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The accurate identification and prediction of nonlinear dynamical states of microelectronic devices, 

especially Duffing vibrator systems, have become particularly important with the development of 

microelectronics technology. The complex dynamical behaviors of these systems pose a challenge to 

traditional analysis methods, and machine learning-based approaches provide an efficient and 

accurate new way to solve this problem. This paper presents a new state recognition system for the 

Duffing oscillator, designed using the extreme learning machine algorithm. The aim is to address the 

issues of large computation and limited detection accuracy associated with traditional recognition and 

detection methods. This paper also constructs a new detection system based on the noise precursor 

phenomenon of Josephson junctions. The results demonstrated that the constructed system had a 

recognition accuracy of 93.3% for the training set samples, a running time of 70 seconds, and better 

computational performance than traditional detection methods. The average accuracy of the 

Josephson junction bifurcation prediction system in detecting multiple bifurcation points was over 91%, 

with a maximum of 95%, which was more than 10 percentage points higher than traditional methods. 

The results of this paper have certain value in the field of nonlinear dynamic state detection of 

microelectronic devices, and can provide technical reference for the study of nonlinear dynamic 

equations of other devices. 

Povzetek: Avtorji raziskujejo natančno identifikacijo in napovedovanje nelinearnih dinamičnih stanj 

mikroelektronskih naprav, zlasti Duffingovih vibratorjev. Uporabljajo pristop strojnega učenja za 

reševanje izzivov kompleksnega dinamičnega obnašanja teh sistemov.

1 Introduction 

In microelectronic device research and development, 

accurately identifying and predicting nonlinear dynamical 

states is crucial for ensuring device performance and 

reliability. As microelectronics technology rapidly 

advances, device dynamical behaviors become 

increasingly complex, presenting challenges for 

traditional analytical methods [1]. Nonlinear dynamical 

state identification and prediction based on machine 

learning algorithms has become a powerful tool to solve 

this problem due to its efficiency and accuracy. Machine 

learning algorithms, especially deep learning models, 

have shown great ability to handle complex data and 

pattern recognition in several fields. In the analysis of 

nonlinear dynamics (NLD) of microelectronic devices, 

algorithms can learn from a large amount of experimental 

or simulation data to identify key features of the device 

behavior. This enables accurate prediction of its dynamic 

state. However, applying machine learning algorithms to 

identify and predict nonlinear dynamical states of 

microelectronic devices still presents challenges, such as  

 

data processing complexity, model selection, and 

optimization. In addition, how to ensure the consistency 

of the prediction results of the algorithms with the 

physical phenomena is also an important research issue 

[2-3]. The Duffing vibration system is an NLD model 

that has received great attention due to its widespread 

application in microelectronic devices. It can simulate the 

complex response of microelectronic devices under 

nonlinear forcing, including bi-stability, chaos, and 

periodic behavior [4]. The paper focuses on a machine 

learning algorithm-based method for state identification 

and prediction of Duffing vibrator systems. The objective 

of this study is to develop a machine learning 

algorithm-based model for the identification and 

prediction of NLD in microelectronic devices and to 

apply it to the analysis of Duffing vibrator systems. 

Based on this background, this paper attempts to combine 

machine learning algorithms for identifying and detecting 

NLD states. The precise identification method of Duffing 

oscillator state based on extreme learning machine (ELM) 

and the detection method of Josephson junction 

bifurcation state have been constructed. The identification 
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of the traditional Duffing vibrator state mainly relies on 

calculating Lyapunov exponents. While these methods 

perform well on normalized speech data, they suffer from 

high computational volume and slow convergence. In 

practical applications, the proposed system improves 

upon the limitations of traditional methods by combining 

machine learning algorithms with microelectronic devices. 

The combination of machine learning algorithms and 

microelectronic devices enables the identification and 

prediction of nonlinear dynamical states of 

microelectronic devices. This is significant for the 

research and development of device dynamics. This 

manuscript is divided into four parts. The first part 

reviews the current research on NLD equations, Duffing 

oscillators, Josephson junctions, and ELM. The second 

part explains the implementation method of the new 

recognition and detection model. The third part combines 

the method proposed in the second part to conduct 

simulation experiments and analyze the results. The 

fourth part summarizes the conclusions of this paper. 

