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Due to the unique nature of coal mining environments, images captured in low illumination 

environments often have problems like low brightness, poor contrast, and loss of detail information, 

which seriously affects the quality of images and the information carried. In response to this issue, this 

study proposes a visual image enhancement algorithm for coal mine exploration robots based on 

Retinex. This method first decomposes low illumination images into light mapping and reflection 

mapping through the light smoothing loss function, and then enhances the former and denoises the 

latter through an improved Retex-net. Finally, the two are combined to output the enhanced image. The 

conclusion verified that when the training set reached 1000, the structural similarity values of the 

improved Retinex-Net algorithm, global illumination perception and detail preserving network, 

relative average generative adversarial network, and Retinex-Net were 0.98, 0.95, 0.89, and 0.88, 

respectively. When the iterations were 500, the accuracy of Retinex-Net algorithm, global illumination 

perception and detail preserving network, relative average generative adversarial network, and 

Retinex-U-Net algorithm were 0.78, 0.53, 0.38, and 0.31, respectively. The data indicates that the 

designed algorithm owns good performance and makes a positive contribution to improving the 

efficiency and safety of coal mine exploration work. 

Povzetek: Razvit je nov algoritem za izboljšanje kvalitete slik za raziskovalne robote v rudnikih 

premoga, ki temelji na Retinex teoriji. Gre za obdelavo slik v slabo osvetljenih okoljih, kar izboljšana 

jasnost in kontrast slik prispevata k večji učinkovitosti in varnosti pri raziskovanju rudnikov.

1 Introduction 

With the growth of the economy and social progress, 

people can obtain a large amount of information through 

images and transmit information through digital images. 

Digital images are the medium for information 

transmission. Due to the distinctive characteristics of coal 

mining environments [1], robots frequently encounter 

challenges such as uneven illumination and low contrast 

in images obtained in complex mine environments. These 

issues significantly impact the clarity and usability of the 

images [2]. Therefore, how to improve the image quality 

obtained by robots has become one of the hotspots in the 

research of coal mine exploration robot technology. In 

response to the issue of image quality in coal mine 

exploration robots, this study proposes a Retinex-based 

visual image enhancement algorithm (IEA) for coal mine 

exploration robots. Retinex algorithm is a classic IEA 

mainly used to strengthen the brightness and contrast of 

images while maintaining the details. This algorithm can 

effectively compensate for uneven illumination by 

simulating the human eye's perception mechanism of 

light, enabling the image to maintain high clarity and 

visibility in complex environments. The research content 

has five parts. The first part briefly introduces the other 

scholars' research topics on visual IEA. The second part 

is a review of the main methods used in this study. The 

third part is to study the model results obtained through 

the application of methods and analyze the results. The 

fourth part is a discussion of the research results. The 

fifth part is a summary of all the above studies and 

prospects for future research. 

2 Related works 

As a carrier of information, images play an important role 

in various fields. Fu et al. found that many existing 

methods in the process of weak light image enhancement 

cannot effectively handle noise, resulting in color 

deviation and overexposure issues. Moreover, in the 

absence of paired data, existing methods could not 

guarantee that quality. In response to this, the team 

proposed an unsupervised low light image (LLI) 

enhancement network. The results indicated that this 

network could enhance LLIs and solve problems such as 

noise and color deviation [3]. Xu et al. found that 

information in LLIs is difficult to capture, so they 

designed a multi-scale fusion framework for LLI 

enhancement. This method generated exposure images 

through a remapping function, then selected different 

indicators as weight maps, and finally integrated the 
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frequency bands of the images. It could keep the detailed 

information of the image without causing color distortion 

[4]. Zhou et al. found that the clarity of outdoor images 

can be reduced due to haze, and put forward a single IEA 

built on weighted guidance coefficients for dark channel 

prior and joint adaptive image enhancement. This method 

could enhance images under haze weather to restore the 

original information of the image. This study showed that 

the proposed method addressed the issues of image 

distortion and loss of detail information, and had higher 

efficiency than traditional IEA [5]. 

He et al. found that in low illumination or haze 

weather, images taken outdoors have issues such as color 

distortion, missing details, and poor imaging quality. 

