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To improve the performance and reliability of task vehicle collaborative unloading, the study adopted 

Monte Carlo tree search and deep neural networks to optimize resource allocation of task vehicles in 

collaborative unloading. Secondly, through multi-mode collaboration, the relay unloading task of 

roadside units was carried out. Meanwhile, the service range of vehicle collaborative unloading was 

expanded based on the calculation results, achieving the full utilization of idle computing resources. 

These experiments confirmed that compared to random search and greedy search, the proposed 

network model scheme improved service latency performance by 58.3% and 47.1%, respectively. The 

proposed multi-mode joint unloading mechanism had significant performance improvement under the 

collaborative unloading mechanism from adjacent vehicles to vehicles. It offloaded tasks to service 

vehicles outside the communication range, reducing completion latency by approximately 33.6%. 

Therefore, this task vehicle collaboration unloading method improved the performance of mobile edge 

computing systems, reduced computing and storage costs, and lowered the energy consumption and 

maintenance costs of task vehicles. This research method can improve the efficiency and safety of task 

vehicle collaboration unloading, providing technical support for the optimization of intelligent 

transportation systems. 

Povzetek: Raziskava uvaja strategijo mobilnega robnega računalništva z umetnimi nevronskimi 

mrežami (EC-ANN) za sodelovalno razbremenjevanje vozil, kar omogoča razbremenjevanje nalog z 

zmanjšanjem zakasnitve.

1 Introduction 

In the context of accelerated global economic and 

urbanization development, the transportation industry is 

facing the needs of increasingly efficient, safe, and 

energy-saving development [1]. In transportation, 

unloading is an important process that not only affects the 

safety and efficiency of transportation, but also involves 

issues such as energy consumption and carbon emissions 

[2]. It should optimize and intelligentize the unloading 

process to improve the efficiency and safety of 

transportation unloading and reduce energy consuming 

and carbon emissions [3]. Edge Computing (EC) is a new 

type of computing mode that can distribute computing 

and data storage tasks at the network edge, achieving 

faster response speed and lower latency [4]. In the 

transportation and other related fields, EC can help 

achieve real-time monitoring, decision-making, and 

control, improving work efficiency and safety. In the 

unloading task, how to optimize the unloading strategy 

and improve unloading efficiency and safety through 

technologies such as EC is an urgent problem that needs 

to be solved in transportation [5]. Meanwhile, the 

traditional unloading method has high latency and low 

efficiency in the unloading of computing tasks. Therefore, 

the study proposed a strategy for mobile EC based on 

Edge Computing-Artificial Neural Network (EC-ANN) in 

Task Vehicle Collaboration Unloading (TVCU), aiming 

to provide a new approach for the transportation industry. 

The study consists of four parts. Firstly, the research on 

EC and vehicle collaboration is summarized. Secondly, 

the TVCU method is designed. Then the proposed 

unloading method is validated. Finally, there is a 

summary of the entire study. 

2 Related works 

Mobile EC is a distributed computing model that moves 

data processing, storage, and analysis from centralized 

data centers to network edges. Xu et al. proposed an 

adaptive method for multi-user computing unloading by 

decoupling the long-term unloading problem into 

multiple single-time slot unloading problems. These 

experiments confirmed that this method demonstrated 

substantial performance advantages in a large number of 

experiments [6]. Gao et al. utilized ultra dense network 

scenarios and mobile EC servers to assist in transforming 

the problem into sub-problems of unloading strategy, 

channel allocating, and power allocating. Joint unloading 

and resource allocating algorithms were used to obtain an 

optimal joint strategy. These experiments confirmed that 
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the algorithm effectively reduced system energy 

consumption and improved overall system performance 

[7]. Laroui et al. proposed the optimal service unloading 

algorithm based on integer linear programming and 

proposed a service unloading protocol to support this use 

case. These experiments confirmed that the proposed 

algorithm significantly improved efficiency in service 

unloading, resource utilization, and network [8]. Aung et 

al. proposed a Fog Edge hybrid computing architecture 

for Metaverse applications to utilize the edge distributed 

computing paradigm to address the issues caused by long 

cloud access latency. The computing power of edge 

devices was utilized to perform heavy tasks in Metaverse 

applications. These experiments confirmed that the Fog 

Edge architecture reduced latency by 50% [9]. Pang et al. 

improved the existing EC system model and provided a 

computational model for the energy balance optimization 

of multiple devices and tasks. Meanwhile, a greedy 

algorithm was proposed, and the corresponding 

approximate ratio analysis was conducted. These 

experiments confirmed that compared to random 

algorithms, greedy algorithms further improved their 

average performance in energy balance by 66.59% [10]. 