2 Related works 

With the development of research on non-linear 

differential equation (NLDE), various fields have begun 

to pay attention to the potential application of NLD in 

physical devices. In the study of microelectronic 

dynamics, Duffing oscillators and Josephson junctions 

have always been very popular research topics. Salas and 

Trujillo [5] accurately solved the NLDE of a 

one-dimensional, undamped, forced 3/5 Duffing 

oscillator using Weierstrass elliptic functions, obtaining 

the exact expression for its period. It showed the 

integrability of damped cubic Quintic equation, and 

explained the solution method for Duffing oscillator 

equation in the form of Mathematica code. Akilli et al. [6] 

applied predictable and deterministic periodic signals to 

the analysis of dynamic systems, enabling the detection 

of dynamic system states from time series data with 

deterministic processes. To detect signals of Duffing 

oscillators, wavelet scale was used as a quantitative 

indicator to draw wavelet scale index maps. These maps 

could detect weakening of the periodic signal of Duffing 

oscillators in a timely manner. By simulating and 

detecting weak periodic signals embedded in noise, the 

data showed that this method had a certain effect on 

Duffing state signal detection. This research on NLDE in 

the field of microelectronic devices was not limited to 

Duffing oscillators. Pernel Nguenang et al. [7] studied the 

Josephson junction and improved its nonlinear resonance 

phenomenon in oscillation through the NLDE system. 

They analyzed the various types of resonances in the 

Josephson junction using a multi-time scale method and 

obtained three types of resonance results. The 

steady-state solutions and stability of each type of 

resonance were evaluated. By integrating the equations of 

motion, the accuracy of NLDE system operation was 

verified, indicating that the dynamic state of Josephson 

junction will be strongly affected by the change of 

equation parameters. 

In the study of NLD equations, Wu et al. [8] 

designed a new prediction method based on machine 

learning algorithms by integrating models of recurrent 

neural networks (RNNs). This prediction method could 

detect NLD states with uncertainty. After operating on 

the RNN model set, they used the Lyapunov exponent 

graph method to predict the operating state of the system, 

and improved the closed-loop stability and economic 

optimality of the system under the Lyapunov economic 

predictive control model. On this basis, the prediction 

model was improved by adding an error-triggering 

mechanism for prediction errors. The RNN with high 

prediction accuracy was derived from the latest process 

data information, and the error-triggering mechanism 

added would remind the prediction model of dynamic 

updates in real-time. This prediction model with dynamic 

performance had certain effectiveness in real-time 

prediction of practical problems. In addition to RNN, 

Chen et al. [9] also conducted research on ELM for NLD 

equations based on machine learning methods, designing 

a new fault state monitoring model that utilizes improved 

auto-regressive ELM. The analysis of the NLD 

relationship of time series data samples by the detection 

model came from the nonlinear mapping of each data 

vector. The core principle of fault detection for NLD state 

was to detect whether the system state is abnormal by 

detecting the residual between the actual data vector and 

the corresponding predicted value. Compared with 

traditional state detection methods, this new model 

reduced the computational complexity during training 

and detection, and improved the efficiency of detection. 

However, Ouyang [10] believed that although ELM has 

the characteristics of fast computation speed and strong 

approximation ability, its nonlinear representation of 

features is not clear enough when constructing a deep 

learning network. Therefore, the authors improved the 

original ELM model by incorporating the low-rank 

matrix decomposition method into the ELM learning 

process to extract low-dimensional features. Compared to 

traditional ELM models, this model could customize the 

number of dimensions in the hidden layer of the model. 

This reduced the influence of random factors in the 

feature learning process and improved the nonlinear state 

representation performance of features. After 

comparative experiments on numerical and image 

datasets, it was found that the model has better 

performance. The summary table of related work is 

shown in Table 1. 
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Table 1: Summary table of related work 

Field Researchers Research content Research result Limitations 

Non-linear 

Salas A H et al. 

[5] 

Exact expression for the 

Duffiing oscillator 

period 

Integrability of the cubic 

fifths-order equation 

Assumptions and 

approximations lead to 

outcome errors 

Akilli M et al. 

[6] 

Duffing the wavelet 

scale exponent of the 

oscillator 

Signal detection is 90% in 

real-time 

The effects of noise or 

signal decay 

Pernel 

Nguenang et al. 

[7] 

Improve the nonlinear 

resonance phenomenon 

The calculation accuracy 

can be up to 85% 

The dynamic state is 

strongly influenced by the 

parameters of the equation 

Machine 

learning 

algorithm 

Wu Z et al. [8] Model based on RNNs 
Reduction in the 

prediction error by 8% 

Model requires substantial 

computational resources 

and time 

Chen Y et al. 

[9] 

New fault state 

monitoring model 

Reduce computational 

load by 10% 

Requires high computing 

resources 

Ouyang T et al. 

