, the study chooses to rent a cloud server 

platform for experimentation. Table 2 provides specific 

software and hardware details as well as training 

parameters. 
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Table 2: Hardware and software details and training parameter settings 

Hardware Software Training parameter 

Name Detail Name Detail Hyper-parameters Detail 

Supplier 
Microsoft 

Azure 
Linux 

Ubuntu Server 

20.04 LTS 
Learning Rate 0.001 

Type Standard NC6 TensorFlow 2.9 Batch Size 64 

CPU 
Intel Xeon 

E5-2690 v3 

PyTorch 1.7 Optimizer Default 

CUDA Toolkit 11.0.194 Weight Initialization Xavier 

RAM 56Gb cuDNN 7.2.1 Activation Function Leaky ReLU 

GPU 
NVIDIA Tesla 

K80 
Python 3.8 Loss Function 

Cross-Entropy 

Loss 

MEM 

Azure Blob 

Storage 
OpenCV 4.2 Learning Rate Decay 0.1 

Azure Managed 

Disk 

Jupyter 

Notebook/Lab 
- Epoch 150 

 

Firstly, the F1 and Recall values of the three models 

are tested, and the results are shown in Figure 8. The 

improved YOLOv5-V-D has a faster convergence speed, 

reaching the optimal F1 value and the optimal Recall 

value in about 61 iterations. In Figure 8 (a), its optimal F1 

value is 0.952, which is 0.015 and 0.037 higher than CN 

and RN, respectively. In Figure 8 (b), its optimal Recall 

value is 0.947, which is 0.021 and 0.041 higher than CN 

and RN, respectively. 
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Figure 8: F1 and recall tests of three models 

 

Figure 9 shows the results of testing and comparing 

the Precision recall curves of three models. In Figure 9, 

the curve area of the research method is superior to the 

other two models, which proves the superiority of the 

research method in performance compared to CN and RN. 

The improved YOLOv5-V-D has better basic 

performance indicators and stronger practicality. 
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Figure 9: Precision-recall curve tests for three models 

 

The detection delay of three models are tested to 

examine their usability in practice, testing on two datasets 

to obtain Figure 10. In Figure 10 (a), the optimal delay 

performance of YOLOv5-V-D is 2.4ms, leading by 3.5ms 

and 7.2ms compared to CN and RN, respectively. The 

performance of the demonstration in Figure 10 (b) has 

increased, which is speculated to be due to the high 

difficulty of the dataset. The optimal delay performance 

of YOLOv5-V-D is 12.0ms, which is 4.3ms and 5.6ms 

ahead of CN and RN, respectively. Overall, the improved 

YOLOv5-V-D has better latency performance on both 

datasets. Its average delay performance is 7.2ms, leading 

by 3.9ms and 6.4ms compared to CN and RN, 

respectively. 
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Figure 10: The delay test results of three algorithms 

 

Figure 11 tests the parameter values of the three 

models. Figure 11 (a) is the UCF_ CC_50 dataset, and the 

YOLOv5-V-D performs better than the comparative 

model. The number of model parameters in Figure 11 (b) 

has increased due to the increased difficulty of the dataset, 

but YOLOv5-V-D still performs better than the 

comparative model. Overall, the improved YOLOv5-V-D 

has the best parameter performance. It can achieve lower 

system load and lower computing costs, which is more 

conducive to embedding and deployment on low 

performance platforms. 

The PFD results of the three algorithms are tested 

using actual top-down angle shots. To avoid the impact of 

errors on the test results, this study selects five videos for 

testing, as shown in Table 3. In Table 3, the improved 

YOLOv5-V-D has the best accuracy in predicting 

pedestrian flow. The accuracy of its traffic prediction 

reaches 98.72%, leading by 20.59% and 28.61%, 

respectively, compared to CN and RN. 
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Figure 11: Parameter test results of three models 

 

 

Table 3: The actual flow detection test of three models 

Video 

clip 
Model 

Actual result Forecast result 
Accuracy(%) 

