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In real life, interior design is a complex and challenging job. Interior design solutions need to consider 

factors such as spatial layout, color matching, etc., and the emergence of knowledge graph provides a 

new method of summarizing design ideas for the interior design industry. However, in the face of a 

large number of knowledge graphs, how to achieve high-quality classification of knowledge graphs 

has become a hot topic of discussion in related industries. The work builds a knowledge graph 

intelligent classification model based on machine learning, simulated annealing, and genetic 

algorithms to accomplish effective knowledge graph classification. The global optimization of 

convolutional neural network parameters is accomplished by merging the model using the simulated 

annealing approach and the genetic algorithm. The experimental results indicated that the proposed 

model converged to an F1 score of about 95.03%, while the control model converged to an average F1 

score of 94.37% and 94.26%. The average recall of the proposed model was 91.71% while the average 

recall of the control model was 87.06%. Based on the experimental findings, it can be said that the 

suggested model performs noticeably better than the control model, indicating that it is an improved 

knowledge graph classification method. In addition, the proposed model contributes to the 

development of interior design related industries. 

Povzetek: V članku je opisan razvoj inteligentnega modela za klasifikacijo grafov znanja na področju 

notranjega oblikovanja. Predlagan model temelji na algoritmu simuliranega ohlajanja in dosega 

boljšo točnost ter izboljšano klasifikacijo.

1 Introduction 

Interior design (InD) is a comprehensive field, which 

involves aesthetics, architecture and so on. Currently 

there are numerous InD styles of various types, such as 

minimalism, industrial style, Scandinavian style, etc. 

Each of these design styles has its own characteristics, 

which brings a wealth of choices for modern home life 

[1]. However, with the continuous development of the 

design field, the diversity and innovation of InD have 

become increasingly prominent. The rich and diverse 

design styles and creativity also create a considerable 

workload for InD solution summarization. But as 

different machine learning (ML) algorithms have evolved, 

the issue of InD solution summarization has been 

resolved with the introduction of knowledge graphs (KG). 

The term “knowledge domain visualization,” also known 

as “knowledge domain mapping map,” refers to a 

collection of several graphs that illustrate the structural 

links and knowledge production process [2-3]. Through 

KG, the association between design styles, design 

solutions and design objects can be visualized, thus 

assisting the planning and program construction of InD. 

KGs are usually constructed in a structured way, but the 

construction of KGs through this way will output a large 

number of KGs [4]. How to effectively categorize the 

generated KGs has become a difficult problem in KG 

research. Currently available optimization techniques 

include the genetic algorithm (GA) and the simulated 

annealing algorithm (SAA), which when combined with 

ML algorithms can increase the ML algorithm's 

convergence speed and computational efficiency [5]. In 

view of this, the study employs GA and SAA for 

combining and constructing a fusion optimization seeking 

algorithm to help convolutional neural networks (CNN) 

for KG classification. 

To address the problem of KG generation, the study 

found through reviewing the literature that a number of 

researchers have innovated the methods of KG generation 

and application methods. For example, Xue et al. found 

that the current mainstream KG still contains inaccurate 

or outdated entries, so they proposed a KG construction 

method that can be used for quality assessment and error 

detection. In comparison to existing models of the same 

kind in the KG creation process, the suggested method 

had superior accuracy and sophistication, as confirmed by 
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experimental verification in the final study [6]. Wang and 

other researchers used heterogeneous graphs to improve 

the KG generation process, and the KGs after the 

introduction of heterogeneous graphs can be represented 

in a low dimensional space. In addition, the study also 

analyzed the applicability of heterogeneous graph-based 

KGs in real industrial environments and concluded that 

the proposed KG construction method has achieved some 

success in real application scenarios [7]. Yuan et al. 

constructed an exponential atlas generation model based 

on depth model using ML method, which achieves more 

accurate data keyword extraction by graph convolutional 

network for data extraction and fusion. It was 

experimentally proved that the atlas generated by the 

proposed KG generation method outperforms other 

similar models in terms of keyword summarization and 

keyword relationship processing, and the results show the 

advanced nature of the proposed model [8]. Steenwinckel 

et al. tried to add ML algorithm into the process of KG 

generation. The relationship between the data was 

characterized by the instance neighborhood of the 

knowledge in the deep learning-based KG construction, 

while the representation of the nodes of interest in the KG 

was in a binary way for easy processing by the ML 

algorithm. The final experiment indicated that the 

proposed new KG construction method has higher 

efficiency and accuracy compared to other methods [9]. 

Numerous research teams have also made 

innovations in the optimization and implementation of 

SAA. For example, Li et al. suggested a broadband 

passive interference technique based on SAA to address 

the technological challenges associated with broadband 

passive interference. Using the least amount of each 

chosen sub-element, the method employs SAA to 

produce the newly integrated foil element's 

amplitude-frequency profile with the least amount of 

variation. Experimental results showed that the new 

integrated foil element optimized with SAA has high 

interference efficiency [10]. A new path planning method 

for robotic systems was proposed by researchers such as 

Shi to address the logical rationality of robot trajectories 

and final states. In this path planning method, the SAA 

was employed for the optimization of each robot's path 

trajectory, thereby enabling the derivation of the optimal 

path solution for each robot within the current region. 

The study's findings indicate that, in terms of both 

computing cost and the quality of the solutions produced, 

the strategy proposed in the research performs better than 

the current strategies in use [11]. Shin et al. found that the 

traditional SAA has obvious shortcomings in coping with 

large-scale problems, so they chose to add an efficient 

storage hardware for memory optimization based on 

stochastic SAA, and designed relevant experiments to 

verify the optimization effect of the improved SAA on 

memory. The experimental results demonstrated that the 

proposed method achieved an absolute advantage in the 

maximum cut combination optimization problem [12]. 

Cloud cover can provide a significant challenge to 

microcosmic data transmission since optical remote 

sensing sensors are unable to detect through clouds. In 

view of this, Han et al. introduced SAA to optimize the 

cloud coverage uncertainty. The final results 

demonstrated that the proposed technique represents a 

significant advancement in AEOS scheduling, 

outperforming existing state-of-the-art methods in various 

scenarios [13]. 

The summary of relevant work is shown in Table 1. 

