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Face recognition technology has penetrated into people's daily life and work fields, and has also been 

widely applied in sports videos. A video face recognition technology based on feature fusion and 

residual recurrent neural network is proposed to address the issue of image pose deviation caused by 

non-cooperative situations. Due to the large number of missing high-frequency data in low resolution 

facial images, a ternary adversarial reconstruction network is first proposed. It achieves correct image 

matching through the spatial distance of each image, improving the robustness of the model. For facial 

recognition in video sequences, higher precision key feature extraction is required. Therefore, this 

study introduced a residual recurrent neural network to optimize it, and designed its feature fusion and 

recognition network modules to compensate and extract relevant information before and after frames. 

Finally, performance verification analysis was conducted on the proposed model, indicating that the 

recognition accuracy of the recognition system reached 98.3%. In summary, the constructed residual 

recurrent neural network based on the ternary adversarial reconstruction network framework can 

effectively achieve video oriented facial recognition. 

Povzetek: Predstavljena je metoda za prepoznavanje obrazov v športnih videih, ki temelji na združitvi 

značilnosti in rekurentnem nevronskem omrežju.

1 Introduction 

Face recognition is widely used in fields such as security, 

payment, and intelligent devices. Traditional portrait 

recognition for still images and matching facial features 

is no longer sufficient to meet people's daily needs. More 

research is focused on non-cooperative dynamic video 

face recognition scenarios. In real conditions, images 

often have features such as changes in lighting angle, 

changes in posture, and masking [1]. In the context of 

these more challenging circumstances, it is imperative 

that devices are capable of facial recognition with 

enhanced speed and precision. The development of 

modern equipment has a strong demand for face 

recognition in non-cooperative scenes. For example, 

high-speed trains or buses in transportation, as well as 

border controls, require control of visitor access. Face 

recognition for videos can ensure the security of these 

places, providing great help for law enforcement 

personnel. It not only ensures the timeliness of 

recognition, but also provides early prediction for 

suspicious behavior. In the commercial field, ordinary 

people can use facial recognition technology to achieve 

non-contact payment, improve efficiency, and also 

provide traffic management for commercial venues. 

When identifying users, the automatically read customer 

data can provide a basis for behavioral analysis of the  

model to achieve personalized recommendations and  

optimize user experience [2]. In summary, enhancing the 

recognition performance of realistic image scenes such as 

posture deviation is the key to the development of 

dynamic facial recognition technology. This study 

proposes a Residual Recurrent Neural Network (R-RNN) 

based on a ternary adversarial reconstruction network 

framework to solve the problems of face recognition in 

non-cooperative scenes. The content includes four parts. 

The first part introduces the current development status of 

video facial recognition technology. The second part 

designs and analyzes the framework of the ternary 

adversarial reconstruction network and the R-RNN. The 

third part verifies the performance of the recognition 

model through simulation experiments. The fourth part 

further summarizes the experimental data. 

2 Related works 

Facial reconstruction is the key to achieving face 

recognition in non-cooperative scenes. Deep learning is 

widely used in the field of visual perception due to its 

excellent feature extraction performance. Wang et al. 

believed that the convolutional operators in deep 

Convolutional Neural Networks (CNN) need to be further 

improved to overcome the limitations of "local" kernels. 

Therefore, they proposed a "non-local" model of Speckle 

Converter (SpT) UNet, with a Pearson correlation 
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coefficient of 0.989 [3]. Theoharis believed that facial 

reconstruction is an important part of the branch of 

computer vision. Compared to 2D data, 3D facial data 

could better avoid the impact of lighting and pose 

deviation. A recognition model combining it with CNN 

was proposed, and the reliability of the model was 

verified through simulation testing using the Florence 

dataset [4]. Tewari et al. utilized deep CNN to achieve 

automatic encoding and achieved 3D facial 

reconstruction in non-cooperative scenes. The input data 

of its decoder adopted well-defined code vectors. The 

encoder extracted useful semantic parameters from a 

single input image. This facial reconstruction model 

based on deep CNN had good performance [5]. Dib et al. 

applied differential ray tracing to facial reconstruction 

and simulated it under different light intensities using a 

digital analog light table. Concurrently, the reconstruction 

optimization equation has been implemented to facilitate 

reconstruction in complex scenarios, such as 

self-shadowing, and can also estimate parameters, such as 

diffuse reflection. Finally, the performance analysis of the 

model in real scenarios verified its effectiveness [6]. 

Super resolution and pose correction are two 

important branches of facial reconstruction. Dastmalchi 

and Aghaeinia proposed a deep CNN based on pixel loss 

function for discriminating high-resolution facial images. 