They proposed a method for image enhancement 

combined with adaptive color restoration and detail 

preservation. It restored the color of the image through 

multi-channel fusion, and then enhanced the details 

through a method based on detail preservation. This 

method could enhance the recognition of low illumination 

images (LII) [6]. Zhang et al. found that traditional IEAs 

can lead to local over enhancement and noise 

amplification when strengthening images. Therefore, a 

method for infrared image enhancement using local 

entropy mapping histogram adaptive segmentation has 

been proposed. This method could enhance images and 

maintain good details, leading traditional IEAs in 

quantitative evaluation [7]. Lu et al. found that images 

captured under low light conditions usually display issues 

like insufficient brightness and severe noise. They 

proposed a channel segmentation attention network that 

can distinguish the information contained in features 

through attention modules. The proposed method has 

been proven to better suppress chromaticity differences 

while enhancing LII [8]. 

In summary, many scholars have conducted research 

on LLI enhancement and have achieved certain results. 

Although these studies have made some progress in 

image enhancement, there are still some limitations, 

including lack of data, algorithm complexity, parameter 

sensitivity, universality, and consideration of practical 

application scenarios. Furthermore, they fail to 

acknowledge that illumination in complex environments 

is not uniform, which results in enhanced images that do 

not accurately reflect the information present. This study 

proposes a visual IEA for coal mine exploration robots 

based on Retinex. This method first decomposes LII into 

illumination maps and reflection maps through the 

illumination smoothing loss function (LF). Then, by 

improving Retinex-Net, the two are combined to output 

the enhanced image. This way can enhance LII and 

preserve the original information, reducing noise 

information. A detailed literature comparison is shown in 

Table 1. 

Table 1: Summary table 

Authors Year Method Key results Limitations 

Fu et al [3]. 2022 
Unsupervised LLI 

Enhancement Network 

Effectively enhances 

LLI, addresses noise 

and color deviation 

issues. 

Lack of paired data, 

general applicability in 

various scenarios not 

discussed. 

Xu et al [4]. 2021 

Multi-scale Fusion 

Framework for LLI 

Enhancement 

Preserves detailed 

information without 

color distortion, 

integrates frequency 

bands effectively. 

Limited discussion on 

computational complexity, 

potential challenges in 

real-time applications not 

addressed. 

Zhou et al [5]. 2021 

Single IEA with 

Weighted Guidance 

Coefficients 

Enhances images under 

haze weather, restores 

original information, 

addresses image 

distortion and loss of 

detail information. 

Lack of extensive 

comparison with other 

methods, potential 

sensitivity to parameter 

tuning. 

He et al [6]. 2021 

Image Enhancement with 

Adaptive Color 

Restoration 

Combines adaptive 

color restoration and 

detail preservation, 

enhances recognition of 

LIIs, restores color and 

enhances details 

effectively. 

Lack of discussion on 

computational efficiency, 

potential issues with 

generalization to diverse 

datasets not addressed. 
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Zhang et al [7]. 2022 

Infrared Image 

Enhancement with Local 

Entropy Mapping 

Enhances images while 

maintaining good 

details, surpasses 

traditional IEAs in 

quantitative evaluation. 

Potential sensitivity to 

parameter settings, lack of 

discussion on real-world 

applicability. 

Lu et al [8] . 2022 
Channel Segmentation 

Attention Network 

Suppresses chromaticity 

differences while 

enhancing LIIs, 

distinguishes 

information through 

attention modules 

effectively. 

Computational overhead 

not discussed, potential 

challenges in training on 

large-scale datasets not 

addressed. 

3 Retinex-based Visual IEA 

The first section of this chapter first explains the Retinex 

theory, and then introduces Retinex-Net through this 

theory and models it using this method. The second 

section introduces attention mechanism and U-shaped 

neural network to perfect the model based on the first 

section. 

 

 

 

 

 

3.1 Uniformly illuminated image 

enhancement based on retinex for coal mine 

exploration robot vision 
Retinex theory is a theory about visual perception, mainly 

exploring how humans perceive color and brightness. The 

core viewpoint of this theory is that human visual 

perception is not only dependent on the photoreceptor 

cells of the eye, but also influenced by the processing and 

interpretation of the brain [9]. In accordance with this, the 

observed color of an object is determined by the reflected 

wavelength and is not related to the intensity of light. The 

calculation theory is shown in Figure 1. 

