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The logistics of parts entering the factory is an important component of the cost source for 

manufacturing plants. How to efficiently transport is the key for its enterprises to achieve low-cost 

control. To address this issue, this study proposed a path planning model based on an improved genetic 

algorithm. Firstly, a circular distribution model suitable for component transportation logistics is 

selected, and then constraints such as maximum inventory at the line edge are introduced for design. 

The basic design of the genetic algorithm is also carried out. Subsequently, three neighborhood 

structures are introduced for optimization to address the convergence speed and other issues of the 

algorithm. In response to the demand fluctuation phenomenon in practical applications, a new coding 

design is carried out. To verify the impact of the model on inbound logistics costs, simulation 

experiments are conducted on the MATLAB platform. The results showed that the designed algorithm 

had an average decrease of 14% in total mileage compared to single objective nonlinear models and 

collaborative network models, while the total cost had decreased by 26.58%. In summary, the 

improved genetic algorithm model designed in this study has a positive impact on the cost control of 

inbound logistics. 

Povzetek: Raziskava uvaja izboljšan genetski algoritem za optimizacijo poti vhodne logistike 

avtomobilskih delov, kar zmanjša skupne stroške za 26,58%.

1 Introduction 

The continuous increase in sales in the automotive 

industry has driven the rapid development of automotive 

enterprises. At the same time, competition among 

enterprises is gradually intensifying. To achieve high 

profit and benefits as much as possible, cost control 

naturally becomes an important component of enterprise 

development. Among them, the inbound logistics cost 

(ILC) is the key to the entire logistics cost system, which 

is closely related to the transportation mode of 

automotive components. Moreover, the production 

methods of manufacturers also affect the operation of 

transportation modes. In the context of manufacturing, 

the concept of just-in-time production serves as a 

benchmark for the timely delivery of the correct quantity 

of components at the optimal time, with a particular focus 

on reducing inventory levels. Therefore, transportation is 

usually carried out in a high-frequency and small quantity 

form [1]. The circular distribution model (CDM) 

precisely meets this demand and is therefore the most 

widely used transportation model at present. How to 

achieve the lowest cost transportation and inventory 

under relevant distribution modes are closely related to 

the planning of transportation routes [2]. Therefore, the 

control of ILC is essentially a problem of path planning. 

Common path planning methods include genetic 

algorithm (GA), Dijkstra algorithm, A* algorithm, and 

random road-map algorithm. As a new type of heuristic 

algorithm, GA starts searching from the initial solution 

space and is easier to obtain the global optimal solution 

compared to traditional single point search. The updated 

method that only relies on the fitness function also 

enhances its adaptability, which is relatively common and 

mature in existing research [3]. Therefore, a simulation 

design is conducted for inbound logistics path planning 

(LPP) based on an improved genetic algorithm (IGA). 

The innovation of the research lies in the constraint on 

the maximum inventory of the manufacturing center and 

the introduction of neighborhood structure to optimize the 

encoding of GA. Considering the problem of demand 

fluctuations in actual situations, further optimization 

design has been carried out. The study is divided into four 

parts. Part 1 introduces the current research status of ILC 

control. Part 2 has designed a GA-based path planning 

model. Part 3 conducts simulation experiments on the 

model. Part 4 summarizes the experimental results. 

2 Literature review 

The path planning and design for inbound logistics is 

currently a popular research topic, and its impact on the 

environment and costs should not be underestimated. 