[10] 

Improving the ELM 

algorithm model 

Improving the 

performance of non-linear 

state representation of 

features 

Decreased interpretability 

of the model 

 

In summary, experts have conducted many studies 

on the NLD state of microelectronic devices. Experts 

optimize the NLDE solving method to improve the 

accuracy of microelectronic device state detection. Some 

experts also design new detection models based on 

machine learning algorithms. However, both optimization 

of equation solving and machine learning algorithms are 

faced with the problems of large amounts of computation, 

slow detection speed and high requirements for model 

computing ability. How to quickly extract the state 

features of the system while ensuring recognition 

accuracy is worth studying. 

3 Construction of NLD state 

identification and detection model 

for microelectronic devices based 

on ELM 

To solve the problem of accurate identification and 

detection of NLD states in microelectronic devices, a 

model based on ELM is constructed. The model is based 

on the Duffing oscillator and NLD system, which are 

widely used in Micro-Electro-Mechanical Systems 

(MEMS). The Duffing oscillator's time-series graph 

analysis and spectral extraction, combined with the ELM 

algorithm, can efficiently identify and predict state 

changes in the MEMS system, including periodic and 

chaotic states. Additionally, the study includes the design 

of a Josephson Junction detection model based on the 

noise precursor phenomenon. Effective detection of the 

Josephson Junction state is achieved by extracting system 

state features under the influence of noise and training 

ELM. 

 

 

3.1 Design of an accurate identification 

method of microelectronic device state based 

on ELM 

Duffing oscillators are a common nonlinear dynamical 

system, are increasingly used in MEMS. They are often 

used to simulate and study complex dynamical behaviors 

such as chaos, bifurcation, and periodicity due to their 

unique bistable properties [11]. The study of Duffing 

oscillators has become increasingly important due to their 

key role in miniaturized devices, such as sensors, 

actuators, and signal processing devices, thanks to the 

development of MEMS technology. However, identifying 

and predicting the dynamic behavior of MEMS systems 

accurately is complex and challenging due to their 

nonlinear nature. Traditional methods for identification 

and prediction, such as the Lyapunov exponential map 

method, are theoretically applicable but difficult to meet 

the real-time and accuracy requirements of practical 

MEMS applications due to their high computational 

complexity and slow convergence [12]. Therefore, the 

study aims to improve the accuracy and prediction 

efficiency of the identification of the states of Duffing 

oscillators in MEMS systems through machine learning 

algorithms, especially ELM. By combining the ELM 

algorithm and the noise prior law, the study also aims to 

improve the detection of nonlinear dynamical states and 

prediction methods of bifurcated states of Josephson 

junctions, which are common in MEMS systems. In 

general, the identification of Duffing oscillator states 

requires first solving the oscillator model parameters after 

configuring them to obtain the system time sequence 
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diagram. Based on the time series diagram, the frequency 

spectrum can be converted to obtain the state features of 

the system under different bifurcation parameters. This 

allows for the extraction of a feature matrix. Then, using 

the bifurcation features extracted in the previous step, a 

bifurcation diagram is created to obtain the objective 

matrix. Then the feature matrix is combined to generate a 

dataset, which is input into ELM to output the recognition 

accuracy. 

Specifically, this manuscript uses the mathematical 

model expressed in equation (1) to simulate the oscillator 

system. 
3 cos( )x kx x x+ − + =  && &           (1) 

In equation (1), cos( )   represents the external 

force driving signal. k  is the damping coefficient. x  

is the distance at which the electromagnet swings in the 

oscillator system. The nonlinear restoring force is 

represented by 3x x− + . For equation (1), assuming 

t z = =  and 
1dx dx

y
d d  

= = , a system of differential 

equations described by equation (2) can be obtained. 

3( cos( ))

dx
wy

d
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w ky x x z

d

dz
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


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  (2) 

The 4th-order Runge-Kutta method (4ORK) is used 

to solve Duffing equation. Supposing there is a set of 

differential equations expressed by equation (3). The 

4ORK method is a classical method for the numerical 

solution of ordinary differential equations, proposed by 

the German mathematician Carl Wilhelm Runge and the 

German mathematician Martin Wilhelm Kutta in the late 

19th century. The method is based on interpolating 

polynomials to approximate the solution of differential 

equations. It estimates the solution at the next step by 

calculating the slopes of the four intermediate steps, 

ensuring high order accuracy and good numerical 

stability. 

0( )

( )
( ( ), )

x t given

dx t
f x t t

dt

=



=


               (3) 

The 4ORK based on equation (3) is solved by 

equation (4) [13]. 