Upflow Downflow Upflow Downflow 

Clip 1 

YOLOv5-V-D 

9 12 

9 12 100.00 

CN 7 11 84.72 

RN 5 9 65.28 

Clip 2 

YOLOv5-V-D 

11 15 

11 15 100.00 

CN 14 9 69.29 

RN 11 5 66.67 

Clip 3 

YOLOv5-V-D 

19 14 

20 14 97.50 

CN 24 15 86.25 

RN 14 19 73.68 

Clip 4 

YOLOv5-V-D 

21 17 

20 17 97.62 

CN 27 21 79.37 

RN 19 29 75.55 

Clip 5 

YOLOv5-V-D 

29 33 

29 32 98.48 

CN 21 23 71.06 

RN 46 25 69.40 

 

In summary, the improved YOLOv5-V-D has 

excellent training efficiency and superior performance 

compared to both CN and RN models. It has lower 

latency and parameter quantity, and it has higher 

accuracy in actual PFD. Using only the UCF_CC_50 and 

NWPU-Crowd datasets for testing may result in a lack of 

clear understanding of operational performance in 

real-world operating environments, leading to unclear 
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limitations in the study. To more fully evaluate the 

generalization ability of the model, ShanghaiTech and 

Qnrf datasets containing extreme crowd density and 

complex dynamic behavior are introduced for testing. On 

the ShanghaiTech dataset, the model's detection accuracy 

exhibits a minimal decline of 0.39%, particularly in 

scenarios involving high passenger density, where its 

performance remains robust. Data enhancement 

techniques are then used to simulate a variety of 

environmental conditions, including random brightness 

adjustment (brightness variation range ±20%), contrast 

change (contrast variation range ±15%), noise addition 

(Gaussian noise and salt and pepper noise), and image 

transformation to simulate different viewing angles. 

Under more environmental conditions, the fluctuation 

range of detection accuracy of the research method is 

kept within 1.50%. In severe weather conditions 

including rain, fog, snow and dust, the detection accuracy 

of the research method has a decrease of nearly 3.00%. 

To assess the stability of the model over long tracking 

periods, the study is tested in a continuous video stream. 

The results show that the YOLOv5-V-D model has a 

tracking accuracy of more than 95% in the video tracking 

of up to 2 hours, which proves its long-term stability. It 

shows that the method has good model generalization 

performance. 

5 Discussion 

This paper proposes a PFD method based on top-down 

view of STT. By integrating ViT architecture and 

Deep-SORT tracking algorithm, the YOLOv5 model is 

improved, aiming to improve the accuracy and efficiency 

of small-target tracking under top-down view. The 

improved YOLOv5-V-D model outperforms the existing 

CenterNet and RetinaNet models on several performance 

metrics. Specifically, the values of F1 and Recall of 

YOLOv5-V-D reach 0.952 and 0.947, respectively, 

which are significantly improved compared to CenterNet 

and RetinaNet models. In addition, the average delay of 

YOLOv5-V-D is 7.2ms, which also shows better 

performance in real-time than other existing studies. The 

introduction of the T2T-ViT architecture has enabled the 

effective capture of global information in images through 

SAM. This has facilitated the distinction between the 

flow of people and the background in complex scenes, 

thereby enhancing the recognition accuracy of small 

targets. The integration of T2T-ViT architecture is one of 

the core innovations of the study. The T2T-ViT model 

employs a token-to-token mechanism to recursively 

merge adjacent image blocks, thereby constructing a 

hierarchical representation. This approach not only 

enhances the model's capacity to identify subtle targets 

and intricate textures but also reduces its complexity and 

computational cost. The integration of the T2T-ViT 

architecture significantly improves the model's 

performance when dealing with complex pedestrian 

dynamics. In the actual overhead angle shot, the 

YOLOv5-V-D model shows a high pedestrian flow 

prediction accuracy of 98.72%, which indicates that the 

model can effectively handle the interaction and 

occlusion between pedestrians, as well as the challenges 

brought by dynamic lighting changes. Through 

experiments on various test sets, it is found that the 

performance of the model deteriorates in high density 

human flow scenarios, poor lighting conditions or severe 

lighting changes. Analysis shows that the main reasons 

for performance degradation include but are not limited 

to insufficient representation of small targets in images 

resulting in insufficient feature extraction, as well as 

interference factors in complex backgrounds. The 

stability and accuracy of tracking algorithms are 

challenged in situations of rapid motion or occlusion. The 

integration of infrared or depth sensor data can be 

considered in the solution to supplement the visual 

information and enhance the robustness of the model to 

occlusion and illumination changes. More sophisticated 

image enhancement techniques such as adaptive contrast 

adjustment and noise reduction algorithms are employed 

to improve image quality. 