Muoz Villamizar et al. optimized the daily delivery 

service launched by companies such as Amazon to 



2   Informatica 48 (2024) 1–14                                                                     Y. Yang 

address the increased transportation costs and carbon 

emissions associated with fast shipping. It used a discrete 

event simulation model and was validated with Mexican 

retailers, where fast shipping resulted in a 15% and 68% 

increase in carbon dioxide emissions and costs, 

respectively [4]. Wang et al. believed that the rise of the 

cruise market has increased demand for the cruise 

construction industry, but it was a complex heavy 

industry that may have negative impacts on the 

environment. Therefore, through the just in time logistics 

strategy, two logistics system models were established to 

study the optimal inbound logistics modes for three 

different routes. Their models helped cruise ship 

construction companies control costs and achieved 

sustainable development [5]. Santos et al. explored 

cooperation between shippers and carriers to improve the 

efficiency of transportation networks and reduce empty 

operations, and developed a dual layered vehicle routing 

problem and selective return model. At the upper level of 

the model, shippers chose the lowest cost delivery route 

and incentive measures, while at the lower level, carriers 

decided which incentives to accept and which return trips 

to choose. This double-layer approach could increase 

collaborative benefits more than non-cooperative 

methods [6]. Darvishi et al. used the textile industry as an 

example and used a mixed integer nonlinear model to 

handle procurement and production decisions under 

multiple cycles, products, and transportation modes. To 

address this model, an effective multi-stage algorithm 

was developed and a powerful two-stage stochastic 

programming method was designed using possibility 

programming to fuzzify it. Finally, numerical research on 

the clothing industry has confirmed the effectiveness of 

the model and solutions [7]. 

Coindreau et al. optimized the cross platform 

multi-modal logistics problem of a large European 

automobile manufacturer and integrated it into a mixed 

integer linear programming model, taking into account 

loading constraints and loading scheduling. By 

conducting numerous computational experiments in real 

scenarios, this integration method could reduce inventory 

losses by an average of 40% [8]. Kundra et al. proposed a 

quantum inspired path planning model combining the 

firefly algorithm with the cuckoo search strategy, 

introducing the Levy flight attribute to avoid premature 

convergence and stagnation in the model. Their path 

planning method had a certain optimization effect [9]. 

Ntakolia et al. addressed the multi-objective path 

planning problem of unmanned surface vehicles (USVs) 

by employing an ant colony optimization algorithm, a 

fuzzy reasoning system, and advanced algorithms. They 

then compared and evaluated various methods. The 

algorithm that combined fuzzy reasoning had better 

performance, while the algorithm that combined root 

mean square error converged faster [10]. Sun et al. 

proposed a GA-based path planning method for collecting 

seabed observation data from multiple USVs. This 

method could simultaneously solve multiple traveling 

salesman problems and obstacle avoidance problems, 

combining special search methods and IGA to achieve 

global path optimization and task load balancing, with 

excellent path planning effects [11]. A summary of the 

related works is shown in Table 1. 

 

Table 1: Related works summary table 

Source Method Major technology 
Relative to the limitations 

of research method 

Muoz-Villamizar et al. Discrete event simulation Express shipping 
Inventory constraints are 

not considered 

Wang et al. 
Just-in-time logistics 

strategy 

Optimize the inbound 

logistics mode 

Not optimized for line side 

inventory 

Santos et al. 
Double-deck vehicle 

routing problem model 

The shipper works with the 

carrier 

Focus on non-path 

planning 

Darvishi et al. 
Mixed integer nonlinear 

model 

Optimize purchasing and 

production decisions 

It does not target the 

inbound logistics of auto 

parts 

Coindreau et al. 
Mixed integer linear 

programming 

Automotive manufacturer 

logistics optimization 

Demand fluctuations are 

not taken into account 

Kundra et al. 
Quantum heuristic 

algorithm 
Path planning 

Not specifically for 

inbound logistics 

Ntakolia et al. 
Ant colony optimization 

algorithm 

Path planning for 

unmanned surface vehicles 

Inventory constraints are 

not considered 

Sun et al. Data collection 
Solve the problem of 

multiple travel agents 
Focus on data collection 

 

In summary, path planning is closely related to 

logistics cost control. This study utilizes a mature GA for 

inbound LPP and introduces neighborhood structure  

 

 

 

optimization in coding to enhance the application 

performance of the model in the face of uncontrollable  

factors and achieve better cost control effects. 
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3 Application of GA based on line 

edge maximum inventory 

constraint in ILC control 
Automobile parts manufacturers not only need to control 

the cost of the product itself, but also need to exercise 

certain control over external costs such as inbound 

logistics. This study proposes a cost control model based 

on IGA. Firstly, the inbound logistics model is selected 

and introduced to design constraints on inventory and 

transportation costs, and GA is introduced to solve the 

model. To address the shortcomings of the algorithm, 

neighborhood structure is introduced for optimization, 

and further design improvements are made to address the 

unstable demand for component products. 

 

3.1 Analysis and solution design of ILC 

control model under constraint conditions 
Entering the factory logistics planning is one of the basic 

requirements for just in time production of automotive 

parts, aiming to evenly distribute parts to the production 

line according to certain criteria and time windows. It is 

the foundation for maintaining production stability and 

the initial component of the entire supply chain logistics. 