Vehicle collaboration refers to achieving task 

division, path planning, safety control, and optimized 

driving through communication and computation between 

vehicles. Ma and Sun proposed a comprehensive solution 

framework for remote information processing with 

end-to-end collaboration. The experiment combined 

network resource deploying optimization for video 

transmission tasks in remote information processing 

application scenarios. These experiments confirmed that 

the proposed scheme improved the performance of 

network systems [11]. Sun et al. built an interface server, 

which received information and applied hidden Markov 

models to predict and optimize future operating 

conditions. These experiments confirmed that the relative 

error of the proposed method in estimating the remaining 

driving distance remained within 5% [12]. Li et al. 

established a vehicle group model for the main road and 

ramp in the entrance ramp area using the acceptable gap 

theory in a connected vehicle environment. They 

proposed a simulation scheme based on time slices and 

virtual signal control strategies. These experiments 

confirmed that the joint implementation of mainline and 

ramp control strategies was more effective than using 

only mainline strategies [13]. Shi et al. put forward a 

multi-layer collaborative framework for logistics 

management in industrial parks. Effective logistics in 

industrial parks was achieved through device edge cloud 

collaboration by collaborating environmental perception, 

map construction, task allocation, path planning, and 

vehicle movement. These experiments confirmed that the 

logistics analysis of industrial parks validated this 

proposed cooperation framework’s feasibility [14]. Li et 

al. proposed a sliding mode control design method for rail 

electric vehicles using global dynamic information. They 

used vehicle models with different accelerating 

parameters for verification under communication delay. 

These experiments confirmed that this method had fault 

tolerance and met rail electric vehicles’ designing 

requirements [15]. The summary table for related works 

is shown in Table 1. 

 
Table 1: Summary table for related works 
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Research 
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Common Common 
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In summary, the above research has achieved certain 

results in the mobile EC, vehicle collaboration, and 

logistics management. However, their computational 

complexity is relatively high in specific situations, and 

the flexibility of unloading strategies is poor. Therefore, 

the study proposes a mobile EC based on EC-ANN, and 

the TVCU strategy is analyzed and optimized to improve 

system efficiency and performance. 

 

3 Design of collaborative unloading 

method for task vehicles 
The study optimizes resource allocation for task vehicles 

in collaborative unloading through Monte Carlo Tree 

Search (MCTS) and Deep Neural Network (DNN). On 

the basis of resource allocation, the service scope of 

Vehicle Collaboration Unloading (VCU) is extended 

through multi-mode federation to relay unloading tasks or 

calculation results at Road Side Unit (RSU). 

 

3.1 Resource allocation algorithm based on 

EC-ANN 
EC refers to the execution of computing tasks at network 

edge nodes to reduce data transmission latency and 

improve network efficiency. For TVCU, a resource 

allocation algorithm based on EC-ANN is utilized in this 

study to optimize the resource allocation of task vehicles 

during collaborative unloading. Figure 1 is a resource 

allocation algorithm based on EC-ANN. 

Mobile edge computing network

DNN MCTSPrior probability

p

Current state

Current state

Action

Reward

Resource allocation algorithm
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Figure 1: Structure of resource allocation algorithm based on EC-ANN 

 

In Figure 1, the resource allocation algorithm based 

on EC-ANN mainly includes MCTS and DNN. MCTS is 

a random simulation and search algorithm that evaluates 

decisions through multiple random simulations and 

selects the best strategy in a tree structure. DNN is a deep 

learning model that learns the mapping relationship 

between input and output through a large number of 

training samples. DNN is used to predict and optimize the 

decision results of MCTS. MCTS uses a tree search 

process to find the optimal decision for each mobile 

device regarding unloading rate, computing resource ratio, 

and communication resource ratio. DNN is responsible 

for generating a prior probability distribution to guide 

MCTS search to accelerate the convergence of MCTS 

[16]. To train DNN, the study collects training data and 

labels from the iterative results of MCTS. The input of 

training data is the same as the first layer state of MCTS. 