The Generative Adversarial Network (GAN) was 

introduced to solve the problem of model over smoothing, 

and achieved an accuracy of 86.1% in the LFW dataset 

[7]. Nagar et al. proposed the use of position blocks for 

facial super-resolution optimization to address the impact 

of Gaussian pulse noise on low resolution images. This 

was because ordinary facial super-resolution methods are 

highly susceptible to noise. Its principal component 

analysis could analyze the matrix of pixel noise details 

and eliminate pulse noise. Residual learning was used to 

update the training set and weaken Gaussian noise, and 

the effectiveness of this method has been verified [8]. 

Teng et al. proposed alternating improvement algorithms 

to address the issue of insufficient accuracy in deep 

learning facial reconstruction, especially for low 

resolution images. This algorithm improved network 

performance through alternating training of dual 

convolutional networks, which are used for facial 

reconstruction and attribute correction, respectively. 

Finally, the reliability of this method was demonstrated in 

the CelebA dataset [9]. Sharma used GAN for facial 

recognition to enhance the performance of 

super-resolution images, and experiments has shown that 

its error rate was only 0.001% [10]. 

In conclusion, deep learning can be employed for 

video facial recognition. However, the existing 

state-of-the-art (SOTA) methods in the literature still 

exhibit deficiencies in their ability to cope with the 

aforementioned complex situations, particularly in terms 

of recognition performance in situations involving 

posture deviation and non-cooperative scenarios. 

Meanwhile, SOTA models often perform well under 

laboratory conditions, but in the real world, their 

robustness is insufficient due to the variability of poses 

and the unpredictability of non-cooperative scenarios. 

The paper selects the ternary GAN as the fundamental 

framework for facial reconstruction, which directly 

provides innovative solutions to the challenges in this 

field. This approach facilitates the advancement of facial 

recognition technology in non-cooperative scenarios, 

particularly in enhancing recognition accuracy, 

optimizing model generalizability, and accelerating 

real-time processing capabilities. The study also utilizes 

an R-RNN based on feature fusion as a facial recognition 

model. The utilization of R-RNNs to optimize the feature 

fusion process, which combines the advantages of triplet 

loss and Recurrent Neural Networks (RNN), is employed 

to enhance the robustness of the model to occlusion and 

lighting changes. Table 1 shows the summary of the 

related works. 

 

Table 1: Summary of the related work 

Researchers Key contributions Models or techniques used 
Main results or 

performance indicators 

Wang et al. [3] 
Propose a "non-local" 

model for SpT UNet 
Deep CNN 

Achieved a Pearson 

correlation coefficient 

of 0.989 

Theoharis [4] 

Propose a 3D facial 

data recognition model 

combined with CNN 

3D facial data and CNN 

Model reliability 

validated through 

simulation tests 

Tewari et al. [5] 

Realizing 3D facial 

reconstruction in 

non-cooperative 

scenarios 

Automatic encoding of deep 

CNN 

Model demonstrated 

good expressiveness 

Dib et al. [6] 

Applying 

Differentiable Ray 

Tracing to Facial 

Reconstruction 

Differentiable Rendering 

Achieved 

reconstruction under 

complex conditions 

like self-shadowing 

Dastmalchi and 

Aghaeinia [7] 

Propose a deep CNN 

based on pixel loss 
Deep CNN + GAN 

Achieved an accuracy 

of 86.1% in the LFW 
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function dataset 

Nagar et al. [8] 

Propose using position 

blocks for facial 

super-resolution 

optimization 

Principal Component Analysis 

(PCA) + Residual Learning 

Mitigated the impact of 

Gaussian impulse noise 

on low-resolution 

images 

Teng et al. [9] 

Propose alternating 

improvement 

algorithms to enhance 

the accuracy of facial 

reconstruction 

Dual Convolutional Networks 

with alternating training 

Method's reliability 

validated in the CelebA 

dataset 

Sharma [10] 
Using GAN for Facial 

Recognition 
GAN 

Experiments showed an 

error rate of only 

0.001% 

The research of this 

article 

Propose a Face 

Residual Recurrent 

Neural Network 

(FR-RNN) model 

based on the TL-GAN 

framework to optimize 

face recognition in 

non-cooperative 

scenarios 

TL-GAN+FR-RNN+Tensorflow 

The 

TL-GAN+FR-RNN 

model has an accuracy 

of up to 98.3% in facial 

recognition tasks and 

performs best on the 

IJB-A dataset, with an 

accuracy of 96.3% 

 

3 A face recognition method for 

sports video based on feature 

fusion and R-RNN 
The basic framework of a recognition network model 

based on ternary adversarial reconstruction is studied, 

aiming to solve the problem of face recognition in 

non-cooperative states. This model uses a GAN as the 

basic architecture, and introduces a ternary adversarial 

reconstruction recognition network for construction. 

Finally, the GAN is used for training. The proposed 

optimization construction of video facial recognition 

technology based on feature fusion R-RNN includes two 

modules: feature fusion and facial recognition. This study 

also utilizes R-RNN to improve the accuracy of feature 

fusion [11, 12]. 