Common inbound logistics include three modes: supplier 

direct delivery, Milk Run (MR), and joint delivery. 

Among them, the high-frequency and small batch 

characteristics of CDM are consistent with the material 

demand pattern of automobile manufacturers, and 

therefore have been widely used, as shown in Figure 1. 

 

Parts warehouse center

Supplier 2

Supplier 3

Information 

transmission

Return flow

Pick-up flow

Main engine plant

Product 

Supplier 1  

Figure 1: Visualization of milk run mode 

 

The cost of inbound logistics includes four parts: 

ordering, management, inventory, and transportation, 

with inventory and transportation accounting for about 

85% of the total cost. ILC should be optimized for these 

two parts. Vehicle path planning is the core of inbound 

delivery, aimed at achieving goals with appropriate 

quantities and paths at the lowest cost [12]. At the same 

time, MR needs to meet the supplier's inventory level at 

the automotive factory. The basis of this constraint is to 

assume that the consumption of components on the 

production line is linear, and an increase in the number of 

pick-up times will reduce the supplier's inventory on the 

production line. When the inventory of the manufacturing 

plant's production line is low, the high-frequency and 

small quantity mode of MR can be achieved. Therefore, 

this study introduces the maximum line edge inventory to 

forcibly reduce the single transportation volume of 

suppliers, as shown in Figure 2. 
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Figure 2: Schematic diagram of product inventory changes 

 

Secondly, to ensure a smooth pick-up process, it is 

necessary to constrain the independent paths of each 

supplier. When the total transportation volume is greater 

than the single vehicle loading capacity, it is necessary to 

increase the pickup frequency, as shown in equation (1). 

, 0;

, 0;

1 , 0

ijk ijk

i G

jik ik

i G

ik

k E

x y j G j k E

x y i G i k E

y i G i








=     


=     


 =  








 (1) 

In equation (1), /i j  represents the supplier. k  

represents the transportation path. ijkx  represents the 

k -th vehicle traveling from supplier i  to supplier j . 

iky  represents the completion of supply i  on path k . 

G  represents the transportation and pickup node. E  

represents the number of vehicles corresponding to the 

path. The constraint of transportation vehicles from 

departure to return is shown in equation (2) [13]. 
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In equation (2), 0 represents the component node. 

The minimum value of the sum of inventory cost and 

transportation cost is equation (3). 

min k ij ijk ik ik

i G j G k E i G k E

Z a f d x b p y
    

= +   (3) 

In equation (3), /a b  are unit distance freight and 

unit inventory cost, respectively. kf  represents the 

pickup frequency of the corresponding path. ijd  

represents the distance between two suppliers. ikp  

represents the loading volume of the route supplier. The 

above constraints on vehicle path planning need to be 

implemented in a computer through algorithms. Modern 

heuristic algorithms are easier to obtain global optimal 

solutions when solving problems for complex scene 

models. Therefore, a more mature GA is chosen to solve 

the model. GA is a random search algorithm based on 

biological evolution simulation, with higher advantages 

in large-scale combinatorial optimization problems due to 

its genetic operator and parallelism. Firstly, the problem 

must be encoded, an initial cluster generated according to 

the rules, the quality of the solution evaluated based on 

fitness values, and the solution updated using selection 

and crossover operators, with the process repeated 

continuously until the iteration completion condition is 

met. Among them, encoding is to transform the solution 

space into a search space that the algorithm can recognize, 

which determines the performance of GA. The selection 

of a population, also known as the replication process, is 

based on the individual's fitness value for selection. 

Individuals with higher fitness values have a higher 

probability of inheritance. This study introduces the 

roulette wheel selection method, where the probability of 

individual selection is directly proportional to the fitness 

value, as shown in equation (4). 

( ) ( ) ( ) ( ) ( )( )1 2/ ...
iX i i nP f X f X f X f X f X= + + + + (4) 

In equation (4), 
iXP  represents the probability of an 

individual being selected. ( )f X  represents the fitness 

value of each individual. Individuals are considered as a 

part of a sector in a disk, and if the random selection 

process stops in which sector, the individual is selected. 

Each sector represents the prefix and probability of an 

individual, which are directly proportional to the 
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selection probability, as shown in equation (5). 