 

Table 1: Summary of related work 

Research topic Research methods 

and applications 

Main indicators Performance results Limitations 

Knowledge graph 

 

Xue et al.'s 

knowledge graph 

construction method 

[6] 

Quality assessment 

and error detection 

Improve the 

accuracy and 

complexity of 

knowledge graphs 

There may still be 

inaccurate or 

outdated entries 

Wang et al.'s 

heterogeneous graph 

method [7] 

Low dimensional 

space representation 

and practical 

industrial 

applicability 

Improve the 

practicality and 

applicability of 

knowledge graphs 

Further verification 

is needed for its wide 

applicability to 

actual industrial 

environments 

Yuan et al.'s deep 

model-based 

exponential graph 

generation model [8] 

Data keyword 

extraction and 

keyword summary 

Superior keyword 

processing and 

summarization 

performance 

compared to other 

models 

The complexity of 

deep models may 

increase 

computational costs 

Steenwinckel et al.'s 

deep learning 

method [9] 

Efficiency and 

accuracy 

Higher efficiency 

and accuracy 

There may be a high 

computational 

complexity issue in 

constructing 

large-scale 

knowledge graphs 
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Simulated annealing 

algorithm 

 

Application of Li et 

al.'s simulated 

annealing algorithm 

in broadband passive 

interference 

technology [10] 

Interference 

efficiency 

Improving the 

interference 

efficiency of 

broadband passive 

interference 

technology 

Further validation is 

needed to evaluate 

the effectiveness in 

different 

environments 

Shi et al.'s path 

planning method 

based on simulated 

annealing algorithm 

[11] 

Optimal path 

solution and cost 

calculation 

Better path planning 

effect 

There may be 

challenges in 

real-time path 

planning for complex 

environments 

Shin et al.'s memory 

optimization 

simulated annealing 

algorithm [12] 

Memory 

optimization effect 

Maximum cut 

combination 

optimization solution 

with absolute 

Advantage 

Need to consider 

applicability in 

different hardware 

environments 

Han et al.'s simulated 

annealing algorithm 

for optimizing 

uncertainty in cloud 

coverage [13] 

Optimize cloud 

coverage and 

improve performance 

Better performance 

than current methods 

Performance 

improvement only 

under specific tasks, 

generalization needs 

further verification 

 

 

In conclusion, existing research has made notable 

advancements in knowledge graph generation and SSA 

optimization, with a particular focus on enhancing 

accuracy and efficiency. Nevertheless, existing 

methodologies present shortcomings, including 

suboptimal accuracy of KG and diminished algorithmic 

efficacy. The fusion optimization search algorithm 

proposed in the study combines a GA and an SSA, which 

can effectively address the classification problem in the 

process of knowledge graph generation, thereby 

improving accuracy and efficiency. This method can 

overcome the inaccuracies and obsolescence inherent in 

KG, while also exhibiting high algorithm convergence 

speed and computational efficiency. It thus represents a 

novel solution for the construction of KG in the field of 

InD. 

The paper is organized primarily into four sections. 

The first section is the introduction, which introduces the 

current research status of the technology used. The 

approach, which carries out the intelligent categorization 

and creation of the KG of InD by SAA and GA, is 

covered in the second section. The third section is the 

model performance test, which verifies the advancement 

of the proposed model by designing controlled 

experiments. The fourth section is the discussion section, 

which mainly compares and analyzes the performance 

results of the proposed model. The last section is the 

conclusion, which mainly summarizes the research results 

and shortcomings. 

 

 

2 Methods and materials 

This subsection explores the keyword-based generation 

of KG for InD and its classification method. In order to 

realize the classification problem of KG of InD, the study 

introduces SAA and GA for ICM construction, and GA is 

utilized to improve SAA in order to solve the local 

convergence problem of SAA so as to improve the 

classification effect of ICM. 

 

2.1 Intelligent classification model 

construction based on SAA 
To carry out the intelligent classification of KG for InD, 

the study adopts a structured approach for KG 

construction with InD as the main body. The structured 

KG construction includes four steps: data entity 

extraction, data fusion, data constraints, and KG output 

[14]. Data entity extraction is to construct the relationship 

between InD data into a ternary group, which consists of 

a predicate and two formal parameters, and the data in the 

ternary group determine the existence of the relationship 

through the formal parameters. The study obtains the 

triad of data relationships before data fusion [15]. The 

feature data of different InDs exists in the form of triples, 

so the fusion process only needs to perform the merging 

of like terms of the triples. The data constraint process 

mainly carries out the normalization calculation and 

de-weighting of the data, and the constrained data is 

persisted into the KG through data persistence. Figure 1 

depicts the precise flow of KG construction. 
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Figure 1: Schematic diagram of knowledge graph construction 

 

After constructing the KG generation framework, 

iterative updating is also required to get the complete KG. 

In structural optimization methods, the iterative update of 

KG is usually carried out by incremental update [16]. 

Incremental updating can update only the changed data, 

so this updating method plays an important role in saving 

system resources and time. Although the traditional KG 

construction has formed a more complete system, the KG 

constructed by the above method still has obvious 

drawbacks, such as long construction period, low 

accuracy of data relationship processing, etc. In view of 

the above drawbacks of KG construction, the study 

adopts keyword entity extraction instead of traditional 

data entity extraction. In order to accurately extract 

keywords from data, the research also needs to use ML 

algorithms for assistance. By investigating and analyzing 

the application effects of current common ML algorithms, 

the study selects the simple, fast, and easy-to-understand 

term frequency-inverse document frequency (TF-IDF) 

method to extract keywords from InD data. This method 

mainly evaluates the importance of keywords in the input 

dataset by calculating term frequency (TF) and inverse 

document frequency (IDF) of the input InD data [17]. 

Where the expression for TF calculation is shown in 

Equation (1). 

,

,

i j

f j

k

f
TF

f
=
           (1) 

 

In Equation (1), jif ,  denotes the times a word 

appears in the input data set. tf denotes the meaning of 

the proportion of a word in the input text. In addition, the 

expression for calculating IDF is shown in Equation (2). 
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In Equation (2), D  is the total number of 

keywords in the dataset related to the input InD. 