Incident light Observer

Reflected object

 

Figure 1: Retinex theoretical model diagram 

 

In Figure 1, the incident light emits photons, 

illuminates the surface of the object, and reflects them 

into the human eye, forming an image in the human eye. 

This process can be expressed through a formula, as 

shown in equation (1). 

 ( , ) ( , ) ( , )S x y I x y R x y=  (1) 

In equation (1), ( , )S x y  is the imaging of the 

observer. ( , )I x y  means the incident light image. 

( , )R x y  represents reflectivity. It is an inherent property 

of an object. The incident image represents the intensity 

of light. Reflectivity represents the ability of light to 

reflect. This study is based on Retinex theory and 

convolutional neural networks (CNN), and proposes an 

improved Retinex-Net and illuminance smoothing based 

uniform illumination IEA for LII. The Retinex-Net is 

divided into three parts, namely the decomposition part, 

the adjustment part, and the reconstruction part [10]. 

Among them, the decomposition part is composed of a 

5-layer CNN structure. It inputs LII into a decomposition 

network, analyzes and processes the images, and outputs 

the reflection and illumination components of the images. 

Then, the output image is input into the enhancement 

network. The Enhanced Network is a 9-layer CNN 

structure. This structure adjusts the illumination image to 
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maintain overall consistency in the photo, and uses 

multi-scale connections to crop local distributions. At the 

same time, multi-scale cascading technology is 

introduced to adjust illumination from a multi-scale 

perspective. Its pseudocode is shown in Figure 2. 

Pseudocode: Retinex-Net Clustering Algorithm

Function Retinex_Net_and_Illuminance_Smoothing(image):

    reflected_component, illuminance_component = Decomposition_Net(image)

    

    adjusted_illuminance = Enhancement_Net(illuminance_component)

    

    enhanced_image = Reconstruction(reflected_component, adjusted_illuminance)

    

    return enhanced_image

function Decomposition_Net(image):

    CNN_layers = define_CNN_layers()

    

    reflected_component = CNN_layers(image)

    illuminance_component = image - reflected_component

    

    return reflected_component, illuminance_component

function Enhancement_Net(illuminance_component):

    CNN_layers = define_CNN_layers()

    

    adjusted_illuminance = CNN_layers(illuminance_component)

    

    return adjusted_illuminance

function Reconstruction(reflected_component, adjusted_illuminance):

    enhanced_image = reflected_component + adjusted_illuminance

    

    return enhanced_image

 

Figure 2: Retinex-Net pseudocode 

 

Due to the greater noise in dark areas of the image, 

the noise will also increase during the enhancement 

process. Therefore, it is necessary to use denoising 

operations to denoise the image. In the low illumination 

IEA built on Retinex-Net, the LF is composed of the 

weighted sum of the decomposition and the enhancement 

networks. The decomposition network is responsible for 

decomposing LIIs into reflection and illumination 

components, usually a structure composed of multi-layer 

CNNs. This network decomposes the input LII into 

reflection and illumination components through learning. 

The reflection component represents the detailed 

information in the image, while the illumination 

component represents the global illumination situation of 

the image. By decomposing the network, the system can 

separate global illumination information and detail 

information in the image. This makes it easier for the 

system to process LLIs, as under low light conditions, the 

changes in global illumination are usually significant, 

while the details are relatively more stable. The 

illumination components output by the network are 

enhanced and decomposed by the network, adjusted to 

improve image quality and minimize noise. A typical 

structure is a multi-layer CNN that receives illumination 

components from the decomposition network as input and 

then learns to adjust the illumination components to 

maintain overall consistency of the photo, reduce noise, 

etc. The main task of enhancing the network is to adjust 

the illumination of the image based on the illumination 

components provided by the decomposition network to 

improve the quality of the image. In this process, the 

enhancement network can utilize its deep learning ability 

to learn the features and structure of images, thereby 

better processing image noise and reducing the noise 

introduced during the enhancement process while 

enhancing image brightness. The expression is equation 

(2). 