 

 

 

 

3.1 Construction of a basic framework for 

reconstructing and identifying network 

models based on ternary confrontation 
Facial recognition technology based on video clips is 

widely used. In the field of sports, this technology can be 

used to achieve facial recognition and violation detection 

functions. However, facial recognition functions in 

non-cooperative states often experience a sudden 

decrease in recognition accuracy due to issues such as 

posture deviation and clarity. Therefore, the design of a 

facial reconstruction recognition system that addresses 

the aforementioned defects is very necessary and has 

research prospects. This study is based on the GAN 

architecture and introduces the concept of feature 

mapping to achieve multi-pose facial correction. This 

type of network can reduce its dependence on supervised 

learning and also improve computational accuracy. The 

basic structure is shown in Figure 1. 
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Figure 1: The basic structure of GAN 

 

The basic principle of GAN is the mutual 

confrontation between the generator and discriminator for 

training. When facing low resolution side face images, 

the lack of high-frequency data often leads to feature 

similarity issues after facial correction. Therefore, the 

introduction of the triplet loss theory can construct a 

Triplet Loss Constrained GAN for Reconstruction and 

Recognition (TL-GAN). The principle of distance 

measurement is shown in Figure 2. 

 

Draw into

Zoom out

Target class

Interference class 1/2

 

Figure 2: Principle of distance measurement in image recognition 

 

The basic principle of the model is to achieve 

accurate matching of the same face through spatial 

distance in high-dimensional space. It is divided into 

three major modules, namely low-resolution correction 

module, super-resolution module, and discrimination 

module. The first two are combined to generate a network. 

Low-resolution pose correction uses convolutional and 

deconvolution networks. The convolutional layer and 

adaptive attention module respectively achieve feature 

extraction and detail data acquisition. The input-output 

relationship of the reconstructed network of the codec 

combination is shown in equation (1). 

 ( ( ))HR LR

dec encI F F I=  (1) 

In equation (1), LRI  represents the network input 

value. HRI  represents the reconstructed network output 

value. decF  and encF  are decoder and encoder, 

respectively. The input output relationship of the 

recognition network is shown in equation (2). 

Identity discrimination ( )HR

classF I=  (2) 
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In equation (2), 
classF  represents the classification 

recognition network. Ordinary triplet losses have 

uncertainty. The difference in positive and negative 

examples can cause defects such as under-fitting in the 

model. The shortest distance ternary loss function 
tripleL

 

is introduced for optimization, as shown in equation (3). 

 

2 2

2
1

( ) ( ) ( ) ( )

1
( ) ( )

2

LR LR LR LR

N enc i enc i enc i enc i

triple
LR LR

i
enc i enc i

F I F I F I F I

L
F I F I

+ −

−
=

 − − −
 

=  
+ − 

 

       (3) 

 

In equation (3), 1,2,...,i N=  represents the serial 

number of the portrait. The corresponding triplet symbol 

is represented as ( , , )LR LR LR

i i iI I I+ −
, which is the 

low-resolution profile image and low-resolution frontal 

image of the portrait, as well as the low-resolution frontal 

image of another person. The vector features of an image 

are mapped through an encoder. The function uses the 

distance between vectors for similarity recognition. The 

construction of a triplet is a random pattern, which may 

cause the divergence of the negative target 
LR

iI −
 to be 

too high and ultimately slow down the convergence speed 

of the model. The method of selecting 
LR

iI −
 in this study 

is shown in equation (4). 

2

arg min ( ) ( )LR LR LR

i enc i enc iI F I F I− += −  (4) 

After selecting faces with a focus on distinguishing 

similar features, the training speed and fitting degree of 

the model can be improved to a certain extent. The 

training process of the model is shown in Figure 3. 
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Figure 3: Training flow of ternary adversarial network 

 

The triplet image enters the feature space through an 

encoding network. The model utilizes the shortest 

distance triplet loss to constrain its spatial distance, and 

also introduces pixel loss to further enhance the model's 

perception of the front face. GAN is the final training 

platform. The discriminator structure is WGAN-GP. In 

summary, the target loss of the model is the sum of 

multiple losses, as shown in equation (5). 

SR

pixel triple WGAN GPL L L L   −= + +  (5) 

In equation (5), pixelL  represents pixel loss. 

WGAN GPL −  represents WGAN-GP loss.  ,   and   

respectively represent the weights of the corresponding 

losses. Usually, the weight value of the latter two losses 

is higher. After continuous training, the objective 

function of ordinary GAN will cause the gradient to 

disappear. The bulldozing distance can be employed to 

enable the feature vector input after feature extraction to 

counteract losses, thereby facilitating continuous 

optimization of the generator and discriminator. This, in 

turn, stabilizes the network structure. When the 

discriminator compares images, the WGAN-GP loss will 

use the distance between each data to determine 
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similarity, as shown in equation (6). 