1

( )
j

j j

i

Q f X
=

=   (5) 
In equation (5), jQ  represents the prefix and 

probability of the individual. Crossover operator is a 

simulation of mating recombination in biological 

evolution. OX crossover operator is introduced in this 

study. OX crossover operator is an ordered crossover 

method widely used in GA, which is especially suitable 

for solving problems involving sequence or path planning. 

The OX crossover operator is capable of maintaining the 

path order of optimal individuals within the parent 

chromosome, which facilitates the algorithm's rapid 

convergence towards optimal solutions. The reason for 

choosing the OX crossover operator is that it can 

maintain the efficiency of path continuity in the path 

planning problem, while avoiding the generation of 

illegitimate offspring chromosomes. The OX crossover 

operator is shown in Figure 3. 
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Figure 3: Operation flow of OX crossover operator 

 

Firstly, it is necessary to randomly generate a 

starting position in the parent generation and generate 

offspring based on this, and generate a new population in 

order according to the gene position of the offspring in 

another parent generation. The mutation operator is 

designed to simulate the process of gene mutation, 

ensuring that individuals exhibit variation according to 

predefined rules, maintaining population diversity, and 

preventing the phenomenon of rapid convergence due to 

local optimization. There is no overlap between nodes in 

the incoming logistics of auto-parts. The study chooses 

exchange mutation as the mutation technology [14]. 

Swap mutation operator is a simple and effective 

mutation method, which is realized by randomly 

swapping two gene locations in chromosomes. In the path 

planning problem, this mutation operator can simulate the 

small adjustment of the route in the real world, which 

helps the algorithm to jump out of the local optimal 

solution and find the global optimal solution. The swap 

mutation operator is chosen because it is simple and easy 

to implement, and can increase the diversity of the 

population and avoid premature convergence while 

maintaining the search efficiency of the algorithm. In the 

above steps, corresponding control parameters need to be 

selected to achieve better global optimal solution results. 

 

 

3.2 Optimization GA design for the logistics 

model of automotive parts recycling in 

factories 
By studying CDM based on line edge inventory 

constraints and GA, the GA model based on MR can be 

further solved. Firstly, the description of the path 

planning solution consists of two codes: one is a 

description of the frequency of supplier replenishment, 

and the other is a description of the route, both of which 

are real number codes. The constraints of the model are 

also tailored to these two parts. The maximum inventory 

level at the production line and the preparation time for a 

single supply are related to the frequency of 

replenishment. The vehicle's own load capacity is related 

to route planning, and the former is also limited by the 

single vehicle's load capacity [15]. There are two 

necessary conditions to satisfy the inventory constraint at 

the line edge. Firstly, the single replenishment quantity 

cannot exceed the difference between the maximum and 

minimum inventory, and the maximum inventory for 

pickup is shown in equation (6). 

, 0

ik ik

i G i

p y S k E
 

    (6) 

In equation (6), S  represents the highest inventory 

level. Secondly, the replenishment interval should not be 
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less than the preparation time for a single supply. The 

constraints of route planning must be implemented using 

coding. This involves first inputting chromosome 

segments and subsequently introducing penalty functions. 

When the corresponding chromosome violates the 

restriction condition, punishment is required, which is to 

reduce the fitness value, as shown in equation (7) [16]. 

min max ,0k ij ijk ik ik ik ik

i G j G k E i G k E k E i G k E

Z a f d x b p y M p y S
       

 
= + + − 

 
    (7) 

In equation (7), max ,0ik ik

k E i G k E

M p y S
  

 
− 

 
   

 

represents the penalty value, and M  is an appropriately 

large integer. Regarding the selection of fitness function, 

fitness function has different definitions for different 

problems, therefore it is a variation of the objective 

function, as shown in equation (8). 
'

k

k

Z
F r

Z
=   (8) 

In equation (8), kF  represents the fitness value of 

the chromosome. 'Z  represents the transportation cost 

of the initial optimal chromosome. kZ  represents the 

transportation cost. r  represents a constant. The initial 

cluster of suppliers is randomly selected. Supplier 

 1,2,...,s u=  needs to meet the conditions shown in 

equation (9). 
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The control parameters of GA include population 

size N , crossover probability cP , and mutation 

probability mP . The population size is related to the 

convergence speed of the model. Small scale can easily 

lead to local optima, while conversely, it can lead to slow 

convergence. A higher probability of crossover can lead 

to better genetic crossover effects, but it may also disrupt 

the better individuals, leading to a randomization process. 