 
1

, ,

decome recom ir ir is is

recon ij j i j

i low normal j low normal

L L L L

L I R S

 


= =

= + +

 = −


   (2) 

In equation (2), decomeL  is the LF of the 

decomposed network, and reconL  is the reconstruction 

loss. ir  is the consistency of balanced reflectivity. irL  

is the refractive index loss. is  is the smoothness of 

illumination. isL  represents the smoothing loss of 

illumination. ij  represents the reconstruction 

coefficient. R  is the illumination image [11]. 
1

 is 

the 1L -norm. I  is the illuminance component. The 

calculation formulas for irL  and is  are shown in 

equation (3). 
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 =  − 




 (3) 
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In equation (3), lowR  represents the reflection 

component (ReC) of the LLI.   is the gradient in the 

horizontal and vertical ways. normalR  is the ReC of 

normal light. g  represents the equilibrium coefficient. 

Although the Retinex-Net can improve the brightness of 

images, it also generates a large amount of noise, and 

processed images can also cause color distortion. In coal 

mine exploration, this disadvantage is particularly evident. 

Therefore, this study improves the method and the 

improved structure is Figure 3. 

Low light image Decomposition net

Low light image reflection 

component

Low light image 

illuminance component

Recovery net

Augmented 

network

Restore the image 

reflection component

Enhance the image 

irradiation component

Merge
Enhanced 

image
 

Figure 3: Network structure diagram of improved Retinex-Net algorithm 

 

According to Figure 3, the structure has three 

modules: decomposition, ReC recovery, and illumination 

component enhancement. The LLI is input into the 

decomposition module, which outputs the reflection and 

illumination components of the LLI. Two components are 

input into the recovery network and the ReCs of the 

recovered image are output. The LLI illuminance 

component is input into that enhancement network, and 

the illuminance component of the optimized image is 

output. At last, the two components are fused to obtain 

the enhanced image [12]. To enhance the decomposition 

ability of the decomposition module, its LF is equation 

(4). 

 decome re r r i iL L L L = + +  (4) 

In equation (4), reL  is the reconstruction loss value. 

r  represents the consistency coefficient. rL  is the 

ReC loss. i  represents the smoothness coefficient of 

the illumination. iL  is the smoothing loss value of the 

illuminance. The reconstruction loss is equation (5). 

 
1 1re l l l h h hL I R L I R L= − + −  (5) 

In equation (5), lI  and hI , lR  and hR  represent 

the illuminance and ReC of the LLI and a normally 

illuminated image. lL  and hL  represent weak and 

normal light images. The expression for ReC loss is 

equation (6). 

 
1r i hL R R= −  (6) 

As calculation of Equation (6), the smoothing loss of 

the illuminance component is equation (7). 

 
1 1

max( , ) max( , ))

l h

i

l h

I I
L

L L 

 
= +

 
 (7) 

In equation (7),   represents the gradient value. 

  is a positive number that tends towards zero, used to 

prevent the denominator from being zero. The gradient of 

the illumination component should be as large as possible 

in the flat position of the illumination component, which 

can increase the smoothness and make the image 

brightness change smoothly. 

In the decomposition module, it is necessary to add 

constraints to the module. The most important aspect is 

the structural perception smoothness of illumination 

mapping. When the illumination component is smooth, 

local details and enhanced noise are preserved. It is 

necessary to perform denoising on the ReC before 

outputting the reconstructed image [13]. This study uses 

the ReC of the normal image output by the decomposition 

module as the true value and its LF is Equation (8). 

 
2 2

2 2restore re h re h c cL R R R R L= − +  − +  (8) 

In equation (8), 
2

 represents the 2L -norm. reR  

represents the recovered ReC. To avoid color differences 

between the image and the original color, and to evaluate 

the color of the enhanced image, the resulting color LF is 

equation (9). 

 
2

2c reb hbL R R= −  (9) 

In equation (9), rebR  and hbR  represent the 

images of reR  and hR  after Gaussian blur, respectively. 

Due to the fact that the true value of the illuminance 

component does not exist, it is needed to build a mapping 

learning process between LLIs and normal images. The 

role of reinforcement networks is to establish the process 

of mapping learning. Firstly, the input image is sampled 

and the local illumination distribution is reconstructed 

from the sampled information. Then, the feature map size 

is adjusted to match the input image size. Then it is 

spliced, fed into the lower layer, and finally reconstructed 

with the convolutional layer to reconstruct the 
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illumination component. The LF of the enhancement 

network is equation (10). 