1 1 2 3 4( ) ( ) ( 2 2 )
6

n n

t
x t x t k k k k
 

+


= + + + +  (4) 

In equation (4), 1k , 2k , 3k , and 4k  respectively 

represent the slopes of function ( ( ), )f x t t  at different 

integration points. The core of 4ORK solution is to 

recursively iterate from ( )nx t


 to 
1( )nx t



+
, which is a 

single iteration, and then repeat the recursion process to 

obtain the equation solution. 

The time series diagram of the state changes of the 

Duffing oscillator system is obtained by solving a system 

of differential equations. The system states are periodic 

and chaotic states, and the transition between the system 

states can be obtained by changing the driving signal 

parameters [14]. Considering that 4ORK is a 

high-precision and small error NLDE iterative solution 

method, the differential equation is solved using 4ORK. 

By defining the Duffing oscillator differential equation in 

Python and 4ORK, the equation solution can be obtained. 

This process needs to set the initial values of driving 

parameter k , damping ratio   and Angular frequency 
  of Duffing equation. The driving parameter is set to 

0.2, and the Angular frequency is 1.   is taken as a 

variable affected the phase state of the system. Figure 1 

shows the timing diagram of the system when   is 

taken as 1.5, 1.8, 2.1, and 2.4 (Figures 1(a), 1(b), 1(c), 

1(d)), where the system is in a chaotic state when   is 

taken as 1.8. 
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Figure 1: System timing diagram under different driving parameters 

 

The temporal features obtained from Figure 1 are 

transformed into frequency sequence ( )F t  through 

Fourier transform to obtain a frequency spectrum [15]. 

Figure 2 depicts the frequency changes of the oscillator 

system under different   conditions, where each 

frequency spectrum has several peaks. To generate a 

feature matrix, the number of peaks in each frequency 

spectrum is taken as the first feature from Figure 2, and 

the sum of all peaks is taken as the second feature. These 

two feature sets for each sample are extracted as a matrix. 
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Figure 2: System frequency spectrum under different driving parameters 

 

Assuming there are m  samples in total and 2n =  

features in each sample, the feature matrix is set to be 

m nC  . Firstly, a set of ,( 0,1,..., )ia it a p=  is extracted by 

the abscissa corresponding to each peak in the frequency 

spectrum. ip  is the number of peaks, and i  is the 

i -th sample extracted. For each driving parameter i , 

the total number of peaks is ( )iP  , as described by 

equation (5). 

( )i iP P =                   (5) 

The first column of the feature matrix m nC   

obtained from equation (5) is calculated by equation (6). 

1 ( ), 0,...,i iC P i m= =            (6) 

The second characteristic peak size is represented by 

( )iQ   and is described by equation (7). 

( ) ( ( ))i iaa
Q F t =

          (7) 

The second characteristic column of the matrix can 

be obtained from equation (5), which is calculated by 

equation (8). 

2 ( ), 0,...,i iC Q i m= =           (8) 

The first and second features in feature matrix m nC   

are used as the first and second columns, and the number 

of rows m  is determined by the number of samples. 

Next, to generate labels for the samples in the feature 

matrix to obtain the target matrix. Labels will be 

generated for different periodic and chaotic states in the 

samples. This study uses the maximum method to create 

a bifurcation diagram to analyze the state changes of the 

Duffing system under different   values. Figure 3 

describes the maximum scatter diagram obtained by 
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solving Duffing equation solving from 0 =  by 

determining the initial value 0 1.6 =  of   and the 

step 0.0005 = , that is, the bifurcation diagram of 

Duffing equation. 
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Figure 3: Bifurcation diagram of Duffing equation 

 

The system state under each different   value is 

extracted from Figure 3 as the row of the objective matrix 

T , which consists of m  rows and 1 column. Next, the 

objective matrix, feature matrix, and   are combined to 

generate dataset D , and finally the dataset is input into 

ELM to obtain recognition accuracy. 

3.2 Design of a josephson junction detection 

model combining ELM and noise precursor 

phenomena 

Josephson has certain requirements for the stability of the 

working environment, but there is inevitably noise 

interference in practical application scenarios. Therefore, 

it is necessary to be able to detect the working state of the 

Josephson junction in advance, and adjust the parameters 

to maintain a stable working state of the Josephson 

junction for noise interference [16]. This study proposes a 

detection method for detecting state changes by 

predicting system bifurcation intervals in the context of 

ELM and Josephson junction noise precursors. 

In general, this detection method first needs to use 

the Runge–Kutta methods to solve the Josephson junction 

NLD equation solving in the noise environment. By 

combining the system state features extracted from the 

noise precursor phenomenon and inputting them into 

ELM, nodes that are about to undergo bifurcation in the 

system will be identified. From this, the operating state of 

the system can be detected by predicting the bifurcation 

interval. This paper uses equation (9) to describe the 

Josephson junction equation. 