6 Conclusion 

The detection and tracking of pedestrian flow is of great 

significance for public safety and space management. The 

PFT under the overhead angle requires extremely high 

STD capability of the model. This study aimed to 

improve the accuracy and efficiency of detection methods 

to achieve real-time monitoring in various application 

scenarios. By adopting the improved YOLOv5-V-D 

model, this method has made significant progress in 

target tracking and PFD performance. In response to the 

shortcomings of classical models in small target 

recognition, the ViT-T2T framework and Deep SORT 

tracking algorithm were introduced to enhance the 

sensitivity and detection speed of the model to small 

targets. After improvement, the model converged after 

approximately 61 iterations, demonstrating excellent 

performance. The F1 value and Recall value reached 

0.952 and 0.947, respectively, surpassing the 

performance of the CN and RN models. In addition, the 

model also performed excellently in terms of latency, 

with an average time of only 7.2ms, significantly superior 

to the comparison model. The practical application value 

of this research result was reflected in the accuracy of 

pedestrian flow prediction, reaching 98.72%, 

significantly higher than the CN and RN models. This 

achievement confirmed the effectiveness of the improved 

model in handling complex dynamic scenes, especially its 

potential application in high-density pedestrian 

environments. Despite the above achievements, the 

limitations of this method in facing extreme environments 

and behavior patterns should also be recognized. This 

study lacks further improvements in the robustness of the 

model, and future improvements should be made in this 

area to enhance the applicability and anti-interference 
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ability of the model. 

References 

[1] X. Xu, Q. Wu, L. Qi, W. Dou, S. B. Tsai, and M. Z. A. 

Bhuiyan, “Trust-aware service offloading for video 

surveillance in edge computing enabled internet of 

vehicles,” IEEE Transactions on Intelligent 

Transportation Systems, vol. 22, no. 3, pp. 

1787-1796, 2021. 

https://doi.org/10.1109/TITS.2020.2995622 

[2] Y. Zhang, J. Zhang, and R. Tao, “Key frame 

extraction of surveillance video based on fractional 

fourier transform,” Journal of Beijing Institute of 

Technology, vol. 30, no. 3, pp. 311-321, 2021. 

https://doi.org/10.15918/j.jbit1004-0579.2021.058 

[3] J. Qiu, L. Wang, Y. Hu, and Y. Wang, “Effective 

object proposals: size prediction for pedestrian 

detection in surveillance videos,” Electronics Letters, 

vol. 56, no. 14, pp. 706-709, 2020. 

https://doi.org/10.1049/el.2020.0850 

[4] D. Xi, Y. Qin, and S. Wang, “YDRSNet: an 

integrated Yolov5-Deeplabv3+real-time 

segmentation network for gear pitting 

measurement,” Journal of Intelligent Manufacturing, 

vol. 34, no. 4, pp. 1585-1599, 2023. 

https://doi.org/10.1007/s10845-021-01876-y 

[5] Z. Zhao, F. N. Khan, Z. A. H. Qasem, B. Deng, Q. Li, 

Z. Liu, and H. Y. Fu, 

“Convolutional-neural-network-based versus 

vision-transformer-based SNR estimation for visible 

light communication networks,” Optics Letters, vol. 

48, no. 6, pp. 1419-1422, 2023. 

https://doi.org/10.1364/OL.485321 

[6] S. Shi, L. Jiang, D. Cao, and Y. Zhang, “Sea-surface 

small target detection using entropy features with 

dual-domain clutter suppression,” Remote Sensing 

Letters, vol. 13, no. 10/12, pp. 1142-1152, 2022. 

https://doi.org/10.1080/2150704X.2022.2127129 

[7] B. Yang, and J. Wang, “An improved helmet 

detection algorithm based on YOLO V4,” 

International Journal of Foundations of Computer 

Science, vol. 33, no. 6/7, pp. 887-902, 2022. 

https://doi.org/10.1142/s0129054122420205 

[8] G. L. Zhi, D. U. Juan, T. Feng, and Z .W. Jia, “Traffic 

sign recognition using an attentive context 

region-based detection framework,” Chinese Journal 

of Electronics, vol. 30, no. 6, pp. 1080-1086, 2021. 

https://doi.org/10.1049/cje.2021.08.005 

[9] L. Bommes, M. Hoffmann, C. Buerhop‐Lutz, T. 