Conversely, it may result in individuals directly entering 

the next generation. Therefore, the crossover probability 

is usually within the range of [0.4,0.8], while the 

mutation probability is less than 0.2 [17]. However, 

setting only the crossover and mutation probabilities of 

the algorithm can easily lead to local optima, so 

optimization strategies are needed to ensure the 

inheritance of excellent individuals. This study introduces 

three neighborhood structures for improvement, namely 

the 2-OPT structure, part shuffle structure, and random 

insert structure, as shown in Figure 4. 

 

2 57 91863 4

6 67 91823 4

(a) 2-OPT

2 57 91863 4

8 66 91273 4

(b) part-shuffle

2 57 91863 4

2 66 91783 4

(c) random-insert 

 

Figure 4: Three kinds of neighborhood optimization structures 
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The 2-OPT operator originates from the two-path 

switching structure in the path switching + depth first 

search algorithm, and has a significant advantage in path 

planning. The part shuffle structure aims to enhance 

population diversity by randomly selecting two gene loci 

and shuffling them. The random insert structure also 

requires randomly selecting two gene loci, then inserting 

one into the other, and performing lateral movement on 

the remaining gene loci [18]. The above design is aimed 

at the situation of stable demand. However, it is difficult 

to meet the requirement of stable demand under real 

conditions. The demand for automotive components 

fluctuates around 1.5-2 times, so optimization should also 

be carried out in this area. The objective function of path 

optimization under demand fluctuations is shown in 

equation (9). 

1 1

min
m w

k ij ijk ik ik s k

i G j G k E i G k E k s u

Z a f d x b p y f
     = = +

= + +    (10) 

In equation (10), m  represents the total number of 

paths, and s  represents the single transportation cost of 

vehicle s . The vehicle load constraint is equation (11). 

0

, ,
n

s s

i iks i

i

q y W W k K s S
=
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In equation (11), /K S  represent the set of paths 

and the set of vehicles, respectively. iW  represents the 

unit weight of the component. sW  represents the 

maximum load capacity of the vehicle. 
s

iq  represents 

the single pickup volume of the vehicle at the supplier's 

location. The maximum inventory constraint at the edge 

of the line is equation (12). 

( ) max max/ i i

iks ks iy f Q E E −  (12) 

In equation (12), iQ  represents the daily supply of 

supplier i . max max/i iE E  represent the maximum and 

minimum inventory of the warehouse, respectively. The 

time constraints of the model are shown in equation (13). 
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x S S S
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
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In equation (13), 
ks

ijx  represents whether path k  

vehicle s  is from supplier i  to supplier j . 

, ,/k k

lea i rea iS S  are the time when vehicle k  leaves and 

reaches supplier i . 
k

ijS  represents the travel time 

between suppliers. 
f

iT  represents the time of supplier 

i 's f  supply. In summary, the GA model requires three 

encoding segments. Compared to the original encoding 

for replenishment frequency and path planning, the 

encoding for the vehicle model has been added, as shown 

in Figure 5. 

 

Input vehicle type gene segment 

and route gene segment

Set the path number and load 

performance specifications

Judge the model,

Update  the route

N=N+1Satisfy constraint?

YES
NO

N>=5?

YES

NOOutgoing transport path

 

Figure 5: Constraint coding process 

 

In Figure 5, the vehicle model code and route code are 

shown in equation (14). 
 
 '

1 1 3 2 1
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 =
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 =
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In equation (14), '/C N  are the vehicle model code 

and route code, respectively. The parameter settings  

include route code, loading capacity, carriage length, and 

pickup frequency. Based on the selection of constraints 

and optimization strategies, the final IGA operation 

process is Figure 6. 

 

Parameter set

3 segment coding

Vehicle type

Replenishment frequency

Real-time sequence

Pop 

1

Fitness value 

calculation

Restraint 

Crossover and 

mutation operators

Neighborhood 

structure

Pop 

2

Satisfy convergence

 condition?

No 

Yes 

End 

 

Figure 6: Process of improving GA algorithm 

 

From Figure 6, the designed IGA mainly includes: 

coding, fitness calculation, and cross variation. 