 

2

2
( ) ( ) ( ( ) 1)HR HR HR

WGAN GPL D I D I D I+

− = − +  −  (6) 

 

In equation (6), D  represents the output data of the 

discriminator. HRI  represents the reconstruction of the 

front face image. HRI +  represents a true facial image. 

  is a pre-set value for the user. Pixel loss can be used 

to constrain surface similarity, as shown in equation (7). 

 

( )
3

2

, , , ,2
1 1 1

1

3

m m
HR HR

pixel i j r i j r

r i j

L I I
m

+

= = =

= −  (7) 

 

In equation (7),   is the number of samples in the 

training set. / /i j r  are different categories. 

 

 

 

3.2 Optimization and construction of video 

facial recognition technology based on 

feature fusion R-RNN 
Although the above framework can achieve optimized 

facial reconstruction, the extraction of key features in 

videos is not precise enough. Therefore, the FR-RNN is 

introduced to optimize it. The model can be roughly 

divided into two modules: feature fusion and face 

recognition. The difference between video 

super-resolution and ordinary image super-resolution lies 

in the strong correlation between the front and back 

frames of the former, so feature fusion is necessary. 

Feature fusion essentially involves supplementing 

information from images that are interrelated, so as to 

enhance their data expression capabilities. The feature 

fusion technology based on deep learning is superior to 

traditional fusion technologies, including the fusion 

between feature maps [13]. The pooling layer is one of 

the manifestations of feature map fusion. The self 

attention mechanism belongs to one of the manifestations 

of fusion between feature maps, as shown in Figure 4. 
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Figure 4: Basic framework of pooling layer and attention mechanism feature fusion 

 

In Figure 4 (a), when the image passes through the 

pooling layer, the average pooling will select the average 

feature value. The maximum value is selected for the 

maximum pooling layer. Random pooling involves 

selecting any value through a probability matrix. Figure 4 

(b) actually shows the connection implemented in the 

channel. The attention mechanism achieves important 

data extraction by training the adaptive weight matrix. 

However, this method only targets the connection of a 

single image and is not suitable for feature map fusion in 

videos. Common feature fusion techniques for video 

image super-resolution include 2/3D convolution and 

RNN. The difference between 2/3D convolutional fusion 

is mainly reflected in the dimension of feature fusion. 

The former is directly connected and fused at the channel. 

The latter takes video as input and connects it in both 

spatial and temporal dimensions. RNN needs to calculate 

the context correlation of video images, and the resulting 

hidden states can be connected to the current frame [14, 

15]. The feature description performance of ordinary 

images in the network has been significantly improved. 

The most important thing at present is to optimize the 

feature fusion of video frame images to enable them to 

extract facial features more accurately. To enhance the 

model's ability to perform feature fusion, this study 

analyzes and compares the three fusion technologies, as 

shown in Figure 5. 
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Figure 5: Different fusion technology frameworks 

 

In Figure 5, 2D convolutional fusion is shown in 

equation (8). 

  2 ,...,t net D t T t TR W Concatenate I I− +=  (8) 

In equation (8),  ,...,t T t TConcatenate I I− +  

represents the cascading operation of the sequence image. 

The dimensional data is represented as NC H W  . 

2 1N T= +  represents the length of the video sequence, 

which is the number of input image channels.   

represents the length and width dimensions of the image. 

The 3D convolutional fusion is shown in equation (9). 

  3 ,...,t net D t T t TR W Concatenate I I− +=  (9) 

In equation (9), the convolutional kernel becomes 

three-dimensional, and its motion on the spatio-temporal 

axis is achieved by inputting a video sequence, 

facilitating its extraction of spatio-temporal feature data. 

RNN utilizes 2D convolutional encoding to achieve 

fusion and obtain the output of the current frame and the 

hidden state of the subsequent frames. The fusion 

technology of the first two can better achieve feature 

fusion when faced with a small number of sequences, but 

the increase in sequence length will ultimately lead to 

computational difficulties. On the contrary, the input of 

RNN is only the pre and post frame data, and the fusion is 

achieved by utilizing the hidden states of the two. This 

recursive method is more suitable for recognizing video 

images with longer sequences. Therefore, using this 

technology for feature fusion is the most suitable. 

FR-RNN can further improve the potential gradient 

vanishing defects in feature fusion. Its basic structure is 

shown in Figure 6. 
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Figure 6: Overall input value of FR-RNN 

 

In Figure 6, the overall input value of FR-RNN is a 

video image sequence, with dimensions of ' 'm m . After 

feature fusion, the recognition network can obtain the 

discriminative data of the current frame, as shown in 

equation (10). 

  2
ˆ

t conv D kR W x=  (10) 

In equation (10), ˆ
kx  represents the output value of 

the current frame. ˆ
kx  represents the encoding of the 

channel connection, and its specific calculation is shown 

in equation (11). 