 
2 2

2 2enhance en h m hL I I I I= − +  −  (10) 

In equation (10), enI  is the enhanced illuminance 

component.   is the gradient value. 
2

 represents 

the 2L -norm. 

 

3.2 Non-uniform illumination image 

enhancement based on retinex for coal mine 

exploration robot vision 
In coal mine surveying, the environment most often faces 

uneven illumination due to the influence of weather and 

varying degrees of illumination. Retinex-based image 

enhancement cannot meet the requirements of complex 

environments. Therefore, based on this method, attention 

mechanism and U-shaped neural network (U-Net) are 

introduced to enable the improved Retinex algorithm 

model to enhance images in non-uniform illumination 

environments. 

Attention mechanism is a method of simulating 

human attention, which improves the model efficiency in 

processing large-scale data and complex tasks through 

selective attention and weighted processing of input data. 

Attention mechanisms are widely used in the fields of 

machine learning and artificial intelligence. The attention 

mechanism could be segmented into channel, spatial, and 

mixed domains in terms of attention domain [14]. 

Channel domain refers to a method of selectively 

weighting different channels or feature dimensions of 

input data in the attention mechanism. In deep learning, 

input data typically has multiple channels or feature 

dimensions. For example, in image processing, an RGB 

image has three channels. By applying attention 

mechanisms in the channel domain, the model can 

dynamically adjust the level of attention to different 

channels or feature dimensions, thereby improving the 

model's extraction and utilization of important 

information. This method can achieve adaptive feature 

selection for input data in different tasks and scenarios. 

Its structure is Figure 4. 

Input feature map

Maximum pooling

Average pooling

Channel attention

 

Figure 4: Channel attention module 

 

In Figure 4, the feature map is subjected to 

maximum and average pooling. Then, two context 

descriptors are input into the shared network, and the 

channel attention map is gained through the shared 

network output. The calculation of the channel is 

equation (11). 

1 0 1 0 max( ) ( ( ( )) ( ( )))c c

c avgM F W W F W W F= +  (11) 

In equation (11),   is the sigmoid function. 0W  

is the channel attention map. 
c

avgF  and max

cF  represent 

context descriptors for two spaces. The spatial attention 

concentrates more on specific positional information. 

Calculating spatial attention requires processing in the 

direction of the channel axis through average and max 

pooling, and then parallelizing the processing results to 

create an effective feature descriptor [15]. Its structure is 

Figure 5. 

Channel thinning 

feature map
Convolution layer

Spatial attention 

diagram

 

Figure 5: Spatial attention module 
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In this figure, the model first aggregates the channel 

information of feature maps through average and max 

pooling, thereby generating two feature images. Then 

these two feature images are connected and input into the 

network to generate a spatial attention map. The 

calculation formula is equation (12). 

7 7

max( ) ( ([ ; ]))s s

s avgM F f F F =  (12) 

In equation (12), 
7 7f 

 is a convolutional kernel. 

The convolutional attention mechanism module is a 

technology that combines convolutional operations and 

attention mechanisms to improve the performance of 

CNN in processing image or sequence data. This module 

typically includes two key components: attention 

mechanism and convolution operation. The former is 

responsible for calculating the importance weight of each 

channel or feature to determine which channels or 

features the model should focus on. The latter is 

responsible for feature extraction and processing of input 

data [16]. This module is shown in Figure 6. 

Input feature

Spatial attention 

module

Channel attention 

module

The refined features

 

Figure 6: Convolutional attention mechanism module 

 

According to Figure 6, features are input in this 

module, and local feature details are learned on the 

channel and spatial position feature information through 

the two modules [17]. Finally, the obtained features are 

output. The entire attention process is equation (13). 

( )

( )

s

c

F M F F

F M F F

  = 


 = 
 (13) 

In Equation (13), F   means the refined feature 

map.   is element multi-plication. F  represents a 

feature map. Due to the characteristics of U-Net networks, 

U-Net is introduced into the model to denoise the 

reflected components. To deal with the matter of color 

distortion in reflected components, the product attention 

mechanism is added to the U-Net [18]. A LF is added to 

the network for constraints, as shown in equation (14). 