}:{ ji dwj   is the occurrences of a word iw  among 

all the keywords. jd  denotes all words in the input 

dataset. The final output of the keywords can be obtained 

by synthesizing the output of TF and IDF, and the 

expression of the synthesized output is shown in Equation 

(3). 
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The output result after processing by TF-IDF is a 

data sequence, and the elements in this data sequence are 

the keywords of KG [18]. To extract the keywords of the 

InD data and construct the KG, CNN is selected for the 

study to perform the keyword relationship extraction, 

while the powerful classification ability of CNN can also 

be used for the classification model (CM) construction of 

the KG. After extracting the relationships between 

keywords, the generated KG of InD is shown in Figure 2. 
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Figure 2: Interior design knowledge graph display 

 

In this study, the CNN algorithm is not only used for 

the extraction of keyword relationships, but also involved 

in the classification of KG, but the traditional CNN 

algorithm also has the obvious defect of the difficulty of 

convergence of the objective function (OF) [19]. In order 

to solve this problem, the fully connected layer (FCL) of 

CNN needs to be made to find the globally optimal 

parameters during feature computation. Therefore, the 

study introduces SAA for OF optimization based on the 

traditional CNN algorithm. The fundamental goal of SAA, 

a universal optimization technique inspired by the solid 

matter annealing process, is to simulate the solid 

annealing process in order to obtain the global optimal 

solution for the OF [20-21]. The temperature decay 

function is one of the most important parameters in SAA, 

and the computational expression of this parameter is 

shown in Equation (4). 

1k kT T+ =           (4) 

In Equation (4),   denotes the temperature decay 

coefficient also known as the cooling rate parameter, 

which is used to control the rate of temperature change. 

1kT +  denotes the temperature of the 1k + th iteration and 

kT  denotes the temperature of the k th iteration. To 

adapt SAA to the EucD computation of CNN, the study 

adds new inversion parameters to the algorithm, and 

therefore the algorithm's temperature decay function 

computation is changed accordingly. The new 

temperature decay function calculation expression of 

SAA is shown in Equation (5). 

( )
11

0 0

NKNT k T EXP Ck T 
 

= − = 
 

    (5) 

In Equation (5), k  denotes the iterations of the 

algorithm, which is consistent with the iterations of the 

CNN algorithm. 0T  denotes the initial temperature set 

before the start of the iteration, and ( ).EXP  denotes the 

exponential operation. C  denotes a random constant 

and N  denotes the number of parameters to be inverted. 

After determining the temperature decay function and the 

initial temperature, the algorithm needs to generate the 

initial solution and set up a perturbation mechanism to 

generate a new solution [22]. The computational 

expression for the perturbation mechanism is shown in 

Equation (6). 
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 (6) 

In Equation (6), im  is the i th variable of the 

solution in the current iteration number. im  denotes the 

i th variable of the new solution and T  is the 

temperature in the current iteration number. | . |  denotes 

taking absolute values. u  denotes a constant generated 

by a random number function that takes values in the 

range [0, 1]. ( )sgn .  denotes the sign function. iA  

denotes the lower limit of the i th variable and iB  

denotes the upper limit of the i th variable. iy  denotes 

the intermediate variable in the perturbation mechanism. 

In addition, Metropolis criterion also has an important 

role in SAA. By Metropolis criterion, it makes the 

algorithm to receive worse solutions, so the algorithm can 

better search the global solution [23-24]. The 

mathematical expression of Metropolis criterion is shown 

in Equation (7). 



86   Informatica 48 (2024) 81–96                                                                   J. Liu et al. 

1 2

2 1

1 2

1,

,

E E

H E E
EXP E E

T




= −  
−  
 

   (7) 

In Equation (7), 1E  denotes the state energy of the 

algorithm at the current moment and 2E  denotes the 

state energy of the algorithm after the state update. The 

SAA calculation flow is shown in Figure 3. 
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Figure 3: Simulated annealing algorithm optimization calculation process 

 

Although SAA has the advantages of skipping the 

local optimal solution and reasonably dealing with the NP 

problem, the algorithm has obvious shortcomings in 

practical applications. The cooling rate parameter affects 

the SAA outcomes, thus if it is set excessively big or little 

while the algorithm is executing, it may bypass the global 

optimal solution [25]. Furthermore, the technique 

necessitates numerous Metropolis criterion operations, 

resulting in an extended execution time and sluggish 

convergence during the process. In view of this, although 

the use of SAA for optimization can help the 

fully-connected layer of the CNN algorithm to find the 

optimal parameters, it also leads to a reduction in the 

overall operating rate of KG's CM due to the addition of 

SAA, so the study needs to further optimize the model. 

 

2.2 CM construction incorporating GA and 

SAA 
GA is proposed by Prof. Holland of the University of 

Chicago, the algorithm is a meta-heuristic algorithm. A 

population in GA is made up of a particular number of 

chromosomes, and the process of natural selection is the 

iteration of the OF [26]. The rationale behind selecting 

GA as the optimization algorithm is based on the 

characteristics of its metaheuristic algorithm, which is 

capable of effectively searching the solution space and 

identifying the global optimal solution. The GA 

represents individuals in the solution space through 

chromosomes and simulates the process of biological 

evolution through natural selection, crossover, and 

mutation. It exhibits high search efficiency and global 

optimization capability. The combination of GA with the 

SSA results in enhanced robustness and adaptability when 

confronted with complex problems, and facilitates the 

convergence to the optimal solution in a more expeditious 

manner. 

Each solution in GA can be represented by a 

chromosome. The method begins by creating a certain 

number of chromosomes based on a random function; the 

first chromosome to be created is the initial result 

provided by the algorithm, which may or may not 

represent the actual solution to the problem [27]. At the 

same time after generating the initial solution, the 

algorithm will also give the corresponding fitness 

according to the OF and the initial solution, at this time, 

each chromosome's respective fitness is if . The 

expression for the computation of the fitness in this study 

is shown in Equation (8). 

max max,

0,
i

C f f C
f

else

 − 
= 


      (8) 

In Equation (8), maxC  denotes the maximum value 

of the fitness value, also known as the fitness threshold. 

f   denotes the output value. Equation (9), which shows 

the computation expression for the fitness of the entire 

population, is the superposition of the fitness of each 

chromosome. 