 ( )
 ( )

1 1

0 2 1 1 1

2

ˆ ˆ ˆ( ), [1, ]

ˆ [ , , , ]

ˆ

k k k

con D t t t t

t con D k

x x x k K

x W I I o h

h W x





− −

− − −

 = +  


=


=

 (11) 

In equation (11), ˆ
kx  represents the channel 

connection encoding for the next frame. K  represents 

the number of standard residual blocks. 0x̂  represents 

the connection of the four parameters on the channel, 

namely the hidden state of the previous frame, the output 

of the previous frame, the input of the current frame, and 

the input of the previous frame. th  represents the hidden 

state of the current frame. 1
ˆ( )kx −  represents the final 

residual block output. The prediction matrix obtained 

through feature fusion and recognition is shown in 

equation (12). 

 ( )t class tIP F R=  (12) 

In equation (12), tIP  represents the final prediction 

matrix. classF  represents the recognition network. 

Among them, Light Convolutional Neural Networks 

(LightCNN) and Visual Geometry Group Face 

(VGG-Face) are two common facial recognition network 

models. Subsequently, the averaging method is used to 

process the prediction matrix obtained in the previous 

text, and the final output of the recognition model can be 

obtained, as shown in equation (13). 

1

1
Identity discrimination=

N

t

t

IP
N =

  (13) 

The training of FR-RNN includes feature fusion for 

each frame and training for recognition modules. By 

introducing cross entropy to construct a loss function and 

calculating the deviation between the predicted label 

vector and its true value, equation (14) can be obtained. 

 
1

ˆ ˆlog (1 ) log(1 )
x

Loss y y y y
n

= + − −  (14) 

In equation (14), x  represents the sample. n  

represents the number of samples. ŷ  represents the 

predicted label vector. y  represents the actual label 

vector. Video facial recognition is a classification 

problem. Softmax regression is introduced to process it, 

as shown in equation (15). 

1

1
max

11 1

1
log

T
y i ii

T
j i

W x bym

soft W x bjn
i

j

e
L

m e

+

+
=

=

= 


 (15) 

In equation (15), 1m  represents the batch size. 1n  

represents the number of classes. iy  represents the 

specific category. ix  represents the i  depth features 

under the corresponding category. jW  represents the j  

column of the weight. b  represents deviation. 
T
j iW x bj

e
+  

represents fully connected layer output. The increase in 
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the output value weight of the fully connected layer can 

reduce model losses. 

Overall, the architecture of the FR-RNN model is 

based on generating GANs, which includes generators 

and discriminators for generating and discriminating 

images, and is trained through the adversarial process 

between them. To enhance the model's ability for facial 

image reconstruction, especially when processing 

low-resolution images, TL-GAN is introduced in the 

study, which utilizes the triplet loss theory to improve the 

model performance. The FR-RNN model further 

integrates R-RNN, which consist of two modules: feature 

fusion and face recognition. The main responsibility is to 

optimize the accuracy of feature fusion to better process 

keyframe features in video sequences. The standard 

practice based on GAN adopts convolutional layers, 

pooling layers, and ReLU activation functions. In terms 

of selecting the loss function, the FR-RNN model 

combines pixel loss, WGAN-GP loss, and triplet loss, 

among which WGAN-GP loss is particularly used to 

improve the stability of the training process and avoid the 

problem of gradient vanishing during the optimization 

process. 

4 Performance simulation analysis of 

feature fusion and FR-RNN model 

in video face recognition 

performance 
The performance simulation experiment of the video 

facial recognition model is divided into two parts, which 

are the analysis of each module and the overall analysis. 

The performance analysis of the model itself includes 

four aspects: Structural Similarity (SSIM), recognition 

accuracy, rank N, and model size. The comparative 

analysis of the models conducted experiments on the 

recognition accuracy of each model [16-18]. 

 

4.1 Performance verification analysis of 

TL-GAN framework and FR-RNN module 

Table 2 shows the parameters of the experimental 

environmen. 

 

Table 2: Experimental environment and parameter settings 

Experimental environment  Parameter setting 

Graphics card GTX1080Ti 

Operating system Linux 

Deep learning framework Tensor flow 

Pre-treatment method Double - and three-wire interpolation 

Image size 32×32 

/ /    0.01/0.1/0.1 

Learning rate 0.001 

Weight attenuation 0.01 

Batch 20 

Stochastic gradient optimization Adam ( 1 =0.9, 2  =0.999) 

Preconditioning Double trilinear interpolation method 

Data Sets Multi-PIE / IJB-A 

 