2

2

2

2

restore s square g grod c color

square re h

grod re h

L L L L

L R R

L R R

   = + +


= −


=  −

 (14) 

In equation (14), squareL  represents the mean square 

error (MSE) LF. reR  is the recovered ReC. s  is the 

MSE loss coefficient. g  represents the gradient loss 

coefficient. colorL  is the color LF. c  represents the 

color perception balance coefficient. Due to the 

complexity of the environment, the brightness of images 

captured in low illumination environments is unevenly 

distributed. To handle the issue of excessive brightness 

enhancement caused by the illumination map 

enhancement network, improvements have been made to 

the illumination network, as shown in Figure 7. 

Convolution+L

ReLU

Convolution+L

ReLU

Convolution+L

ReLU

Convolution+L

ReLU

Channel 

attention

Convolution+L

ReLU

Convolution+L

ReLU

 

Figure 7: Improved illumination map enhancement network 

 

 



140   Informatica 48 (2024) 133–146                                                                  D. She 

In Figure 7, the network includes six convolutional 

layers. By adding a channel attention module to the 

convolutional layer and analyzing the relationship 

between feature channels, a channel attention map is 

generated to analyze illumination information [19]. The 

improved illuminance map enhances the network LF as 

shown in equation (15). 

2 2

2 2enhance en h en hL I I I I= − +  −  (15) 

In equation (15), enI  represents the enhanced 

illuminance component. The images are reconstructed 

using the Retinex theoretical model. The reconstructed 

image is equation (16). 

( , ) ( , ) ( , )enhance en enS x y R x y I x y=   (16) 

In equation (16), reR  represents the recovered ReC. 

enI  is the enhanced illuminance component. By 

combining the two, the reconstructed image can be 

obtained. 

 

 

 

4 Performance analysis of visual IEA 

for coal mine exploration robots 

based on retinex 
The first section of this chapter compares the 

performance of different models under different training 

and validation sets, as well as different iterations. In the 

second section, after comparing the performance of the 

model, images of the mining area are selected to test the 

performance of the model. 

 

4.1 Performance analysis of uniform 

illumination image enhancement based on 

retinex 
This experiment uses the LOL dataset. This dataset 

contains a dataset of low light enhanced images extracted 

from real scenes, including a variety of scene maps. The 

experimental hardware configuration uses Intel Core 

i5-8750H CPU, NVIDIA Geforce GTX2080Ti GPU, 8 

GB graphics memory, and 16 GB memory. Then, the 

GLADNet and RAGAN are introduced to compare with 

the proposed algorithm, the results are shown in Figure 8. 
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Figure 8: Comparison of SSIM values for four algorithms 

 

Figures 8(a) and 8(b) represent the Structural 

Similarity Index Measure (SSIM) values of the four 

algorithms in the training and validation sets. As the 

training set increases, the SSIM values of each algorithm 

also increase. Among them, the improved Retinex-Net 

algorithm tends to stabilize its performance and exhibits 

good performance when the quantity of training sets is 

around 600. When the number of training sets for other 

algorithms is 600, their model performance still fluctuates 

and is not at its optimal performance. When the training 

set reaches 1000, the SSIM values of the improved 

Retinex-Net algorithm, GLADNet, RAGAN, and 

Retinex-Net algorithms are 0.98, 0.95, 0.89, and 0.88, 

respectively. In the validation set, as the validation set 

increases, all three models except for the improved 

Retinex-Net algorithm have reduced SSIM values as the 

validation set increases. The improved Retinex-Net 

algorithm does not show significant changes as the 

validation set increases. The performance of the four 

methods is compared, and the results are shown in Figure 

9. 
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Figure 9: LF and RMSE values of four algorithms 

 

Figures 9(a) and 9(b) represent the LF and Root 

Mean Square Error (RMSE) of the four algorithms, and 

the values of the four algorithms decrease as the iterations 

increase. In 9(a), the improved Retinex-Net algorithm has 

the greatest decrease in the LF value, while the 

Retinex-Net algorithm has the smallest decrease. When 

the iterations reach 250, the LF of the improved 

Retinex-Net, GLADNet, RAGAN, and Retinex-Net are 

1.8, 1.5, 1.2, and 0.8, respectively. In 9(b), the RMSE of 

the improved Retinex-Net decreases the most. When the 

iterations reaches 100, the RMSE values of the improved 

Retinex-Net algorithm, GLADNet, RAGAN, and 

Retinex-Net algorithms are 0.28, 0.20, 0.11, and 0.09. 