1

m

i

i

F f
=

=             (9) 

In Equation (9), F  denotes the fitness of the 

population as a whole and m  is the all chromosomes in 
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the current population. When the algorithm enters the 

iterative session the determination mechanism will judge 

the chromosomes according to the fitness value, and 

realize the inheritance of high-quality genes by retaining 

the chromosomes with high fitness and eliminating the 

chromosomes with low fitness [28]. Figure 4 illustrates 

the algorithm's precise workings. 
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Figure 4: Schematic diagram of the simulation relationship between genetic algorithm and natural selection and 

genetic processes 

 

The coding of every variable in InD's KG, where the 

various variables are grouped based on the number of bits 

they are identified in the binary code, makes up the 

population's chromosome. The seven-bit binary code 

denotes the variables A, B, E, and F. The type of 

variables E is represented by 10-bit binary code. The 

types of variables C and D are represented by a 13-bit 

binary code. The collective's chromosomal coding is 

displayed in Figure 5. 
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Figure 5: Schematic diagram of chromosome coding details 

 

After encoding is complete, the formal selection 

phase can begin. During this phase, the likelihood of a 

certain chromosome being chosen is directly correlated 

with its fitness—the greater the fitness, the greater the 

likelihood of selection [29]. The expression for 

calculating the probability of a chromosome being 

selected is shown in Equation (10). 

1

i i

i m

i

i

Z Z
P

F
f

=

= =


          (10) 

iP  is the likelihood that the i th chromosome will 

be chosen in Equation (10). The fitness of the i th 

chromosome is represented by iZ , while the population's 

overall fitness is represented by F . In addition, the 

process of chromosome inheritance is an iterative process, 

so different chromosomes will be selected or eliminated 

many times, so the study selects the final cumulative 

selection probability of each chromosome to judge the 

superiority of the solution [30]. The expression for 

calculating the cumulative selection probability is shown 

in Equation (11). 
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1

i

i i

j

h P
=

=            (11) 

In Equation (11), ih  denotes the cumulative 

selection probability of the i th chromosome. iP  

denotes the selection probability of the i th chromosome. 

The coding process also needs to pay attention to the 

constraints generated by the initial state of the room, the 

design style, and the room type in different KGs. The 

constraints are mainly reflected in the OF of the 

algorithm, and in the study, the classification of KGs of 

InD is performed based on the CNN algorithm, so the 

expression of the classification OF after adding the 

constraints is shown in Equation (12). 

 

1

N

j

j j

j

j j

W x
a

w
x x

=




= =
 


      (12) 

In Equation (12), jw  denotes the OF of the j th 

iteration. N  is the total iterations set, and   is the bias 

sign. W  is the weight matrix of the convolutional layer, 

and ja  denotes the parameter set of the EucD. To 

further improve the accuracy of the OF, the study 

integrates GA and SAA, where the construction of the 

initial solution in SAA is carried out by encoding and 

setting the initial population size in GA. Meanwhile the 

construction process of the perturbation mechanism can 

also be carried out by chromosome selection and 

crossover inheritance. The specific fusion scheme is 

shown in Figure 6. 
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Figure 6: Schematic diagram of the fusion scheme of genetic algorithm and simulated annealing algorithm 

 

Fusion algorithms Following the algorithm's lack of 

a unified standard of judgment for assessing the output 

solution's degree of merit, the study employs the 

Euclidean distance (EucD) between the output solution 

and the value of the OF for evaluation in order to solve 

the output solution's merit situation evaluation. Equation 

(13) displays the expression used to compute the EucD. 

( )
2

1

n

i i i

i

L x o
=

= −         (13) 

In Equation (13), io  is the OF value at the i th 

iteration. ix  denotes the solution output by the fusion 

algorithm at the i th iteration and n  denotes the total 

iterations. iL  denotes the EucD at the i th iteration. The 

study uses the results calculated by Equation (13) in the 

judgment of the merit of the solution, and the final 

flowchart of the computation of the fusion optimization 

algorithm based on GA and SAA is shown in Figure 7. 
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Figure 7: Calculation flowchart of simulated annealing algorithm with integrated genetic algorithm 

 

The study uses the above fusion algorithm for 

parameter optimization of CNN algorithms to achieve 

ICM construction of KG. The fusion model mainly works 

on the EucD of the CNN algorithm. In the CNN 

algorithm, the parameters present in the EucD is high, so 

it is necessary to introduce the above fusion model for 

parameter optimization to help the model converge 

quickly. The output expression of the EucD after the 

introduction of the fusion model after the CNN model is 

shown in Equation (14). 

( )
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j j

j j

H x
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=


=


     (14) 

In Equation (14), ( )jH x  denotes the output 

function of the EucD and   denotes the bias sign. jx  

denotes the j th element in the input sequence, ja  

denotes the set of parameters in the EucD, and jw  

denotes the OF. After fusing the improved optimization 

algorithm with the CNN EucD, the problems of 

convergence difficulty and excessive computation of the 

traditional CNN model are solved. By fusing the 

optimization algorithm for parameter optimization, the 

CNN model can quickly determine the computational 

parameters and reduce unnecessary computations, thus 

improving the output efficiency of the model. To 

facilitate the subsequent experiments, the study adopts 

the AS-GA-CNN model to refer to the CM of the 

proposed KG. 

3 Results 

3.1 Experimental environment and 

parameter settings 
The hardware equipment used for the experiment is a 

computer with Intel Xeon w9-3495X CPU, RTX 2080 Ti  

 

 

 

 

 

graphics card and 16GB cache, and the system 

environment is Windows 10. Distributed load transfer 

model is constructed in JAVA language, and the compiler 

version used for the experiment is JAVA 3.7, and the 

JDK version is JDK 1.8. performance The control models 

chosen for the test experiments include CNNCM 

(K-CNN) improved based on K-means algorithm and 

CNNCM (A-CNN) optimized based on Ant Colony 

algorithm. The Scenes dataset is selected as the training 

dataset for the experiment. This dataset includes RGB-D 

images, real camera poses, and 3D models of seven 

indoor rooms. The images exhibit a diverse range of 

features, including textureless surfaces, motion blur, and 

repetitive structures, which provide a comprehensive 

assessment of the model's adaptability to different scenes. 