The study uses data augmentation techniques such as 

rotation, scaling, cropping, and color transformation. The 

batch size used during the training process is 20, and the 

Adam optimizer is used with parameters B1=0.9 and 

B2=0.999. Then, performance analysis is conducted on 

the image-based ternary adversarial reconstruction 

recognition network. The 250 participants in Session01 

are selected from 6 different angles under the same 

lighting and facial expressions, and allocated in a 4:1 

ratio as the training and testing sets, respectively. The 

data preprocessing steps include using the double trilinear  

 

interpolation method to process images to improve image 

quality and prepare for subsequent facial recognition 

analysis. All images are uniformly adjusted to a size of 32

×32 pixels, and this standardization process helps to 

accelerate model training speed and reduce computational 

resource consumption. A comprehensive data distribution 

strategy has been devised for the multi-PIE dataset with 

the objective of ensuring the diversity of images in terms 

of angles and lighting conditions. This approach aims to 

simulate the various challenges that face recognition may 

encounter in the real world. The paper compares the 
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accuracy of the proposed FR-RNN algorithm with SOTA 

and traditional RNN algorithms, as shown in Figure 7. 
 

5 10 15 20 25

A
cc

u
ra

cy

Iteration time (s)

FR-RNN

0

0.00

0.15

0.30

0.45

0.60

0.75

0.90

RNN

3 6 9 12 15

A
cc

u
ra

cy

Iteration time (s)
0

0.00

0.15

0.30

0.45

0.60

0.75

0.90

SOTA
FR-RNN

RNN
SOTA

(a) The first group of experiments (b) Second set of experiments

 

Figure 7: Comparison of accuracy of different algorithms 

 

As shown in Figure 7 (a), in the first set of tests, the 

accuracy of the proposed FR-RNN algorithm reaches 

94.3, while the accuracy of the SOTA algorithm is 89.7, 

and the accuracy of the traditional RNN algorithm is 82.5. 

In Figure 7 (b), in the second set of tests, the accuracy of 

the proposed FR-RNN, SOTA and traditional RNN 

algorithms reaches 94.5, 89.4 and 81.2. This indicates 

that the FR-RNN algorithm is more effective in handling 

video facial recognition tasks. This study introduces 

commonly used Two Path Generative Adversarial 

Network (TP-GAN), Factorization Machines Deep 

Neural Network (FNM), LightCNN, and VGG-Face as 

controls. SSIM and recognition accuracy are used as 

evaluation indicators for model performance. Table 3 

shows the experimental results. 

 

 
Table 3: Performance comparison of portrait reconstruction model 

Index Moldel 

Angle /° 

±15 ±30 ±45 ±60 ±75 ±90 

SSIM 

TL-GAN 0.7105 0.6643 0.6512 0.6327 0.6249 0.6078 

TP-GAN 0.6987 0.6541 0.6276 0.6048 0.5809 0.5699 

FNM 0.6847 0.6362 0.6009 0.5806 0.5462 0.4621 

Accuracy 

rate /% 

LightCNN 87.76 85.73 69.42 30.64 10.34 2.13 

VGG-Face 89.81 87.76 71.45 32.74 12.42 4.15 

TL-GAN+LightCNN 98.16 95.92 93.88 91.84 85.72 71.44 

TL-GAN+VGG-Face 98.16 96.95 94.91 93.86 87.73 74.77 

TP-GAN+LightCNN 88.71 88.08 85.42 77.73 67.45 54.68 

FNM+LightCNN 94.62 92.51 89.77 85.31 77.25 61.21 

 

Due to the large amount of data, the study only 

conducts SSIM performance comparison analysis on the 

TP-GAN, FNM, and TL-GAN models. As the angle 

decreases, the facial reconstruction ability of each model 

will also be correspondingly improved. FNM has the  

 

lowest SSIM. The average SSIM value of TL-GAN is 

0.6486, which is 9.79% higher than the average SSIM 

value of FNM. At ±90°, the SSIM of TL-GAN is 

6.23% and 23.97% higher compared to TP-GAN and 

FNM, respectively. The facial reconstruction image of 
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TP-GAN is relatively clear, but there may be artifacts in 

the image. The FNM facial reconstruction image has 

relatively more detailed features, but it is obvious that as 

the angle increases, its facial correction performance will 

decrease, so the model has higher requirements for 

lighting. TL-GAN can maintain relatively stable facial 

correction performance, with SSIM values only differing 

by 0.1027 under ± 90°  and ± 15°  conditions. 

Therefore, this model can better extract correct detail 

features and achieve more accurate facial correction. In 

the accuracy verification experiment of each model, 

LightCNN, VGG-Face are combined with the other three 

models. Experiments have shown that the recognition 

performance of LightCNN and VGG-Face alone is much 

lower than that of other models. Especially at ±90°, 

the recognition accuracy is lower than 5%. The average 

recognition accuracy is 47.59% and 49.64%, respectively. 