The labels are composed of the probability distribution of 

nodes in the corresponding layer after MCTS iteration. 

Then, the prior probabilities output by the trained DNN 

are used to guide the next MCTS search, thereby 

improving the quality of the MCTS output strategy. 

Figure 2 shows the search of MCTS. 
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Figure 2: MCTS module search process 

 

The search of MCTS mainly includes four steps: 

selection, expansion, evaluation, and backpropagation. 

Firstly, MCTS receives input parameters. Next, the 

expanding and selecting steps are repeated until reaching 

the leaf node. This path deriving from a root node to a 

leaf node means the actions of K mobile devices. At a 

leaf node, mobile devices offload tasks to edge servers, 

which execute task T based on allocation decisions. After 

completing every mission, mission completion’s average 

waiting time will be fed back to MCTS as a rewarding 

signal to assess action performance [17]. MCTS 

iteration’s final step is backpropagation of rewards to 

update the search strategy. Figure 3 shows the DNN 

structure. 
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Figure 3: DNN structure 

 

The DNN structure mainly includes an inputting 

layer, multiple hiding layers, and an outputting layer. An 

input layer is used to receive environmental information. 

An output layer is used to generate the probability 

distribution for each sub-action. A hidden layer is 

responsible for non-linear transformation and abstract 

representation of input features to extract more 

representative features [18]. During the training phase, 

DNN randomly extracts training data from the dataset 

output by MCTS and uses three optimizers with 

independent loss functions for training. DNN uses 

gradient descent to minimize the loss function and update 

network parameters to improve model prediction’s 

accuracy. The action space of multiple sub-actions is 

represented by equation (1). 

 ,{ } { ( ), ( ), ( )}e
k k l i i iA a a a b a f= =  (1) 

In equation (1), the action space of the sub-action is 

kA . The sub-action is represented as ,k la . The output 

unloading probability is ( )ia  . The output wireless 

broadband resource is ( )ia b . The ratio of output edge 

servers to computing resource allocation is ( )e
ia f . The 

prior probability of the output sub-action unloading rate 

is represented by equation (2). 

 
0,0( ) ( )s

k k kp a S f S=  (2) 

In equation (2), the prior probability of the output 

sub-action unloading rate is ,0( )s
k kp a S . The DNN 

parameter for outputting unloading rate is 0 . The input 

status parameter is kS . The prior probability of wireless 

broadband output sub-actions is represented by equation 

(3). 

 
1,1( ) ( )s

k k kp a S f S=  (3) 

In equation (3), the prior probability of the wireless 

broadband output sub-action is ,1( )s
k kp a S . The DNN 

parameter for outputting wireless bandwidth resources is 

1 . The prior probability of calculating resource 

allocation ratio for output sub-actions is represented by 

equation (4). 

 
2,2( ) ( )s

k k kp a S f S=  (4) 

In equation (4), the prior probability of calculating 

the resource allocation ratio for the output sub action is 

,2( )s
k kp a S . The corresponding DNN parameter is 2 . 

The prior probability of the l th sub-action of task kT  is 

,( )s
k l kp a S . Each layer’s neurons number of DNN is 

represented by equation (5). 

 1{ , , , , }l
in n outH H H H H=  (5) 

In equation (5), the total neurons in each layer of 

DNN are lH . The neurons in the input layer are inH . 

The intermediate layer neurons are 1, , nH H . The 

output layer’s neurons are outH . The loss function of 

DNN optimization is represented by equation (6). 

2

, ,( ) ( ) log ( )s s
l l k l k k l k lL a S p a S   = − +  (6) 

In equation (6), the DNN optimization loss function 

is ( )l lL  . The MCTS output dataset is ,{ ( )}s
k l kA S . 

The randomly extracted training data are ,{ ( )}s
k l ka S . 
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The regular term is 
2

l  . 

3.2 Collaborative unloading strategy for task 

vehicles 
The resource allocation algorithm based on EC-ANN can 

provide fair and efficient allocation of computing and 

storage resources. The TVCU strategy can maximize the 

efficiency and effectiveness of collaborative 

uninstallation. A multi-mode joint VCU mechanism is 

proposed to address the issue of VCU. The service range 

of VCU is expanded by unloading tasks or computing 

results through RSU relay. Idle computing resources are 

fully utilized while ensuring unloading reliability. Figure 

4 shows the scenario of a multi-mode joint VCU system. 