Meanwhile, neighborhood structure and corresponding 

constraint conditions are added for optimization to further 

enhance path planning performance. At run time, the 

population needs to be initialized before each individual 

is encoded using real number encoding. The fitness value 

of each individual is calculated, and individuals are 

selected for crossover and mutation operations in 

accordance with their respective fitness values. Fitness 

values are calculated for the new individuals generated by 

crossover and mutation operations, and according to the 

fitness values, a new population is formed. The fitness 

value of an individual who violates a constraint condition 

is reduced by the penalty function to ensure that all 

individuals in the population meet the problem constraint. 

After iteration, the individual with the highest fitness 

value is selected from the current population as the final 

optimal path planning scheme. 

 

 

 

4 Performance analysis and 

simulation experiment of an 

inbound lpp model based on IGA 
To verify the performance of IGA-based ILC control, this 

study first conducted experiments on the performance of 

IGA itself. Subsequently, the model was applied to a cost 

control model, which simulated the process of inbound 

LPP based on demand fluctuations and demand stability. 

In addition, other models were introduced to enable a 

comparison of the final cost control effect. 

 

4.1 Optimization performance verification 

experiment and comparative analysis of IGA 

This study first conducted experimental verification on 

the performance of IGA. Table 1 shows the experimental 

environment and algorithm parameters. 
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Table 1: Selection of experimental environment and algorithm parameters 

Name Experimental environment/Parameters 

Operating system Window 10 

RAM 4GB 

GPU NVIDA Ge Force GTX 1080 Ti 

Simulation platform Matlab R2018a 

Maximum capacity of a single 

transport sW  
15 tons 

Maximum inventory max

iE  20 tons 

Maximum single pickup time T  8h 

Pop size N  200 

Max iterations 200 

Para.ftemperature 500 

Para.etemperature 0.06 

Crossover probability cP  0.6 

Mutation probability mP  0.2 

 

To explore the optimization performance of IGA 

under different numbers of nodes, i.e. the number of 

suppliers, this study selected the conditions of 15/25/50  

 

suppliers for experiments, and the results are shown in 

Figure 7. 
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Figure 7: IGA performance with different number of suppliers 

 

In Figure 7, the smaller the number of nodes, the 

lower the cost value of the model solution and the fewer 

iterations. In the optimal solution curve of Figure 7 (a), 

the model gradually begins to converge around the 55th 

iteration, with a final convergence value of 601.23, which 

is 19.48% lower than the initial optimal solution. The 

difference between the average solution and the optimal 

solution gradually increases with the iteration of the 

optimal solution, and at the beginning of convergence, 

the difference between the two curves reaches 8.97%. 
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When the number of nodes increases to 25, the initial 

convergence number of the model is 75, and the final 

convergence value is 1404.58, a decrease of 14.31% 

compared to the initial value. The average solution is also 

consistent with the previous trend, but the convergence 

performance is more pronounced. When the number of 

nodes increases to 50, the convergence frequency of the 

model is about 175, and the final convergence value is 

2911.45, which is a decrease of 14.32% compared to the 

initial value. In summary, IGA has a better global 

optimization effect. This study further compares it with 

un-optimized GA and the more common path 

optimization A* algorithm under the condition of 25 

nodes, as shown in Figure 8. 
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Figure 8: Performance comparison of different algorithms 

 

Figure 8 (a) shows the PR and ROC curves of each 

algorithm. The performance of the un-optimized GA is 

the worst, with accuracy and recall corresponding to the 

PR curve balance point of 72.14% and 71.59%, 

respectively, while the A* algorithm reaches 79.98% and 

81.46%, respectively. The accuracy and recall 

corresponding to the PR curve equilibrium point of the 

proposed IGA algorithm are 95.37% and 96.71%, 

respectively, with an average improvement of 19.31% 

and 20.19%. The trend of ROC variation for each 

algorithm is also the same. The sensitivity and false 

positive probability of IGA are 93.88% and 7.63%, 

respectively. The false positive rate is the misjudgment 

rate of the algorithm, which is on average 15.41% lower 

than the other two algorithms, and the sensitivity is on 

average 18.97% higher than the other two algorithms. 

Figure 8 (b) shows the runtime of each algorithm. The 

runtime of IGA, A* algorithm, and un-optimized GA are 

12.14s, 28.97s, and 32.59s, respectively. Therefore, the 

average duration of IGA is 56.94% lower than other 

algorithms. In summary, the proposed IGA has the best 

performance. 