Pickel, J. Hauch, and C. Brabec, “Anomaly 

detection in IR images of PV modules using 

supervised contrastive learning,” Progress in 

Photovoltaics, vol. 30, no. 6, pp. 597-614, 2022. 

https://doi.org/10.1002/pip.3518 

[10] H. Qin, Y. Wu, F. Dong, and S. Sun, “Dense 

sampling and detail enhancement network: 

Improved small object detection based on dense 

sampling and detail enhancement,” IET Computer 

Vision, vol. 16, no. 4, pp. 307-31, 2022. 

https://doi.org/10.1049/cvi2.12089 

[11] Y. Minegishi, Y. Ohmiya, T. Sano, and M. Tange, 

“Analysis and modeling of pedestrian flow in a 

confined corridor focusing on the headway distance 

and velocity of pedestrians,” Fire Technology, vol. 

58, no. 2, pp. 709-735, 2022. 

https://doi.org/10.1007/s10694-021-01173-3 

[12] J. Yang, W. Y. He, T. Zhang, C. Zhang, and B. F. 

Nan, “Research on subway pedestrian detection 

algorithms based on SSD model,” IET Intelligent 

Transport Systems, vol. 14, no. 11, pp. 1491-1496, 

2020. https://doi.org/10.1049/iet-its.2019.0806 

[13] X. Song, B. Chen, P. Li, B. Wang, and H. Zhang, 

“PRNet++: learning towards generalized occluded 

pedestrian detection via progressive refinement 

network,” Neurocomputing, vol. 482, no. 14, pp. 

98-115, 2022. 

https://doi.org/10.1016/j.neucom.2022.01.056 

[14] J. Yang, W. Y. He, T. Zhang, C. L. Zhang, L. Zeng, 

and B. F. Nan, “Research on subway pedestrian 

detection algorithms based on SSD model,” IET 

Intelligent Transport Systems, vol. 14, no. 11, pp. 

1491-1496, 2020. 

https://doi.org/10.1049/iet-its.2019.0806 

[15] S. Zhang, X. Yang, Y. Liu, and C. Xu, “Asymmetric 

multi-stage CNNs for small-scale pedestrian 

detection,” Neurocomputing, vol. 409, no. 7, pp. 

12-26, 2020. 

https://doi.org/10.1016/j.neucom.2020.05.019 

[16] A. Ali, “A framework for air pollution monitoring in 

smart cities by using IoT and smart sensors,” 

Informatica, vol. 46, no. 5, pp. 129-138, 2022. 

https://doi.org/10.31449/inf.v46i5.4003 

[17] J. Guo, X. Zhang, Y. Dong, Z. Xue, and B. Huang, 

“Terrain classification using mars raw images based 

on deep learning algorithms with application to 

wheeled planetary rovers,” Journal of 

terramechanics, vol. 108, no. 8, pp. 33-38, 2023. 

https://doi.org/10.1016/j.jterra.2023.04.002 

[18] Q. Zhang, Y. Wang, L. Song, M. Han, and H. Song, 

“Using an improved YOLOv5s network for the 

automatic detection of silicon on wheat straw 

epidermis of micrographs,” Journal of Field 

Robotics, vol. 40, no. 1, pp. 130-143, 2023. 

https://doi.org/10.1002/rob.22120 

[19] A. Ali, “Remote monitoring of lab experiments to 

enhance collaboration between universities,” 

Informatica, vol. 46, no. 2, pp. 169-177, 2022. 

https://doi.org/10.31449/inf.v46ix.xxxx 

[20] S. Yang, Z. Chen, X. Ma, X. Zong, and Z. Feng, 

“Real-time high-precision pedestrian tracking: a 

detection-tracking-correction strategy based on 

improved SSD and Cascade R-CNN,” Journal of 

Real-Time Image Processing, vol. 19, no. 2, pp. 

287-302, 2022. 

https://doi.org/10.1007/s11554-021-01183-y 