The test dataset comprises the Innoc and Aachen Day 

Night datasets, which exhibit disparate environmental and 

lighting conditions. These datasets serve to corroborate 

the model's capacity for generalization. The rationale for 

selecting these datasets is that they are frequently 

employed in the domain of InD and are representative 

and challenging. 

Table 2 provides further comprehensive 

experimental information. In terms of experimental 

parameter settings, the model's operating parameters have 

been optimized in order to enable the model to fully learn 

data features and achieve good performance. The 

potential for bias may arise from an uneven distribution 

of samples in the dataset or an incomplete selection of the 

test dataset, which may affect the generalizability of the 

research results. Accordingly, these factors are taken into 

account during the interpretation and inference process of 

the experimental results. 
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Table 2: Experimental environment and details of experimental parameters 

Experimental environment Parameter 

hardware environment  CPU: Intel Xeon w9-3495X; Graphics card: RTX 2080 Ti; Cache: 16GB 

software environment JAVA 3.7; JDK 1.8 

System environment Windows 10 

Training dataset Scene’s dataset 

Test dataset Inloc dataset; Aachen Day Night dataset 

Experimental model AS-GA-CNN model 

Comparison model K-CNN model; A-CNN model 

Test indicators 
Output delay; Recall rate; Balance rate; Loss rate; F1 score; Error rate; P-R 

curve 

Model running parameters Learning rate: 0.1; Iterations:100 

 

In Table 2, in addition to the given model operating 

parameters, other key operating parameters include 

population size, crossover rate, and mutation rate. In this 

study, the population size is set to 100, which ensures 

sufficient search space coverage and controls 

computational costs. Setting the crossover rate to 0.8 and 

the mutation rate to 0.1 can ensure the convergence speed 

and search efficiency of the algorithm while maintaining 

population diversity. Furthermore, the length of each 

chromosome is classified according to the type of 

variable, which are 7, 10, and 13 positions. This 

classification takes into account the characteristics of 

different variables in the knowledge graph, thereby 

making chromosome coding more in line with the actual 

situation of the problem. The selection of these 

parameters is intended to ensure the effectiveness of the 

algorithm while maximizing search efficiency and 

convergence speed. 

 

3.2 CM Performance testing incorporating 

SAA and GA 
In Figure 8, the study compares the equilibrium rates of 

the solutions obtained by the GA, SAA and fusion 

algorithms using the Aachen Day-Night dataset (ADND) 

as input to the model. The mean value of the equilibrium 

rate obtained by the AS-GA on the ADND is significantly 

larger than the mean value of the equilibrium rate 

obtained by the AS and GAs, so it is concluded that the 

AS-GA's performance is superior to that of the AS and 

GAs. Thus, it can be inferred from the experiment's 

results that the research on the merger of the AS 

algorithm and GA has produced some outcomes. 
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Figure 8: Schematic diagram of the comparison of GA, 

AS, and AS-GA balance rates 

 

Figure 9 represents the InD keyword relation 

extraction loss rates for the three experimental models on 

the Inloc dataset and the ADND. Figure 9(a) represents 

the variation of the loss rate of the three models on the 

Inloc dataset with the iterative book publication. The 

AS-GA-CNN model has a smoother loss rate change 

curve and after convergence this curve is closer to 0 than 

the loss rate curves of the other control models, whereas 

the loss rate curve of the K-CNN model is obviously 

more fluctuating than that of the other two models and 

the model has not yet fully converged after 100 iterations. 

The A-CNN model has a higher initial loss rate although 

the loss rate is also close to 0 after convergence, but this 

model has a higher initial loss rate. Figure 9(b) represents 

the loss rate trends of the three models on the ADND. 

The lowest loss rate is still the AS-GA-CNN model, the 

K-CNN model and the A-CNN model both converge 

within 100 iterations, and the loss rate of the two models 

is much higher than that of the AS-GA-CNN model. 

 

https://cpu.bmcx.com/5301__cpu/
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Figure 9: Comparison of loss rate and iteration times of 

different models 

 

To exam the computational efficiency of the ICM 

proposed by the study, the study tests the output delay of 

the experimental model and the control model using the 

Inloc dataset and the ADND as inputs, respectively. The 

exam is administered three times in the study to eliminate 

chance mistakes, and the findings are displayed in Figure 

10. Figure 10(a) represents the output delay of each 

model on the Inloc dataset. Figure 10(b) represents the 

output delay of each model on the ADND. From Figure 

10(a), the average output delay of AS-GA-CNN model 

can be calculated as 64.90ms. In addition, the average 

output delay of K-CNN and A-CNN models are 77.16ms 

and 76.98ms. In Figure 10(b), the average delay of the 

three models of AS-GA-CNN, K-CNN, and A-CNN are 

75.44ms, 83.91ms, and 82.54ms. The output delay 

control experiment results show that the proposed model 

performs better than the control model on two different 

datasets. This suggests that the proposed model has good 

output delay performance across a wide range of datasets. 

Based on these findings, it can be concluded that the 

AS-GA-CNN model has a strong computational 

mechanism. 
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Figure 10: Comparison of classification latency among different models 

 

Figure 11 represents the relationship between the 

number of pre-training times and the variation of model 

error rate for different models on the Inloc dataset and the 

ADND. Figure 11(a) represents the error rate of each 

model with different number of pre-training times when 

the Inloc dataset is used as the input. The lowest 

classification error rate on the Inloc dataset is found in 

the fourth pre-training for both models except for the 

K-CNN model and it is 5.11% for the AS-GA-CNN 

model, while the error rate for the A-CNN model is 

6.23%. The error rate of K-CNN model is the lowest at 

the third pre-training and instead increases after the 

fourth pre-training. Figure 11(b) represents the error rate 

comparison of the three models on the ADND. All the 

experimental models have the lowest error rate at the 

third pre-training, and the error rate is 3.87% for the 

AS-GA-CNN model, 5.86% for the A-CNN model, and 

6.02% for the K-CNN model. Comparing Figure 11(a) 

and Figure 11(b), the errors obtained by the proposed 

model of the study in several experiments are lower than 

the control model, so the AS-GA-CNN model has a more 

stable performance in the error test. 
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Figure 11: Schematic diagram of the relationship between 

pre training times and error rate of different models 

 

The F1 score is a metric for comprehensive 

evaluation of models based on their accuracy and recall. 