Task offloading link

End return link

 

Figure 4: Multi-mode joint vehicle collaboration unloading system scenario 

 

In this multimodal joint VCU system, a bidirectional 

road with unstable RSU coverage is considered. The 

coverage radius of RSU in the road is L, and the total 

coverage length is 2L. The road is abstracted as a 

horizontal coordinate axis, and the entrance of RSU on 

the coverage area’s left side on this road is the coordinate 

origin [19]. Vehicles driving on the road are divided into 

task and service vehicles. Task vehicles are computing 

resource constrained and have a computationally 

intensive task to execute, while service vehicles have 

spare computing resources. In this scenario, RSU acts as 

the global control center to make unloading decisions, 

quickly making unloading decisions based on collected 

task information, computing power, speed, and location 

information of service vehicles traveling on the road [20]. 

The communication rate between vehicles is represented 

by equation (7). 

 
,

, 2 2
0

log (1 )
v i jv

i j

P g
n B

n
= +  (7) 

In equation (7), the communication rate and channel 

gain between vehicles i  and j  are ,
v
i jn  and ,i jg , 

respectively. Each vehicle is connected to an orthogonal 

Vehicle-to-Vehicle (V2V) channel with a bandwidth of 

B . This vehicle’s transmission power is vP . The 

additive Gaussian white noise on the communication link 

is 2
0n . The communication rate from RSU to vehicle HH 

is represented by equation (8). 

 2 2
0

log (1 )d v i
i d

P g
n B

n
= +  (8) 

In equation (8), the communication rate from RSU 

to vehicle i  is d
in . The downlink channel bandwidth is 

dB . This uplink vehicle i  and RSU’s communication 

rate is represented by equation (9). 

 2 2
0

log (1 )u v i
i u

P g
n B

n
= +  (9) 

In equation (9), the communication rate between the 

uplink vehicle i  and RSU is u
in . The uplink channel 

bandwidth is uB . The study equates roads to a horizontal 

one-dimensional coordinate axis, treating vehicle 

movement as movement on the one-dimensional 

coordinate axis. Figure 5 shows the vehicle movement 

model. 
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Figure 5: Vehicle mobility model 

 

In the vehicle movement model, the motion state of 

the vehicle on the road can be described by defining the 

time when the task vehicle and service vehicle leave the 

RSU coverage area, as well as the time when the V2V 

link is established and disconnected. Meanwhile, by 

calculating the position coordinates of vehicles during the 

establishment of the V2V link and the moment of link 

disconnection, the interaction between vehicles can be 

further analyzed [21]. The moment of V2V link 

disconnection is calculated using equation (10). 

, , ,( , ) (1 ( , ))i j i j i j i j i jf d d f d d  + −= + −  (10) 

In equation (10), the moment of vehicles i  and j  

at V2V link disconnection is ,i j , corresponding to the 

road movement directions of id  and jd , respectively. 

This indicator function is f . The service time for 

positive movement is ,i j +
. The service time for reverse 

motion is ,i j −
. The completion delay of task vehicles 

includes local calculation delay and unloading task 

completion delay, and the local calculation delay is 

represented by equation (11). 

 
,0

,0

i i i

i

i

b D C
t

F
=  (11) 

In equation (11), the local calculation delay when 

vehicle i  is 0 is ,0it . The task proportion of unloading 

task vehicle i  to service vehicle j  is ,0ib . The input 

data size for the task is iD . The required computational 

intensity for the task is iC . The computing power of the 

task vehicle i  itself is iF . The task vehicle i  has two 

unloading methods, namely unloading through V2V link 

or RSU relay. There are also two optional ways to return 

the results, either V2V or RSU relay return. Therefore, 

there are four values for setting pattern decision variables. 

For the service vehicles in the collection, the task 

vehicles can only pass through the fourth mode. 

According to the values of pattern decision variables, 

service vehicles are divided into four sets corresponding 

to four different patterns. In Mode 1, the task vehicle 

unloads the goods or tasks it carries onto the service 

vehicle through V2V communication. At the same time, 

the service vehicle also returns the completed task results 

to the task vehicle through V2V. In Mode 1, the 

expression of the completion time is represented by 

equation (12). 