The results prove that the improved Retinex-Net has high 

performance among the four algorithm models. 

4.2 Performance analysis of non-uniform 

illumination image enhancement based on 

retinex 
Retinex-based image enhancement cannot meet the 

requirements of complex environments, so attention 

mechanism and U-Net network are introduced on the 

basis of this method. The purpose is to enable the 

improved Retinex algorithm model to enhance images in 

non-uniform illumination environments. Their 

performance are compared separately, and the results are 

shown in Figure 10. 
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Figure 10: Performance comparison of four algorithms 

 

Figure 10(a) shows the performance comparison of 

various algorithms in the LOL dataset, and Figure 10(b) 

shows the performance comparison of various algorithms 

in the REALLIGHT dataset. As shown in Figure 10, in 

both datasets, the performance of the four algorithms 

decreases with the increase of the dataset. However, the 

Retinex-U-Net algorithm model does not show a 

significant decrease in performance with the increase of 

the experimental set and remains at a high level. The 

algorithm performance of Retinex-Net, GLADNet, and 

RAGAN has significantly decreased. When the number 

of iterations is 500, the accuracies of Retinex-Net 

algorithm, GLADNet, RAGAN, and Retinex-U-Net 

algorithm are 0.78, 0.53, 0.38, and 0.31, respectively. The 

experimental results show that the Retinex-U-Net 

algorithm model has good recognition accuracy for larger 

datasets, and shows good model accuracy among the four 

models. Performance analysis of ores and ordinary stones 
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in the mining area is conducted under different iteration times, and the results are shown in Figure 11. 
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Figure 11: Enhancement effect of various algorithms on images of ores and ordinary stones 

 

Figures 11(a) and 11(b) show the enhancement 

performance of four methods on images of ores and 

ordinary stones. In 11(a), as the iterations increase, the 

model performance for ore images also increases. When 

the iterations reach around 30, the performance of the 

Retinex-U-Net algorithm basically reaches its maximum, 

and the performance of other models does not reach its 

maximum. In 11(b), the enhancement performance of 

ordinary stones is basically consistent with that of ores. 

When the number of iterations reaches around 30, the 

performance of the Retinex-U-Net algorithm model 

reaches its maximum. This indicate that the 

Retinex-U-Net algorithm can achieve good model 

performance with fewer iterations. Common items in the 

mining area are selected to enhance them, as shown in 

Figure 12. 
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Figure 12: Enhancement performance of items in different mining areas 

 

According to Figure 12, the image enhancement 

accuracy for ore, sky, mining road, and mining cave is 97, 

95, 98, and 94 for the Retinex-U-Net model, respectively, 

with 96, 92, 97, and 91 for GLADNet model, 95, 94, 96, 

and 92 for RAGAN model, and 96, 92, 97, and 93 for 

Retinex-Net model. The data demonstrate that the 

designed model has good enhancement performance for 

various objects in the mining area. The comprehensive 

performance of each model is compared, and the results 

are shown in Table 2. 
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Table 2: Comprehensive performance comparison of models 

Type 

Retinex-Net GLADNet RAGAN Retinex-U-Net 

AC

C 

RMS

E 

Time(s

) 
ACC 

RMS

E 

Time(s

) 
ACC 

RMS

E 

Time(s

) 
ACC 

RMS

E 

Time(s

) 

Data set 

1 
77.6 35.7 0.82 

81.7

* 
29.6* 0.69* 

89.1

* 
11.1* 0.57* 

94.1*

* 
7.1** 0.49** 

Data set 

2 
78.9 37 0.76 

83.2

* 
27.1* 0.63* 

90.5

* 
12.4* 0.51* 

96.6*

* 
8.4** 0.43** 

Data set 

3 
75.8 32.7 0.88 

78.6

* 
22.6* 0.75* 

85.8

* 
7.8* 0.63* 

92.7*

* 
3.9** 0.51** 

Data set 

4 
67.7 24.7 0.97 

71.9

* 
14.8* 0.84* 

77.9

* 
4.7* 0.64* 

85.4*

* 
2.1** 0.52** 

Data set 

5 
79.2 35.9 1.24 

82.7

* 
25.6* 0.85* 

88.7

* 
9.5* 0.65* 

94.5*

* 
3.7** 0.53** 

Note: Compared with the Retinex-Net model, * represents P<0.05, and ** represents P<0.01. 