The average recognition accuracy of TL 

GAN+LightCNN, TL GAN+VGG-Face, TP 

GAN+LightCNN, and FNM+LightCNN are 89.49%, 

91.06%, 76.89%, and 83.41%, respectively. Therefore, 

the combination of TL-GAN and other models has the 

best performance, reaching over 89%. At ±90°, the 

recognition accuracy of TL-GAN+VGG-Face is 1.57%, 

14.17%, and 7.65% higher than that of 

TL-GAN+LightCNN, TP-GAN+LightCNN, and 

FNM+LightCNN models, respectively. This study selects 

the IJB-A, YTC, and YTF datasets as experimental 

samples to validate the performance of the FR-RNN 

model. There is high-quality frontal data and 

corresponding video sequences in IJB-A, which can be 

used to simulate sports videos. Due to its low-resolution 

and multi-pose data features that are very similar to actual 

video surveillance, it is a better choice for recognition 

verification. The YTC and YTF datasets lack high-quality 

frontal images. Therefore, this study utilizes the 

FaceChoose algorithm for high-quality image selection 

and skipping. This study first fixes the number of residual 

blocks K to 5 and conducts experiments on each model 

separately. The experimental results are shown in Figure 

8. 
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Figure 8: Comparison of performance of each recognition model when K=5 

 

The above models all use the same training dataset 

and test set sequence length. Feature extraction is unified 

as a residual block module. The data ratio for training and 

testing is set to 8:2. Figure 7 compares the rank N 

recognition rate and model size of each model. The rank 

N recognition rate represents the proportion of correct 

attributes among the top N model recognition results. The 

size of the model indirectly reflects the parameter 

quantity and computational speed of the model. In Figure 

8 (a), under the condition of K=5, F-3DCNN has the 

highest recognition accuracy, with an average of 98.2%, 

which is 3.6% and 2.7% higher than F-2DCNN and 

F-RNN, respectively. This indicates that the accuracy of 

the model is relatively excellent. The average rank N 

value of FR-RNN is 98.0%, which is only 0.2% lower 

than F-3DCNN. Therefore, the difference in recognition 

accuracy between the two is not significant. In Figure 8 

(b), the average size of F-3DCNN is 11.7M, while the 

average size of F-2DCNN, F-RNN, and FR-RNN models 

is 4.4, 4.2 and 4.2, respectively. This indicates that 

although F-3DCNN has the highest recognition accuracy, 

its operating speed is much lower than other models. 

Based on the two-indicator data, FR-RNN has good 

comprehensive recognition performance. The experiment 

reset the K value to 10, and the experimental results are 

shown in Figure 9. 
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Figure 9: Comparison of performance of each recognition model when K=5 

 

In Figure 9, there is no experimental data for F-RNN, 

as the model experienced gradient vanishing during 

training. This also indirectly confirms the effectiveness of 

residual connections in improving model performance. In 

Figure 9 (a), as the number of residual blocks increases, 

the average recognition rate of FR-RNN is higher than 

that of F-3DCNN. Its average rank N value is 98.5%, 

which is 3.7% and 0.4% higher than the F-2DCNN and 

F-3DCNN models, respectively. In Figure 9 (b), the size 

of FR-RNN has increased to some extent, but it is also at 

its minimum value. The three model sizes are 5.7M, 5.9M, 

and 11.6M, respectively. This is because the F-2DCNN 

and F-3DCNN models utilize the increase in model 

parameter quantity to achieve the processing of long 

sequence data. FR-RNN uses recursive methods for 

feature fusion processing. The correlation between model 

size and sequence length is weak, which makes it easier 

to handle real-time and video sequence data, while 

avoiding gradient vanishing in hidden states, ensuring the 

stability of sequence length. 

 

4.2 Performance verification and 

comparative analysis of recognition models 

based on TL-GAN framework and FR-RNN 

module 
This study further analyzes the stability of the overall 

model. By setting different sequence lengths and residual 

blocks, it is determined whether the differences in the 

model are too large, as a way to determine the stability of 

the model. Table 4 shows the experimental results. 

 

 
Table 4: Verifies the stability of the overall model 

                 Parameter Recognition accuracy 

Frame number 

5 95.3% 

10 96.9% 

15 97.1% 

20 97.5% 

25 97.9% 

Number of residual 

blocks 

3 92.5% 

4 92.9% 

5 94.6% 

6 94.7% 

7 95.2% 

8 95.3% 

9 95.1% 

10 95.0% 
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In Table 4 above, the proposed TL-GAN+FR-RNN 

model is better at processing long sequence data, as 

shown in the data of frame number and recognition 

accuracy. As the number of frames increases, its accuracy 

also improves. The difference in recognition accuracy 

between models with frame numbers 5 and 25 is 2.6%. 

However, when the number of frames increases to a 

certain limit, the amplitude of accuracy increase will 

decrease. The model recognition accuracy difference 

between frame 20 and frame 25 is only 0.4%. 

Experiments have shown that TL-GAN+FR-RNN can 

also achieve high-precision recognition and better feature 

fusion when facing changes in data frame numbers. 