 
1 1, 1, 1,
, , , , ,

com cmp return
i j i j i j i j i jt t t t= + + +  (12) 

In equation (12), in Mode 1, the execution 

completion time is 
1
,i jt . The delay waiting for the 

establishment of the V2V link is ,i j . The task upload 

delay is 
1,
,
com

i jt . The calculated delay is 
1,
,
cmp

i jt . The delay 

in returning task results is 
1,
,
return

i jt . At this point, the 

following constraints need to be met to ensure the 

reliability of unloading, represented by equation (13). 

 
1
, ,i j i jt   (13) 

In Mode 2, task vehicle i  unloads task data to 

service vehicle j  through V2V. Then, j  returns the 

result to i  through RSU relay. The task ratio, bandwidth 

ratio of task vehicle i , and resource ratio are determined. 

The expressions for the established delay, transmission 

delay, and calculation delay of the waiting V2V link are 

the same as those in Mode 1. However, the expression for 

the return delay of task results is different. It includes the 

proportion of uplink channel bandwidth used by service 

vehicles to return task results through RSU relays. This 

also includes the proportion of downlink channel 

bandwidth used when the task execution results offloaded 

to the service vehicle j  are relayed back from the RSU 

to the task vehicle i . In Mode 2, the calculation of the 

completion time is represented by equation (14). 

 
2 2, 2, 2,
, , , , ,

com cmp return
i j i j i j i j i jt t t t= + + +  (14) 

In equation (14), in Mode 2, the execution 

completion time is 
2
,i jt . The task upload delay is 

2,
,

com
i jt . 

The calculation latency is 
2,
,

cmp
i jt . The delay in returning 

task results is 
2,
,

return
i jt . The constraint conditions that 

need to be met at this time are represented by equation 
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(15). 

 2,
, , ,

com
i j i j i jt +   (15) 

For Models 3 and 4, the delay calculation and 

constraint conditions for task unloading and returning in 

service vehicles and RSU relays are considered, 

respectively. This includes comprehensive considerations 

of communication delay, calculation delay, and return 

delay, and constraints on bandwidth allocation ratio and 

channel allocation. For Mode 3, it is also necessary to 

consider the reliable return time. 

In Mode 3, when the task ratio, computing resource 

ratio, and service vehicle j  are determined, the method 

for calculation latency and return latency is the same as in 

Mode 1. In Mode 4, unloading and returning are 

performed using RSU relay mode. For any service 

vehicle, the task vehicle can be divided into two sets, 

representing the set of task vehicles that choose to return 

results in V2V mode and the set of task vehicles that 

choose to return results in RSU relay mode. The task 

completing time of the task vehicle is represented by 

equation (16). 

 1 2 3 4
,0 , , , ,max( , , , , )i i i j i j i j i jt t t t t t=  (16) 

In equation (16), the task completion time of task 

vehicle i  is it . The execution completion time of Mode 

3 is 
3
,i jt . The execution completion time of Mode 4 is 

4
,i jt . This optimization problem’s objective is to minimize 

all current task vehicles’ average completion delay. This 

can be achieved by optimizing pattern decision variables 

as well as task allocation ratio, bandwidth allocation ratio, 

and computational resource allocation ratio. The 

collaborative unloading process of task vehicles is shown 

in Figure 6. 
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Figure 6: Task vehicle collaboration unloading process 

 

The collaborative unloading process of task vehicles 

involves collecting real-time information, deciding on the 

unloading mode, establishing a V2V link, offloading 

computing tasks to service vehicles, and checking the 

unloading reliability. The mode decision variables are 

continuously optimized until all task vehicle tasks are 

completed. 

 

4 Application analysis of 

collaborative unloading methods 

for task vehicles 
The experiment compared algorithms such as EC-ANN, 

random search, greedy search, deep Q-network, and DNN. 

The advantages of EC-ANN in balancing network 

performance and computational complexity were verified. 

Then, in the TVCU strategy of the EC-ANN scheme, the 

performance of different unloading mechanisms was 

compared. 

 

4.1 Parameter settings and convergence 

performance of EC-ANN 
The experiment adopted a large-scale connection and 

computing intensive Internet scenario. The base station is 

located in the center of a circular area of 1000 m2. An 

edge server serves multiple base station cells 

simultaneously. Many collaborative edging servers are 

randomly distributed around task request edging servers. 