In Figure 12, the study uses the Inloc dataset and the 

ADND as inputs for the three models and compares the 

average values of the F1 scores of each model on 

different iteration steps. Figure 12(a) represents the F1 

scores of the models on the Inloc dataset, where the 

average F1 scores of the AS-GA-CNN model at 20, 40, 

60, 80, and 100 iterations are 93.47%, 94.52%, 95.03%, 

95.01%, and 95.03%, respectively. The AS-GA-CNN 

model converged with an F1 score of around 95.03%, 

while the A-CNN model converged with an average F1 

score of 94.37% and the K-CNN model converged with 

an average F1 score of 94.26%. Figure 12(b) represents 

the comparison of the F1 scores of the three models on 

the ADND. The comparison of F1 scores of each model 

is consistent with Figure 12(a), but the convergence of 

each model differs from Figure 12(a). The AS-GA-CNN 

model has a convergence step of 80 on the ADND, while 

the model has a convergence step of 60 on the Inloc 

dataset, and the other models have a higher convergence 

step on the ADND than on the Inloc dataset. 
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Figure 12: Schematic diagram of F1 score comparison 

between different models 

 

Figure 13 represents the P-R curves of the 

experimental and control models on different datasets, 

where Figure 13(a) represents the P-R curves of each 

model on the Inloc dataset, and Figure 13(b) shows the 

P-R curves of the experimental model on the ADND. The 

P-R curve, which is typically used to represent the model, 

has a reference line that points toward the built position 

one month backward, indicating greater model 

performance. Furthermore, the AS-GA-CNN model 

performs better than the other two control models 

because it crosses the reference line on the two datasets at 

a higher position based on the P-R curves' intersection 

position with the line of the three models. The P-R curve 

is a thorough assessment indicator, and the AS-GA-CNN 

model's outstanding performance in this index further 

highlights the sophisticated character of the study from 

the side. 
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Figure 13: Comparison diagram of P-R curves of 

different models 

 

Recall refers to the number of correctly classified 

KG samples as a proportion of the number of all KG 

samples. Using the Inloc dataset and the ADND as inputs, 

the study records the memory of the experimental and 

control models in order to test the recall of the proposed 

model. The findings are displayed in Figure 14. The 

recall comparison of the models using the Inloc dataset is 

shown in Figure 14(a). The average recall of 

AS-GA-CNN model is 91.71%, and the average recall of 

A-CNN model is 87.06%. In addition, in Figure 14(b), 

the change of recall of the two models is relatively flat. 

The average recall of AS-GA-CNN model is 92.11%, and 

the average recall of A-CNN model is 82.01%. The 

AS-GA-CNN model's exceptionally low chance of 

producing negative samples leads to a substantially 

greater recall rate after calculation than the A-CNN 

model, based on the aforementioned experimental results. 

This outcome further confirms the good accuracy 

performance of the suggested model from the side. 
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Figure 14: Comparison of recall rates of different models 

 

Table 3 presents the statistical test results for three 

models. The data presented in Table 3 clearly 

demonstrates that the AS-GA-CNN model outperforms 

the A-CNN and K-CNN models in terms of balance rate, 

output delay, error rate, F1 score, and recall rate. The 

P-values are all less than 0.05, indicating that these 

differences are statistically significant. This further 

verifies the excellent performance and superior 

performance of the AS-GA-CNN model in intelligent 

classification tasks. 

 

 
Table 3: Statistical test results of three models 

Index  AS-GA-CNN A-CNN K-CNN Statistical test results 

Average equilibrium rate 0.78 0.65 0.62 P < 0.001 

Average output delay 70.17ms 79.84ms 80.18ms P < 0.01 

Average error rate 4.99% 6.36% 6.47% P < 0.05 

Average F1 score 95.03% 94.37% 94.26% P < 0.001 

Average recall rate 91.91% 84.54% 87.56% P < 0.001 
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4 Discussion 

In order to achieve intelligent design in InD, an 

AS-GA-CNN model has been proposed as a method for 

summarizing design ideas for the InD industry. This 

research demonstrated that the average balance rate, 

output delay, error rate, F1 score, and recall rate of the 

AS-GA-CNN model are 0.78, 70.17 ms, 4.99%, 95.03%, 

and 91.91%, respectively. These values were significantly 

superior to those observed in models that employ solely 

SA or GA. The primary rationale for employing SA was 

its capacity to facilitate comprehensive exploration of the 

search space, whereas GA was adept at conducting 

in-depth search and optimization of solutions through 

genetic mechanisms. The combination of the two can 

more effectively balance the performance indicators of 

the model and achieve superior performance in intelligent 

classification tasks. The results of the comparison with 

other literature demonstrated that the AS-GA-CNN 

model also exhibits notable advantages. To illustrate, 

although reference [31] has enhanced the modular AS, it 

continues to apply the AS algorithm in isolation. In 

contrast, the algorithm incorporated the GA, which 

exhibits superior parameter optimization capabilities and 

a lower error rate. In Reference [32], the attention 

mechanism was introduced into AS. Although some 

improvements have been made to the model, its 

performance in terms of F1 score and recall is inferior to 

that of the AS-GA-CNN model. This is mainly due to the 

superior global optimization and deep search capabilities 

of the AS-GA-CNN model. Furthermore, the superior 

performance of the AS-GA-CNN model in intelligent 

classification tasks, when compared with the methods 

proposed in reference [33], can be fully demonstrated, 

thereby increasing its applicability. Nevertheless, while 

the AS-GA-CNN model has demonstrated notable 

performance advantages in various domains, it is also 

important to acknowledge its limitations. For instance, 

the introduction of the GA necessitates additional 

parameter tuning and experimental verification to 

guarantee the model's stability and reliability. 

Furthermore, its convergence may be affected to a certain 

extent. In conclusion, the AS-GA-CNN model, which 

integrates SA and GA, represents a significant 

advancement in intelligent CMs. It offers a promising 

avenue for further research and development, with the 

potential to enhance performance and practical 

application. It is recommended that this model be applied 

to a wider range of intelligent classification tasks and that 

more practical field validation and application be 

conducted. 