According to the data in Table 4 on the number of 

residual blocks and the accuracy of model recognition, it 

can be concluded that an appropriate increase in the 

number of residual blocks can have a positive impact on 

the performance of model recognition. There is also a 

phenomenon of maintaining stability after increasing the 

limit value. The recognition accuracy for residual blocks 

of 3 and 8 differs by 2.8%. When the number of residual 

blocks is between 7 and 10, its recognition accuracy 

remains stable in the [95, 93] range. Based on 95%, the 

average deviation is 0.15%. Therefore, the change in the 

number of residual blocks does not affect the stability of 

the overall model. Accumulated residual blocks can 

actually improve the accuracy of the model to a certain 

extent. Neural Aggregation Network (NAN), Attention 

Deep Reinforcement Learning (ADRL), and Template 

Depth Reconstruction Model (TDRM) are introduced and 

compared with the research algorithm, as shown in Figure 

10. 
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Figure 10: Comparison of recognition accuracy of various face recognition models 

 

In Figure 10, in the IJB-A dataset, the 

TL-GAN+FR-RNN model with 10 residual blocks has 

the highest accuracy of 96.3%. According to the order in 

the figure, it is 2.1%, 2.7%, and 0.5% higher than the 

other models, respectively. The phenomenon of gradient 

disappearance occurred in ADRL. In YTC data, the 

recognition rates of each model do not differ significantly, 

with a mean of 98%. The research method is slightly 

lower than the NAN model by 0.3%. In the YTF model, 

the difference in recognition rates among different 

models is still small. The accuracy of the 

TL-GAN+FR-RNN model reaches 96.2%, which is 1% 

higher than the TDRM model. In summary, the 

TL-GAN+FR-RNN model can output more features for 

hidden states, achieving optimization of recognition rate. 

5 Discussion 

The FR-RNN model based on the TL-GAN framework 

proposed in the study has demonstrated superior 

performance in video facial recognition tasks, especially 

in non-cooperative scenarios. Simulation analysis shows 

that the recognition accuracy of the model on the IJB-A 

dataset reaches 96.3%, which is outstanding in current 

research and surpasses the SOTA methods in existing 

literature. For example, although the SpT UNet model 

proposed by Wang et al. [3] achieved a Pearson 

correlation coefficient of 0.989, it was not as accurate in 

facial recognition as the proposed model. Although 

Theoharis T's 3D facial recognition model has been 

validated for reliability through simulation testing, there 

are limitations in processing video sequence data. 

Although the deep CNN proposed by Dastmalchi and 

Aghaeinia [7] achieved an accuracy of 86.1% on the 

LFW dataset, the model demonstrated higher 

performance in more complex video face recognition 

tasks. 

The performance differences may be mainly attributed to 

several key factors. Firstly, the TL-GAN framework 

effectively combines the advantages of triplet loss and 

GAN to better handle attitude deviation and lighting 

changes. Secondly, the FR-RNN model optimizes feature 

fusion and enhances feature expression ability through 

residual loop mechanism. Finally, the training strategy 
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adopted, including pixel loss and WGAN-GP loss, helps 

to improve the robustness and accuracy of the model. 

The proposed model provides novel contributions to the 

field of facial recognition, particularly in optimizing 

facial recognition in non-cooperative scenarios, 

processing long sequence data, and considering real-time 

performance and computational efficiency. These 

characteristics render the model not only innovative in 

theory but also potentially valuable in practical 

applications, particularly in face recognition tasks that 

necessitate the processing of complex scenes and long 

sequence data. 

6 Conclusion 

To further improve facial recognition technology for 

videos, this study proposed a FR-RNN model based on 

the TL-GAN framework. The purpose was to solve the 

problem of low-recognition accuracy caused by attitude 

deviation and lighting in non-matching images. The 

simulation analysis of the model showed that in the 

experiment of the TL-GAN framework, the average 

SSIM was 0.6486, which was 9.79% higher than the 

FNM model. In the experiment on the FR-RNN model, 

when K=5, the rank N mean of the FR-RNN model was 

98.0%, which was only 0.3% lower than the highest 

recognition rate of the F-3DCNN model. Its model size 

was lower than 7.5M, so its overall performance was the 

best. In the verification of the overall model stability, 

when the number of residual blocks was between 7-10, its 

recognition accuracy remained stable in the [95,93] range. 

Based on 95%, the average deviation was 0.15%. In the 

comparison between TL-GAN+FR-RNN and other 

models, in the IJB-A dataset, the accuracy of 

TL-GAN+FR-RNN using 10 residual blocks was 96.3%, 

which was 2.7% higher than the ADRL model. This had 

always been at a high level in other datasets, with the best 

overall performance. However, there are still some 

shortcomings in the experiment, such as reducing model 

complexity and improving computational speed. At the 

same time, the experiment also needs to further apply the 

model to capture multiple faces to adapt to actual scene 

requirements. 
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