Multiple mobile devices move randomly in the area at 

varying speeds or in random directions based on vehicle 

driving. Table 2 shows the EC-ANN parameter settings. 

 

 
Table 2: EC-ANN model parameter settings 

Serial number Parameter Value 

1 Maximum search times for MCTS 200 
2 Balance coefficient of MCTS 0.9 

3 Search depth of MCTS 2K 

4 Learning rate of DNN 0.05 
5 The minibatch size of DNN 64 

6 L2 norm constraint coefficient of DNN 10-5 

7 The shared hidden layers in DNN 3 
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These edge servers were 4. These mobile devices 

were 110. Under both optimization objectives, the 

computing power of edge servers had two settings, 

namely 10 GHz and 20 GHz. Figure 7 shows the 

convergence performance of EC-ANN. 
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Figure 7: Convergent performance of the EC-ANN 

 

Figure 7(a) shows the convergence of the average 

service delay. In the first 6200 iterations, the average 

service latency sharply decreased. After 6200 iterations, it 

gradually stabilized. Figure 7(b) presents average energy 

consumption’s convergence. In the first 5000 iterations, 

the average energy consumption sharply decreased. After 

5000 iterations, it gradually stabilized. The computing 

power of edge servers at 10 GHz and 20 GHz had little 

impact on the convergence speed of EC-ANN. Iterations 

were set to 5000 in the subsequent experiments to balance 

network performance and computational complexity. 

 

4.2 Comparison of EC-ANN model 

performance 
To validate EC-ANN’s performance, random search, 

greedy search, and Deep Q-Network (DQN) and DNN 

were compared. Figure 8 shows the impact of edge server 

computing power on optimizing average service latency 

and average energy consumption. 
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Figure 8: The effect of edge server computing power on optimizing average service delay and average energy 

expenditure 

 

In Figure 8(a), the average service latency of these 

five algorithms showed a decreasing trend with the 

improvement of computing power. Compared with 

random search, greedy search, DQN, and DNN, the 

EC-ANN-based solution improved service latency 

performance by 58.3%, 47.1%, 41.2%, and 39.8%, 
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respectively. In Figure 8(b), compared with random 

search, greedy search, DQN, and DNN, the 

EC-ANN-based approach reduced average energy 

consumption by 23.6%, 11.7%, 10.6%, and 9.5%, 

respectively. Figure 9 shows the impact of edge servers 

and mobile devices on optimizing average service 

latency. 
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Figure 9: The effect of the number of edge servers and mobile devices on optimizing the average service delay 

 

In Figure 9(a), compared to random search, greedy 

search, DQN, and DNN, EC-ANN reduced the average 

service latency by 64.1%, 59.8%, 51.8%, and 49.9%, 

respectively. In Figure 9(b), compared with random 

search, greedy search, DQN, and DNN, EC-ANN 

significantly reduced average service latency by 62.1%, 

47.8%, 42.2%, and 41.6%, respectively. Figure 10 shows 

the average service delay and energy consumption based 

on the EC-ANN scheme in the vehicle driving scenario. 
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Figure 10: Average service delay and energy expenditure based on the EC-ANN scheme 

 

Figure 10(a) shows the optimized average service 

delay of different algorithms in the vehicle driving 

scenario. Compared to random search and DNN, the 

average service latency based on EC-ANN scheme was 

reduced by 45.3% and 20.6%, respectively. Figure 10(b) 

shows the optimized average energy consumption of 

different algorithms in the vehicle driving scenario.  

 

 

Compared to random search and DNN, the average 

energy consumption of the EC-ANN scheme was reduced 

by 36.7% and 11.3%, respectively. Therefore, EC-ANN 

performed excellently in collaborative mobile EC 

resource allocation, effectively reducing average energy 

consumption and service latency. 
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4.3 Application analysis of collaborative 

unloading strategy for task vehicles 
This experiment compared the task vehicle performance 

under the V2V and V2V+V2X collaborative unloading 

mechanisms to verify the proposed multi-mode joint 

unloading mechanism’s effectiveness. In the V2V 

unloading mechanism, the task vehicle was only 

unloaded to the service vehicle within the current V2V 

communication range. In the V2V+V2X collaborative 

unloading mechanism, task vehicles used V2V unloading 

for service vehicles within the current V2V 

communication range. The service vehicles outside the 

current V2V communication range were unloaded 

through RSU relay. Table 3 shows the settings of the 

vehicle networking environment parameters. 