 

4.2 Practical application analysis of path 

planning model based on IGA in ILC control 
This study embedded IGA into the factory LPP model 

and selected 38 suppliers near a certain company for 

experiments. The transportation of automotive parts is a 

box truck with a load capacity of 28 tons and a loading 

volume of 12.6m*2.5m*2.5m. The experimental results 

are shown in Figure 9. 
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Figure 9: Visualization of path planning under different requirements 

 

All path planning results in Figure 9 are 7 paths. 

Figure 9 (a) shows a visual diagram of path planning with 

stable demand. The number of nodes passing through 

each path is 6/8/7/2/7/6/2, and in the 15-day 

transportation time, the frequency is 20/23/5/10/15/30/10, 

respectively. Figure 9 (b) shows a visual diagram of path 

planning after increasing demand. The number of nodes 

passing through each path is 5/4/9/8/2/8/2, and the 

frequency of each path is 7/8/12/11/2/14/3. Figure 9 (c) 

shows a visual diagram of path planning after demand 

reduction. The number of nodes passing through each 

path is 3/2/9/7/3/6/8, and the frequency of each path is 

2/3/14/9/2/7/10. When the demand is stable, each path 

passes through nodes more evenly and frequently. When 

demand increases, each path passing through the nodes 

needs to be adjusted accordingly. The corresponding 

frequency is higher for routes with more nodes. When the 

demand decreases, the route also changes according to 

the changes in demand for each node. Table 2 shows the 

specific cost control results obtained from the path before 

and after demand changes. 

 

 
Table 2: Specific cost control results of path planning before and after demand changes 

Path Index 
Demand 

stabilization 
Rising demand Demand reduction 

1 
Total time(h) 2.11 1.59 2.98 

Loading rate(%) 92.51 98.75 68.96 

2 
Total time(h) 1.46 3.52 0.82 

Loading rate(%) 91.16 66.25 85.97 

3 
Total time(h) 5.82 1.76 0.63 

Loading rate(%) 98.56 97.17 82.64 

4 Total time(h) 1.92 2.83 2.81 
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Loading rate(%) 58.49 94.20 85.89 

5 
Total time(h) 3.96 2.86 3.57 

Loading rate(%) 99.67 73.42 68.73 

6 
Total time(h) 0.47 0.56 2.47 

Loading rate(%) 99.89 90.14 85.34 

7 
Total time(h) 0.12 3.11 1.52 

Loading rate(%) 71.46 76.17 95.38 

Total cost(yuan) 399781.96 169185.35 136905.20  

 

The data in Table 2 represent the total value of 

15-day transportation. Under stable demand, the average 

time taken for each path is 2.27 hours, and the average 

loading rate is 87.39%. Its frequency is at most twice a 

day, and at least once every three days. The total cost of 

MR under the total transportation days reaches 399781.96 

yuan, which is 20.34% less than the simple direct 

delivery form. The total mileage is 1748 kilometers, a 

relative decrease of 53.54%. After the increase in demand, 

the average time for each path is 2.32 hours, the average 

loading rate is 85.17%, the total cost is 169185.35 yuan 

with a relative decrease of 23.25%, and the total  

 

transportation mileage decreases by 64.32%. When the 

demand decreases, the average time for each path is hours, 

the average loading rate is %, the total cost is 136905.20 

yuan with a relative decrease of 21.42%, and the total 

transportation mileage is 46.95%. The research method 

has a significant effect on the control of ILC. This study 

further introduces the Single Objective Nonlinearity 

(SON) model proposed by J Wang et al. and the 

Collaborative Network (CN) model proposed by MJ 

Santos et al. for comparative experiments, as shown in 

Figure 10. 
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Figure 10: Comparison of cost control effects of various route planning models on warehousing logistics 

 

Figure 10 (a) shows the total mileage of path 

planning for each model under different numbers of 

suppliers. When the number of suppliers is 15, the 

mileage of the research model, SON, and CN are 45.9km, 

53.29km, and 58.25km, respectively. The total mileage of 

the research method decreases by 21.51% compared to 

the SON and CN models, respectively. As the number of 

suppliers increases, the mileage continues to rise. The 

total mileage of the research model is 76.51km and 

153.01km when the number is 25 and 50, which is on 

average 8.39% and 12.10% lower than the other two 

models. Figure 10 (b) shows the average transportation 

cost and average inventory cost for each model. The 

average cost of the two research models is 589.83 yuan 

and 118100.74 yuan, respectively, which are lower than 

the other models by 23.35% and 29.84%. Comparing the 

IGA model with the traditional SON and CN, ANOVA 

tests are used to evaluate the differences in 

cost-effectiveness between the different models. If the 

test results are P<0.01, indicating that the IGA model has 

a statistically significant cost control advantage. The 

validity of the research method is further confirmed by 

comparison with baseline models and testing with 

real-world data sets. The results show that the average 

cost of IGA model is 169185.35 yuan, while the average 

cost of SON model and CN model is 198000 yuan and 

213000 yuan respectively. The P-value of T-test is 0.005, 

which is much lower than the significance level of 0.05. 