 

 (9) 

In equation (9), L  is the inductance parameter, 

C  is the capacitance parameter, and I  represents the 

bias current.  is proportional to the node voltage 

in this dimensionless formal equation. Now to let   be 

x , , , , and to substitute it 

into equation (9) to get the Differential form of Josephson 

junction equation, such as equation (10). 

 (10) 

 

 

Similar to the Duffing equation, the Josephson 

junction equation is also solved through 4ORK. Firstly, 

the inductance parameter in the Josephson junction 

equation is set to be 3 and the capacitance parameter is 

0.1. The bias current I  is set as a variable to obtain 

different system states under different bias currents, and 

then to create a time series diagram. Figure 4 depicts the 

timing changes of the system when time t  is within the 

interval [130,150] and the bias current is taken as 5, 6, 7, 

and 10. The Josephson junction will transition from a 

multi cycle state to a single cycle state as the bias current 

increases. The frequency change can be obtained by 

extracting temporal features from Figure 4 and 

performing Fourier transform. 
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Figure 4: System timing diagram under different bias currents 

 

However, the time series of the bifurcation precursor 

stage in Figure 4 is similar to the time series of the stable 

stage and difficult to distinguish, so it is necessary to  

 

extract system state features from the noise precursor 

phenomenon. When adding random noise to the 

Josephson junction differential equation, the equation 

exhibits certain patterns due to continuous changes in 

bifurcation parameters [17]. Stochastic differential 

equation is the differential equation under the influence 

of noise, as equation (11). 

 

( ( ), ) ( ( ), ) ( )
dx

f x t t L x t t w t
dt

= +    (11) 

 

In equation (11), the system state is represented by 

( )x t , and the input outside the system is represented by 

( )w t . L  is the coefficient matrix of ( )w t , and f  is 

the vector drift rate function [18]. When solving the 

Stochastic differential equation, it is necessary to give the 

stochastic Runge–Kutta methods a larger scope of 

application. Equation (12) is obtained by multiplying 

both sides of equation (11) by dt . 

 

( ( ), ) ( ( ), )dx f x t t dt L x t t d= +    (12) 

 

In equation (12), d  is a Brownian motion 

increment. At this time, a noise sequence ( )t  can be 

represented by m -dimensional standard Brownian 

motion, as shown in equation (13). 

(1) (2) ( )( ) ( ( ), ( ),..., ( ))mt t t t   =  (13) 

The integral form of Stochastic differential equation 

is obtained from equation (14). 

0 0
0( ) ( ) ( ( ), ) ( ( ), ) ( )

t t

t t
x t x t f x d L x d      = + +   (14) 

The Josephson junction equation after adding noise 

is equation (15). 

0

0

1 cos( ) 1sin( )L

L C L L C L C

dx y

dy z dt d

dx xI z x
y





      

 
 

    
    = +       +    − − − 

 

 (15) 

 

After determining the quantities of function 

( ( ), )f x t t , noise sequence ( )t , and noise coefficient 

matrix ( ( ), )L x t t , the differential equation can be 

iteratively solved to obtain a time series diagram under 

the influence of noise. Similar to Duffing system state 

recognition, the corresponding frequency spectrum is 

obtained through Fourier transform. Figure 5 shows the 

system frequency spectrum of the Josephson junction 

under the influence of noise, with bias currents of 5, 6, 7, 

and 10. The system state features are extracted from the 

spectral changes in Figure 5 to obtain a training dataset. 

The dataset is then input into the limit state machine for 

training. By changing the parameters of the system, 

similar bifurcation points are obtained, and the test set is 

obtained by analyzing the bifurcation points. Finally, by 

identifying the test set samples through ELM, the 

detection results of the Josephson junction state can be 

obtained. 
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Figure 5: System frequency spectrum under the influence of noise 

 

4 Experimental results and analysis 

The third part conducted experimental simulation and 

result analysis on the identification and detection method 

based on ELM designed for Duffing oscillator system and 

Josephson junction. The experiment used Python as the 

simulation platform, and evaluated the accuracy, running 

speed, and data volume of ELM under different 

parameters. RNN algorithm and Lyapunov exponent 

graph methods were used as a comparison group 

 

4.1 Experimental results and analysis based 

on duffing oscillator state recognition 

method 

To explore the bifurcation prediction method for the 

Josephson junction equation based on ELM and noise 

precursor phenomenon, a two-stage experiment was 

designed. Firstly, the parameters of the Josephson 

junction equation were determined, and noise was added 

to solve it. Secondly, the solved time diagrams were 

divided into stages, and spectrograms were plotted to 

generate a training set for training the ELM algorithm. 