 

 
Table 3: The Internet of vehicles environment parameter setting 

Serial number Parameter Value Unit 

1 RSU coverage length 600 m 

2 Vehicle communication radius 100 m 

3 Vehicle speed [12, 30] m/s 

4 Task size [25, 85] Mbits 

5 
V2V communication 

Bandwidth 
1.5 MHz 

6 RSU downlink bandwidth 2.0 MHz 

7 RSU uplink bandwidth 1.2 MHz 

 

In a single-task vehicle scenario, the scope of service 

vehicles included two situations. The service vehicles 

were all outside the V2V communication range of these 

task vehicles, and these service vehicles were not limited 

to the V2V communication range of the task vehicles. 

Figure 11 shows the variation of latency with the service 

vehicle. 
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Figure 11: Time delay varies with the change of service vehicles 

 

In Figure 11(a), the service vehicles were all outside 

the V2V communication range of the task vehicle. 

Compared to the V2V+V2X collaborative unloading 

mechanism, the multi-mode joint unloading mechanism 

offloaded tasks to service vehicles outside the V2V 

communication range, reducing completion latency by 

about 33.6%. This mechanism could be applied to 

situations where the service vehicle was outside the 

communication range of the task vehicle but was about to 

enter that range, improving unloading efficiency. In 

Figure 11(b), the service vehicle was not limited to task 

vehicle’s V2V communication range. As service vehicles 

increased, the V2V unloading mechanism’s latency was 

gradually decreasing. However, compared to the 

proposed multi-mode joint unloading mechanism, it still 

had the best latency performance. Compared to the 

collaborative unloading mechanisms V2V and 

V2V+V2X, the multi-mode joint unloading mechanism 

reduced the completion latency by approximately 59.7% 

and 21.7%, respectively. 

5 Discussion 

Compared with other related works, the experimental 

results showed that EC-ANN had significant advantages 

in balancing network performance and computational 

complexity. Compared with other algorithms such as 

random search, greedy search, deep Q-network, and DNN, 

EC-ANN performed well in reducing average service 

latency and energy consumption. The EC-ANN algorithm 

had significant effect in resource allocation of 

cooperative mobile EC, which effectively reduced the 

average energy consumption and service delay. The study 
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applied the EC-ANN algorithm to collaborative 

offloading strategy, achieving optimized resource 

allocation of task vehicles in different scenarios. A 

multi-mode joint unloading strategy was designed for 

vehicle driving scenarios, further improving unloading 

efficiency. The reason why the EC-ANN algorithm 

exhibits high efficiency and effectiveness is that it can 

quickly find the optimal solution in complex 

environments. Meanwhile, the EC-ANN algorithm can 

adaptively adjust the offloading strategy to balance 

network performance and computational complexity by 

introducing the edge servers and mobile devices as 

optimization factors. The proposed EC-ANN algorithm 

and multi-mode joint unloading strategy achieve 

remarkable results in EC resource allocation in the 

Internet of Vehicles environment, which provides support 

for practical applications. 

6 Conclusion 

To improve the unloading efficiency and overall 

performance of task vehicles, a strategy analysis of 

mobile EC based on EC-ANN in TVCU was proposed. 

The resource allocation of task vehicles in collaborative 

unloading was optimized through MCTS and DNN 

modules. Secondly, the study proposed a multi-mode 

joint VCU mechanism, which expanded the service range 

of VCU by unloading tasks or computing results through 

RSU relay. Compared with random search, greedy search, 

DQN, and DNN, the EC-ANN-based solution improved 

service latency performance by 58.3%, 47.1%, 41.2%, 

and 39.8%, respectively. Compared to the V2V+V2X 

collaborative unloading mechanism, the multi-mode joint 

unloading mechanism offloaded tasks to service vehicles 

outside the V2V communication range, reducing 

completion latency by about 33.6%. Therefore, this 

strategy can effectively elevate task vehicles’ unloading 

efficiency and overall performance, providing an 

effective solution for TVCU in vehicle networking 

environments. The limitation of this study is that it only 

used data from specific scenarios for performance 

analysis. Future research can expand the scenarios, 

explore the unloading mechanism of EC-ANN in 

different scenarios, and optimize it. 
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