5 Conclusion 

KG can organize and present all kinds of knowledge, 

information and experience in the design field in a 

structured form. Therefore, the emergence of KG is of 

great significance to the InD industry. However, in the  

 

face of a large number of KGs, the challenge of efficient 

classification remains a significant issue. To effectively 

solve the classification problem of KG, the study tries to 

optimize the parameters of CNN by using optimization 

algorithm, so as to improve the classification speed and 

accuracy of CNN. In view of this, the study employs GA 

and SAA for parameter optimization of CNN, by which a 

high-performance CM for KG is constructed, and 

performance analysis experiments are conducted on the 

proposed model. The outcomes indicated that the average 

output latency of the proposed model on the Inloc dataset 

is 64.90 ms, which is 12.26 ms lower than the K-CNN 

model and 12.08 ms lower than the A-CNN model. 

Meanwhile, the error rate of the proposed model on the 

ADND was 3.87%, while the error rate of the A-CNN 

model was 5.86%, and that of the K-CNN model has an 

error rate of 6.02%. In addition, the study also conducted 

several experiments on the F1 scores, recall, P-R curves 

and other metrics of the models, and the findings all 

indicated that the proposed model has a superior 

performance than the control model, thus concluding that 

the proposed model is feasible and advanced in KG 

classification. The proposed CNNCM based on GA and 

SAA optimization achieves efficient classification of KG 

for InD and also promotes the development of InD 

industry from the side, so the research proposed model is 

of practical significance. Meanwhile, there are several 

issues with the study. While the introduction of GA 

corrects the SAA's local convergence issue, it does not 

deal with the algorithm's poor convergence speed. 

Therefore, in order to improve it, more research is 

required. 

References 

[1] A. Djeddai, and R. Khemaissia, “PrivyKG: security 

and privacy preservation of knowledge graphs using 

blockchain technology,” Informatica, vol. 47, no. 5, 

pp. 137-152, 2023. 

https://doi.org/10.31449/inf.v47i5.4698 

[2] K. Bhosle, and V. Musande, “Evaluation of deep 

learning CNN model for recognition of devanagari 

digit,” Artificial Intelligence and Applications, vol. 

1, no. 2, pp. 114-118, 2023. 

https://doi.org/10.47852/bonviewAIA3202441 

[3] A. Santos, A. R. Colaço, A. B. Nielsen, L. Niu, M. 

Strauss, P. E. Geyer, F. Coscia, N. J. W. 

Albrechtsen, F. Mundt, L. J. Jensen, and M. Mann, 

“A knowledge graph to interpret clinical proteomics 

data,” Nature Biotechnology, vol. 40, no. 5, pp. 

692-702, 2022. 

https://doi.org/10.1038/s41587-021-01145-6 

[4] L. Yang, “Feature extraction of english semantic 

translation relying on graph regular knowledge 

recognition algorithm,” Informatica, vol. 47, no. 8, 

pp. 103-124, 2023. https://doi.org/10.31449/inf. 

v47i8.4901 

https://doi.org/10.31449/inf.v47i5.4698
https://doi.org/10.31449/inf.v47i8.4901
https://doi.org/10.31449/inf.v47i8.4901


Intelligent Classification Model for Interior Design Knowledge… Informatica 48 (2024) 81–96 95 

[5] A. Sohail, “Genetic algorithms in the fields of 

artificial intelligence and data sciences,” Annals of 

Data Science, vol. 10, no. 4, pp. 1007-1018, 2023. 

https://doi.org/10.1007/s40745-021-00354-9 

[6] B. Xue, and L. Zou, “Knowledge graph quality 

management: A comprehensive survey,” IEEE 

Transactions on Knowledge and Data Engineering, 

vol. 35, no. 5, pp. 4969-4988, 2023. 

https://doi.org/10.1109/TKDE.2022.3150080 

[7] X. Wang, D. Bo, C. Shi, S. Fan, Y. Ye, and P. S. Yu, 

“A survey on heterogeneous graph embedding: 

methods, techniques, applications and sources,” 

IEEE Transactions on Big Data, vol. 9, no. 2, pp. 

415-436, 2023. 

https://doi.org/10.1109/TBDATA.2022.3177455 

[8] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in 

graph neural networks: A taxonomic survey,” IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, vol. 45, no. 5, pp. 5782-5799, 2023. 

https://doi.org/10.1109/TPAMI.2022.3204236 

[9] B. Steenwinckel, G. Vandewiele, M. Weyns, T. 

Agozzino, F. D. Turck, and F. Ongenae, “INK: 

knowledge graph embeddings for node 

classification,” Data Mining and Knowledge 

Discovery, vol. 36, no. 2, pp. 620-667, 2022. 

https://doi.org/10.1007/s10618-021-00806-z 

[10] J. Li, L. Guo, Y. Zuo, and W. Liu, “A design method 

for wideband chaff element using simulated 

annealing algorithm,” IEEE Antennas and Wireless 

Propagation Letters, vol. 21, no. 6, pp. 1208-1212, 

2022. https://doi.org/10.1109/LAWP.2022.3161762 

[11] W. Shi, Z. He, W. Tang, W. Liu, and Z. Ma, “Path 

planning of multi-robot systems with boolean 

specifications based on simulated annealing,” IEEE 

Robotics and Automation Letters, vol. 7, no. 3, pp. 

6091-6098, 2022. 

https://doi.org/10.1109/LRA.2022.3165184 

[12] D. Shin, N. Onizawa, W. J. Gross, and T. Hanyu, 

“Memory-efficient FPGA implementation of 

stochastic simulated annealing,” IEEE Journal on 

Emerging and Selected Topics in Circuits and 

Systems, vol. 13, no. 1, pp. 108-118, 2023. 

https://doi.org/10.1109/JETCAS.2023.3243260 

[13] C. Han, Y. Gu, G. Wu, and X. Wang, “Simulated 

annealing-based heuristic for multiple agile satellites 

scheduling under cloud coverage uncertainty,” IEEE 

Transactions on Systems, Man, and Cybernetics: 

Systems, vol. 53, no. 5, pp. 2863-2874, 2023. 

https://doi.org/10.1109/TSMC.2022.3220534 

[14] S. Chen, Y. Gu, G. Wu, and X. Wang, “Differential 

evolution based simulated annealing method for 

vaccination optimization problem,” IEEE 

Transactions on Network Science and Engineering, 

vol. 9, no. 6, pp. 4403-4415, 2022. 

https://doi.org/10.1109/TNSE.2022.3201079 

[15] W. Xia, Q. Gao, Q. Wang, X. Gao, C. Ding, and D. 