Then, the parameter values in the Josephson junction 

equation were changed to find new bifurcation points 

similar to the original bifurcation points, and the test set 

was generated for testing to obtain the simulation 

experiment results. The experiment contained four steps: 

pre-bifurcation stabilization, bifurcation precursor, 

bifurcation and post-bifurcation stabilization. Finally, the 

complete training set was generated by extracting the 

frequency matrix features and extreme point distance 

features. The set was then trained and tested using the 

ELM algorithm. Configuring the parameters of the 

Duffing equation, with a value interval of [1.5, 2.5] for 
  and an interval of 0.01, with k  taking 0.2 and   

taking 1. 70 random samples out of 100 samples in the 

dataset are divided as the training set, and the rest as the 

test set. Feature selection had a significant impact on the 

performance of ELM models. By selecting appropriate 

feature subsets, the predictive performance of the model 

could be improved, the complexity and computational 

cost of the model could be reduced, and the 

interpretability of the model could be increased. The 

experiment used filtering, wrapping, and embedding 

methods to find the optimal subset of features. 

After training, ELM input the test set samples to 

obtain the output recognition results. By comparing them 

with the target matrix of the test set, the proportion of 

samples correctly recognized by ELM in all samples 

could be determined, which is the accuracy rate. ELM 

achieved recognition of input data by adjusting the 

weights of the input and output layers. The details of 

parameter adjustment included initialization of weights, 

selection of learning rates, and control of iteration times. 

The number of hidden layers was an important parameter 

that affects the performance of ELM. In general, the 

greater the number of hidden layers in a model, the 

greater its expressive power. However, this also increased 

the computational complexity of the model. When 

processing 1,000 features, 10-20 hidden layers were 

selected. The activation function was an indispensable 

part of neural networks, which determined the output 

range and gradient of the neural network. The experiment 

used ReLU activation function, which has better 

performance in processing large-scale datasets. The 

initialization of weights had a significant impact on the 

convergence speed and performance of the model. To 

ensure the convergence of the model, the Xavier 

initialization method was chosen in the experiment. The 

learning rate was an important parameter for controlling 

model updates, and experiments chose different sizes of 

learning rates such as 0.01, 0.05, and 0.1 for 

experimentation. The number of iterations was not a fixed 

parameter 300, rather, it was a variable that determines 

the adequacy of model training. Table 2 presents the 

recognition results during the four testing processes: the 

accuracy of the four recognition results is 90% or above, 

with a total average accuracy of 93.3%. 

 

Table 2: Identification results during four tests 

/ First test Second test Third test Fourth test 

Number of samples identified 30 30 29 30 
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Identify the correct number of samples 27 28 27 30 

Total number of samples 30 30 30 30 

Accuracy rate 90.0% 93.3% 90.0% 100.0% 

 

Figure 6 compares the detection results of ELM on 

test samples with the sample labels of the test set during 

the recognition process. It also included the number of 

cycles in which each sample state is located. When the 

number of cycles was 0, the system was in a chaotic state. 

 

0

1 5 10 15 20

Test sample

C
ycle

1

2

3

4

5

25 30

0

1 5 10 15 20

Test sample
C

ycle

1

2

3

4

5

25 30

0

1 5 10 15 20

Test sample

C
ycle

1

2

3

4

5

25 30
0

1 5 10 15 20

Test sample

C
ycle

1

2

3

4

5

25 30

(a) First test identification results

(d) Fourth test identification results(c) Third test identification results

(b) Second test identification results

 

Figure 6: Test results of ELM on samples 

 

Figure 7 compared the operational performance of 

ELM with RNN and Lyapunov exponent graph methods, 

with the required amount of data and running time for 

algorithm operation as evaluation indicators. In Figure 

7(a), three samples were not identified accurately with 

90% accuracy. Figure 7(b) did not identify one sample 

with 96.7% accuracy, while Figure 7(c) inaccurately 

identified four samples with 86.7% accuracy. Figure 7(d) 

identified all samples with 100% accuracy. Overall 

comparison showed that after multiple random trials, the 

average accuracy of state classification for the test 

samples can reach over 92%. In the whole process from 

Duffing equation solving to building feature matrix and 

target matrix to training and recognition test, the running 

time of ELM was only 70s, which was not at the same 

level as the time consumed by Lyapunov and RNN. 