 

According to Table 2, the recognition rates of each 

model for datasets 4 and 6 are poor, but the proposed 

Retinex-U-Net model still performs well in the four 

algorithm models. Compared to the Retinex-Net model, 

each model shows significant differences in performance 

(P<0.05). Table 3 shows the details, with 10 individuals 

selected from 5 groups to assess the performance. 

 
Table 3: User rating table 

/ Group 1 Group 2 Group 3 Group 4 Group 5 

Retinex-U-Net 92 97 95 84 87 

GLADNet 87 82 81 79 81 

RAGAN 85 85 79 75 78 

Retinex-Net 80 76 78 73 76 

 

In Table 3, the ratings of different models for five 

groups are 92, 97, 95, 84, and 87 for the Retinex-U-Net 

model, with 87, 82, 81, 79, and 81 for GLADNet, 85, 85, 

79, 75, and 78 for RAGAN, and 80, 76, 78, 73, and 76 for 

Retinex-Net. The results indicate that the Retinex-U-Net 

model has a good rating, indicating that it is more favored 

by users. 

5 Discussion 

This study proposes a visual IEA for coal mine 

exploration robots based on Retinex. The method first 

decomposes LII into illumination maps and reflection 

maps through the illumination smoothing LF. Then, by 

improving Retinex-Net, the illumination maps are 

enhanced and the reflection maps are denoised. Finally, 

the two are combined to output the enhanced image. The 

experimental results show that as the validation set 

increases, except for the improved Retinex-Net algorithm, 

the SSIM values of all three models decrease with the 

increase of the validation set. The improved Retinex-Net 

algorithm does not show significant changes with the 

increase of the validation set. This is due to the fact that, 

with the exception of the Retinex-Net model, other 

models are unable to analyze data effectively when 

dealing with large datasets, which consequently results in 

a decrease in their performance. The RMSE values of the  

 

four algorithms decrease with the increase of iteration 

times, among which the RMSE value of the improved 

Retinex-Net algorithm decreases the most. This is 

because the improved Retinex-Net model can more fully 

extract information from the data and integrate it together. 

In both datasets, the performance of the four models 

declines with the expansion of the dataset. However, the 

Retinex-U-Net model demonstrates a minimal decline in 

performance with the enlargement of the experimental set, 

maintaining a high level of efficacy. This is due to the 

Retinex-U-Net model's robust generalization capacity and 

its ability to process large datasets. 

6 Conclusion 

Nowadays, with the continuous advancement of coal 

mine exploration technology, coal mine exploration 

robots have been widely used in the field of mining 

exploration and monitoring. However, due to the unique 

nature of coal mining environments, robots often 

encounter problems such as uneven illumination and low 

contrast in images obtained in complex mine 

environments. This severely limits the clarity and 

usability of the image. In response to this issue, this study 

proposed a visual IEA for coal mine exploration robots 

based on Retinex. This algorithm could enhance LII to 

obtain information in the images. The experiment showed 

that when the training set reached 1000, the SSIM values 
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of improved Retinex-Net, GLADNet, RAGAN, and 

Retinex-Net were 0.98, 0.95, 0.89, and 0.88, respectively. 

When the number of iterations reached 250, the LF 

values of the above four methods were 1.8, 1.5, 1.2, and 

0.8, respectively. Selecting common items in the mining 

area to enhance them, the Retinex-U Net model had 

image enhancement accuracy of 97, 95, 98, and 94 for ore, 

sky, mining road, and mining cave, respectively. 

Selecting users to evaluate the model, and the five groups 

rated the Retinex-U-Net model at 92, 97, 95, 84, and 87, 

respectively. The research results indicated that the 

proposed model had better model performance compared 

to other models. However, there are still shortcomings in 

this study, as the data used is relatively single. 

Subsequent research can integrate sensor data from the 

mining environment into the image enhancement process. 

The integration of data from light sensors, thermal 

imaging cameras, or other environmental sensors enables 

future models to dynamically adjust their parameters in 

response to changes in illumination conditions. This 

capability allows the model to maintain optimal image 

quality even in highly dynamic environments. 
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