Tao, “Tensorized bipartite graph learning for 

multi-view clustering,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 45, 

no. 4, pp. 5187-5202, 2023. 

https://doi.org/10.1109/TPAMI.2022.3187976 

[16] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. 

Bronstein, “Improving graph neural network 

expressivity via subgraph isomorphism counting,” 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 45, no. 1, pp. 657-668, 2023. 

https://doi.org/10.1109/TPAMI.2022.3154319 

[17] M. Zhang, S. Wu, X. Yu, Q. Liu, and L. Wang, 

“Dynamic graph neural networks for sequential 

recommendation,” IEEE Transactions on 

Knowledge and Data Engineering, vol. 35, no. 5, pp. 

4741-4753, 2023. 

https://doi.org/10.1109/TKDE.2022.3151618 

[18] M. Ince, “Automatic and intelligent content 

visualization system based on deep learning and 

genetic algorithm,” Neural Computing and 

Applications, vol. 34, no. 3, pp. 2473-2493, 2022. 

https://doi.org/10.1007/s00521-022-06887-1 

[19] J. Zhou, S. Huang, T. Zhou, D. J. Armaghani, and Y. 

Qiu, “Employing a genetic algorithm and grey wolf 

optimizer for optimizing RF models to evaluate soil 

liquefaction potential,” Artificial Intelligence 

Review, vol. 55, no. 7, pp. 5673-5705, 2022. 

https://doi.org/10.1007/s10462-022-10140-5 

[20] P. Preethi, and H. R. Mamatha, “Region-based 

convolutional neural network for segmenting text in 

epigraphical images,” Artificial Intelligence and 

Applications, vol. 1, no. 2, pp. 119-127, 2023. 

https://doi.org/10.47852/bonviewAIA2202293 

[21] Z. Yu, Z. Si, X. Li, D. Wang, and H. Song, “A novel 

hybrid particle swarm optimization algorithm for 

path planning of UAVs,” IEEE Internet of Things 

Journal, vol. 9, no. 22, pp. 22547-22558, 2022. 

https://doi.org/10.1109/JIOT.2022.3182798 

[22] I. S. Mohamad Hashim, A. Al-Hourani, and B. Ristic, 

“Satellite localization of iot devices using signal 

strength and doppler measurements,” IEEE Wireless 

Communications Letters, vol. 11, no. 9, pp. 

1910-1914, 2022. 

https://doi.org/10.1109/LWC.2022.3187065 

[23] H. Liu, Y. Li, and S. Wang, “Request scheduling 

combined with load balancing in mobile-edge 

computing,” IEEE Internet of Things Journal, vol. 9, 

no. 21, pp. 20841-20852, 2022. 

https://doi.org/10.1109/JIOT.2022.3176631 

[24] D. He, X. Yu, T. Li, S. Chan, and M. Guizani, 

“Firmware vulnerabilities homology detection based 

on clonal selection algorithm for IoT devices,” IEEE 

Internet of Things Journal, vol. 9, no. 17, pp. 

16438-16445, 2022. 

https://doi.org/10.1109/JIOT.2022.3152364 

[25] L. Zhai, and S. Feng, “A novel evacuation path 

planning method based on improved genetic 

algorithm,” Journal of Intelligent & Fuzzy Systems, 

vol. 42, no. 3, pp. 1813-1823, 2022. 

https://doi.org/10.3233/JIFS-211214 



96   Informatica 48 (2024) 81–96                                                                   J. Liu et al. 

[26] Y. Li, X. Li, and L. Gao, “An effective solution 

space clipping-based algorithm for large-scale 

permutation flow shop scheduling problem,” IEEE 

Transactions on Systems, Man, and Cybernetics: 

Systems, vol. 53, no. 1, pp. 635-646, 2023. 

https://doi.org/10.1109/TSMC.2022.3187082 

[27] S. T. Shishavan, and F. S. Gharehchopogh, “An 

improved cuckoo search optimization algorithm 

with genetic algorithm for community detection in 

complex networks,” Multimedia Tools and 

Applications, vol. 81, no. 18, pp. 25205-25231, 

2022. https://doi.org/10.1007/s11042-022-12409-x 

[28] A. Boughida, M. N. Kouahla, and Y. Lafifi, "A 

novel approach for facial expression recognition 

based on Gabor filters and genetic algorithm," 

Evolving Systems, vol. 13, no. 2, pp. 331-345, 2022. 

https://doi.org/10.1007/s12530-021-09393-2 

[29] F. H. Rizk, S. Arkhstan, A. M. Zaki, M. A. Kandel, 

and S. K. Towfek, “Integrated CNN and waterwheel 

plant algorithm for enhanced global traffic 

detection,” Journal of Artificial Intelligence and 

Metaheuristics, vol. 6, no. 2, pp. 36-45, 2023. 

https://doi.org/10.54216/JAIM.060204 

[30] S. R. Waheed, M. S. M. Rahim, N. M. Suaib, and A. 

A. Salim, “CNN deep learning-based image to 

vector depiction,” Multimedia Tools and 

Applications, vol. 82, no. 13, pp. 20283-20302, 

2023. https://doi.org/10.1007/s11042-023-14434-w 

[31] K. Shi, Z. Wu, B. Jiang, and H. R. Karimi, 

“Dynamic path planning of mobile robot based on 

improved simulated annealing algorithm,” Journal 

of the Franklin Institute, vol. 360, no. 6, pp. 

4378-4398, 2023. 

https://doi.org/10.1016/j.jfranklin.2023.01.033 

[32] X. Mo, Z. Huang, Y. Xing, and C. Lv, "Multi-agent 

trajectory prediction with heterogeneous 

edge-enhanced graph attention network," IEEE 

Transactions on Intelligent Transportation Systems, 

vol. 23, no. 7, pp. 9554-9567, 2022. 

https://doi.org/10.1109/TITS.2022.3146300 

[33] X. Guo, and L. Zhao, "A systematic survey on deep 

generative models for graph generation," IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, vol. 45, no. 5, pp. 5370-5390, 2023. 

https://doi.org/10.1109/TPAMI.2022.3214832 

 

 