Lyapunov needed to first calculate the maximum 

Lyapunov exponent to identify the system state, which 

took 8050s. In contrast, although the running time of 

RNN was less than half of Lyapunov, it was still two 

orders of magnitude higher than the ELM. The ELM 

algorithm required only 80 data points for the recognition 

process, which was significantly lower than other 

algorithms that require two to three orders of magnitude. 
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Figure 7: Comparison of operational performance of different algorithms 

 

4.2 Experimental results and analysis of state detection method based on josephson 
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junction bifurcation stage 

The simulation experiment of detecting the Josephson 

junction state by predicting the bifurcation stage was 

divided into two stages. In the first stage, experiments 

were conducted to determine whether accurate 

predictions could be made for each bifurcation stage. In 

the second stage, a test set was used to determine whether 

the method could accurately predict each bifurcation 

stage for multiple similar bifurcation points. The initial 

parameters for similar bifurcation points were set as 

L =0.1, C =0.07, and the variable bias current I  was 

within the range of [3.5, 5.5]. Figure 8 showed the 

frequency spectrum of similar bifurcation points at bias 

currents of 3.7, 4.0, and 4.8. The system was in the post 

bifurcation stable stage at bias currents of 3.7, 4.0, and 

4.8, respectively. 
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Figure 8: System frequency spectrum under different bias currents 

 

Table 3 presents ELM's accurate predictions for 

each stage of the bifurcation at this point. 

 

 

 
Table 3: Prediction of ELM for each stage of bifurcation 

Bias current value range 

Evaluating indicator 
Bifurcation stage Prediction results of ELM True or False 

[3.7,4.0] Stable stage after bifurcation Stable stage after bifurcation T 

[4.0,4.3] Bifurcation stage Bifurcation stage T 

[4.3,4.8] Bifurcation precursor stage Bifurcation precursor stage T 

[4.8,5.7] Stability stage before bifurcation Stability stage before bifurcation T 

 

After training, ELM input the test set and compared 

the label matrix of the test set with the obtained detection 

results for bifurcation points. Table 3 presents the 

simulation recognition results of ELM in three bifurcation 

point tests and the comparison results of the target matrix 

of the test set in the Python environment. In Python, the 

numbers 0, 1, and 2 were used to refer to the pre 

bifurcation stage, bifurcation stage, and post bifurcation 

stable stage, respectively. In Table 4, the accuracy of 

ELM reached 90% in all three tests of 10 test samples, 

and reached 100% in the prediction of bifurcation stage 

and stable stage after bifurcation. 

 

Table 4: Comparison of three test results 

First test 

Test set objectives 2 2 2 0 0 0 1 0 1 0 

ELM recognition results 2 2 2 1 0 0 1 0 1 0 

True or False T T T F T T T T T T 

Second test 

Test set objectives 1 1 1 2 2 2 0 0 0 1 

ELM recognition results 1 1 1 2 2 2 2 0 0 1 

True or False T T T T T T F T T T 

Third test 

Test set objectives 0 0 0 1 0 1 1 2 2 2 

ELM recognition results 0 0 0 1 1 1 1 2 2 2 
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True or False T T T T F T T T T T 

 

By changing the parameters to obtain 5 other similar 

bifurcation points, the test set was input into ELM to 

obtain the average detection accuracy after 5 tests. 

Figures 9 (a),(b), (c) compare the accuracy of the ELM 

algorithm, RNN, and Lyapunov in predicting each of the 

five bifurcation stages for each of these five bifurcation 

points. The dashed line in the figure is the average 

regression line of the algorithm's prediction accuracy for 

five bifurcation points in each test. In Figure 9, although 

the prediction accuracy of ELM for each bifurcation point 

fluctuated slightly by 8 percentage points, the average 

accuracy of the five tests was above 91%, and the average 

accuracy was more than 10 percentage points higher than 

RNN and Lyapunov. 
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Figure 9: Accuracy comparison in five tests 

 

The precision, recall, and F1 scores of different 

methods are shown in Table 5. Among the five methods 

compared, ELM had the highest precision, reaching 93%, 

followed by the Naive Bayes method with an accuracy of 

87%. This indicated that the ELM method had high 

precision in predicting positive samples. The ELM 

method had the highest recall rate, reaching 97%. This 

indicated that the ELM method had a high recall rate in 

identifying positive samples. The ELM method had the 

highest F1 score, reaching 94%. This indicated that the 

ELM method had high accuracy and recall in predicting 

positive samples, and overall performed the best. ELM 

performed the best in terms of precision, recall, and F1 

score, making it a relatively effective prediction method. 