By applying the IGA model to a real-world case study of 

38 suppliers, the study collects key metrics such as 
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shipping miles, load rates, and total costs over a 15-day 

period. Compared to the baseline model, the load rate of 

the IGA model reaches 92.51%, while the baseline model 

is only 85.67%, and the total cost is reduced by 26.58%. 

In the actual case test, the IGA model shows good 

adaptability and cost control effect under the three 

conditions of stable demand, increasing demand and 

decreasing demand. Especially in the case of 20% 

increase in demand, the IGA model successfully controls 

the cost at 169185.35 yuan, which is 23.25% lower than 

the baseline model. In summary, the path planning model 

based on IGA has the best control effect on ILC of 

automotive components. 

5 Discussion 

The path planning model based on proposed IGA has 

been deeply analyzed and optimized for the cost control 

problem of automotive component inbound logistics. 

Compared to the research of A Muoz Villamizar et al., 

the study not only focuses on cost and environmental 

impacts, but also specifically introduces the constraint of 

maximum inventory at the line edge, which has not been 

fully considered in the optimization of fast shipping 

services. Although MJ Santos et al. proposed a 

cooperation model between shippers and carriers, their 

focus is on establishing cooperation mechanisms rather 

than path planning itself. In contrast, research methods 

focus on optimizing path planning through IGA to 

achieve cost control. Darvishi F et al. applied mixed 

integer nonlinear models in the textile industry, while 

their research focused on the specific industry of 

automotive components. They improved GA to solve 

practical inbound logistics problems, which has higher 

specificity and practicality in industry applications. The 

innovation of the research lies in the targeted 

improvement of GA, which introduces three 

neighborhood structures that effectively enhance the 

global search ability and quality of the algorithm. Special 

consideration is also given to the phenomenon of demand 

fluctuations in practical applications, and the algorithm is 

re-coded and designed to better adapt to the uncertainty in 

actual production. The study provides a new cost control 

strategy for automotive component manufacturers, which 

helps companies gain advantages in fierce market 

competition. 

6 Conclusion 

A LPP model based on IGA was proposed to address the 

cost issue of logistics for automotive parts entering the 

factory. Firstly, the distribution mode was designed, and 

constraints such as maximum inventory at the line edge 

were introduced for optimization. GA was used to solve 

the model. In response to the problem of easily falling 

into local optima in the initial algorithm, neighborhood 

structures and other improvements have been introduced. 

To verify the reliability of the model, experimental 

analysis was first conducted on IGA. The results showed 

that the convergence times of the model were 55/75/175 

respectively when the number of nodes was 15/25/50. In 

comparison with the initial algorithm and A* algorithm, 

the PR curve and ROC curve of the research algorithm 

were superior to the other two models. Among them, the 

accuracy and recall corresponding to the equilibrium 

point increased by an average of 19.31% and 20.19%. 

The average runtime of the algorithm was 56.94% lower 

than the other algorithms. The experimental analysis of 

the overall model was conducted based on demand 

stability and demand fluctuations. There were 7 paths in 

all three cases, corresponding to a total frequency mean 

of 17, 5, and 4 times, respectively. When the demand was 

stable, the average time taken for each path was 2.27 

hours, and the total cost was reduced by 20.34% 

compared to the simple direct delivery form. After the 

increase in demand, the total cost decreased by 23.25%. 

When the demand decreased, the total cost was 

136905.20 yuan with a relative decrease of 21.42%. In 

the comparative experiment between the SON model and 

the CN model, the total mileage of the designed 

algorithm decreased by an average of 14% and the total 

cost decreased by 26.58% under three different node 

numbers. Therefore, the research method has the best 

control effect on ILC. However, this study did not take 

into account the limitation of driver time, and in the 

future, time window constraints should be added for 

solving to further enhance the practical applicability of 

the model. 
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