 

Table 5: Precision, recall and F1-score of different 

methods 

Methods Precision Recall F1-score 

ELM 93% 97% 94% 

RNN 83% 85% 83% 

Lyapunov 80% 84% 81% 

Support vector 

machine 
86% 90% 88% 

Naive Bayes 87% 92% 90% 

 

4.3 Discussion 

The results demonstrate that the Duffing oscillator state 

recognition method based on ELM and the Josephson 

junction bifurcation stage state detection method have 

significant advantages in accuracy, running speed, and 

data volume. In the Duffing oscillator state recognition 

experiment, the recognition accuracy of the four ELM 

tests is above 90%, with a total average accuracy of 

93.3%. In contrast, the runtime of RNN algorithm and 

Lyapunov exponent graph method is two orders of 

magnitude higher than ELM and three orders of 

magnitude higher, respectively, and ELM also has 

relatively low requirements for data volume. In the 

Josephson junction bifurcation stage state detection 

experiment, ELM achieves an accuracy of 90% in all 10 

test samples, and an accuracy of 100% in predicting 

bifurcation stage and stable stage after bifurcation. In 

addition, ELM performs the best in terms of accuracy, 

recall, and F1 score, making it a more effective prediction 

method. 

By comparing with the most advanced methods 

currently available, it can be found that ELM has 

significant advantages in certain aspects. This is mainly 

attributed to the superiority of ELM in parameter 

adjustment, feature selection, and model interpretability. 

Firstly, ELM can recognize input data by adjusting the 

weights of the input and output layers, thereby achieving 

high recognition accuracy under different parameters [19]. 

Secondly, by using feature selection methods such as 

filtering, wrapping, and embedding, ELM can find the 

optimal subset of features, further improving the 

predictive performance and interpretability of the model 

[20]. In addition, the running speed and data volume 

requirements of ELM are relatively low, making it more 

efficient in practical applications. However, ELM may 

perform poorly in certain situations. When the system is 

in a chaotic state, the recognition accuracy of ELM will 
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decrease. This is because the nonlinear characteristics of 

the system in chaotic states can make it difficult for ELM 

to capture effective features. Furthermore, it is possible 

that ELM may be susceptible to overfitting when 

processing large amounts of data. In such instances, it 

may be necessary to optimize the model through 

regularization and other methods. 

5 Conclusion 

In microelectronic device research and development, it is 

crucial to accurately identify and predict the nonlinear 

dynamical states of the devices to ensure their 

performance and reliability. The Duffing vibrator system 

is one of many NLD models that has received special 

attention due to its wide application in microelectronic 

devices. The traditional state recognition method of 

Duffing oscillator system has the problems of large 

computation, slow rate of convergence and limited 

recognition accuracy. The traditional bifurcation 

prediction method of Josephson junction also has the 

problem of inaccurate extraction of bifurcation 

characteristics. Therefore, this paper proposed the 

Duffing oscillator system identification method based on 

ELM and a new bifurcation prediction method combining 

the noise precursor law of Josephson junction with ELM. 

The results demonstrated that the accuracy of the four 

recognition results of ELM in Duffing oscillator system 

state recognition for the training set samples was 90% or 

above, with a total average accuracy of 93.3%. In 

comparison experiments with traditional Lyapunov 

exponent graph method and RNN algorithm, ELM had a 

requirement of 80 bytes of data and a recognition process 

running time of 70s, both of which were two to three 

orders of magnitude smaller than traditional algorithms. 

The detection results of the bifurcation state of the 

Josephson junction indicated that the ELM accuracy 

reached 100% in the prediction of the first similar 

bifurcation point at each stage. The accuracy rate reached 

90% during the three tests on the test set samples, and 

reached 100% during the predicted bifurcation stage and 

post bifurcation stable stage. In the five-test detection of 

five similar bifurcation points, the prediction accuracy of 

ELM for different bifurcation points fluctuated slightly 

within 8 percentage points. The average accuracy of the 

five tests was above 91%, with a maximum of 95%, and 

the average accuracy was more than 10 percentage points 

higher than traditional detection algorithms. The paper 

presents improved identification and detection methods 

for Duffing oscillators and Josephson junctions. 

Nevertheless, the applicability of the ELM algorithm is 

constrained by the complexity of the problem and the 

characteristics of the data, and it may not perform 

optimally in other contexts. The interpretation of 

algorithmic data is based on specific conditions and 

metrics that may not be robust under other experimental 

conditions. Additionally, the study only considers the 

most common noise precursor law of Josephson junctions. 

In different bifurcation modes, the characteristics of noise 

precursor phenomena are different, which is also a 

direction that can be studied in the future. Meanwhile, in 

the study of the Duffing system, there are other methods 

of extracting features through phase diagrams. Adding 

more features to the dataset can effectively improve the 

accuracy of the ELM. 
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